JPH0193178A - Temperature difference detector - Google Patents

Temperature difference detector

Info

Publication number
JPH0193178A
JPH0193178A JP62251345A JP25134587A JPH0193178A JP H0193178 A JPH0193178 A JP H0193178A JP 62251345 A JP62251345 A JP 62251345A JP 25134587 A JP25134587 A JP 25134587A JP H0193178 A JPH0193178 A JP H0193178A
Authority
JP
Japan
Prior art keywords
electrodes
series
substrate
semiconductor
thermoelectric elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251345A
Other languages
Japanese (ja)
Inventor
Akira Kumada
明 久万田
Mitsuhiro Murata
充弘 村田
Norimitsu Kito
鬼頭 範光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62251345A priority Critical patent/JPH0193178A/en
Priority to US07/253,719 priority patent/US4938244A/en
Publication of JPH0193178A publication Critical patent/JPH0193178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To construct a multistage series type thermopile of a simple structure by a method wherein a plurality of electrodes to constitute pairs of hot and cold junctions are lined up on both surfaces of a semiconductor ceramic substrate, the space between the electrodes serves as thermoelements, and the elements are connected in series. CONSTITUTION:On one surface of a ceramic substrate 12, four pairs of electrodes 13a, 13b,...16a, 16b are formed, with a specified interval between them. At a location in the ceramic substrate 12 between two electrodes for example 13a and 13b constituting a pair, one thermoelement is formed. Two neighboring thermoelements are connected by connecting conductive channels 17a-17c, whereby four thermoelements are connected in series. In this way, a multistage series connection type temperature difference detector may be obtained wherein a plurality of thermoelements are connected in series in the single semiconductor ceramic substrate 12. The whole structure may be effectively simplified and neither positional alignment nor application of adhesives is required. The formation of conductive channels is the only process required, which greatly simplifies the entire manufacturing process.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ゼーベック効果を利用した温度差検知素子
に関し、特に熱電素子の配列構造が改良されたものに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a temperature difference sensing element that utilizes the Seebeck effect, and particularly to one in which the arrangement structure of thermoelectric elements is improved.

[従来の技術] 特開昭54−114090号公報には、還元性酸化チタ
ンよりなる半導体熱電素子を利用した熱線検知器が開示
されている。この熱線検知器は、第2図に示すように、
板状の還元性酸化チタン半導体基板1の一方主面にオー
ミックな金属膜2a。
[Prior Art] Japanese Unexamined Patent Publication No. 114090/1983 discloses a heat ray detector using a semiconductor thermoelectric element made of reducible titanium oxide. This heat ray detector, as shown in Figure 2,
An ohmic metal film 2a is formed on one main surface of a plate-shaped reducible titanium oxide semiconductor substrate 1.

2bを形成し、オーミックな金属膜2a、2bと半導体
基板1との接合点の一方を温接点3、他方を冷接点4と
しだ熱電素子を複数枚用いて構成されている。すなわち
、第2図では平面的に3枚の熱電素子6a〜6Cが図示
されているが、これらの熱電素子6a、6b、 6cを
リード線7.8を用いて直列に接続して一体型の熱線検
知器とする構造が開示されている。
2b is formed, one of the junctions between the ohmic metal films 2a and 2b and the semiconductor substrate 1 is used as a hot junction 3, and the other as a cold junction 4, and a plurality of thermoelectric elements are used. That is, although three thermoelectric elements 6a to 6C are shown in a plane in FIG. 2, these thermoelectric elements 6a, 6b, and 6c are connected in series using lead wires 7.8 to form an integrated structure. A structure for a heat ray detector is disclosed.

ここでは、複数枚の熱電素子6a 、6 b r 6 
Cを直列に接続することにより、出力電圧を高めること
が可能とされている。
Here, a plurality of thermoelectric elements 6a, 6br6
By connecting C in series, it is possible to increase the output voltage.

[発明が解決しようとする問題点] しかしながら、第2図に示した熱電素子68〜6bを別
個に用意しなければならず、また、複数枚の熱電素子を
直列に接続するためには、第2図に示したように交互に
逆向きに配置し、リード線7.8を用いて接続しなけれ
ばならないため、製造工程も複雑であった。
[Problems to be Solved by the Invention] However, the thermoelectric elements 68 to 6b shown in FIG. 2 must be prepared separately, and in order to connect a plurality of thermoelectric elements in series, The manufacturing process was also complicated because the components had to be arranged in opposite directions alternately and connected using lead wires 7 and 8, as shown in FIG.

よって、この発明の目的は、より簡単な工程で得ること
ができ、かつ全体の構成を簡易化し得る構造を備えた温
度差検知素子を提供することにあ ゛る。
Therefore, an object of the present invention is to provide a temperature difference sensing element that can be obtained through a simpler process and has a structure that allows the overall configuration to be simplified.

[問題点を解決するための手段] この発明の温度差検知素子は、1枚の半導体セラミック
スよりなる基板を基本的構成要素とする。
[Means for Solving the Problems] The temperature difference sensing element of the present invention has a substrate made of a single semiconductor ceramic as a basic component.

すなわち、このU板の少なくとも一方の面に、温接点お
よび冷接点を構成するために対をなすように複数対の電
極が形成されている。そして、対をなす電極と、該対を
なす電極間の半導体セラミックス基板部分とにより複数
個の熱電素子が単一の基板上に構成されており、この複
数個の熱電素子は該基板上で直列に接続されている。
That is, a plurality of pairs of electrodes are formed on at least one surface of the U plate to form a hot junction and a cold junction. A plurality of thermoelectric elements are constructed on a single substrate by the pair of electrodes and the semiconductor ceramic substrate portion between the pair of electrodes, and the plurality of thermoelectric elements are arranged in series on the substrate. It is connected to the.

[作用] 半導体セラミックスよりなる単一の基板を用いて複数の
熱電素子が構成されているので、複数の基板を用いるこ
となく多段直列型のサーモバイルを得ることができる。
[Function] Since a plurality of thermoelectric elements are constructed using a single substrate made of semiconductor ceramics, a multi-stage series thermoelectric device can be obtained without using a plurality of substrates.

また、直列に接続される複数個の熱電素子は基板上で接
続されるものであるため、各熱電素子を構成するための
電極と同時に容易に形成することができる。
Moreover, since the plurality of thermoelectric elements connected in series are connected on the substrate, they can be easily formed at the same time as the electrodes for configuring each thermoelectric element.

[実施例の説明] 第1図および第3図は、この発明の一実施例の平面図お
よび正面図である。この実施例の温度差検知素子11は
、半導体セラミックスよりなる基板12を用いて構成さ
れている。基板12を構成する半導体セラミックスとし
ては、n型セラミック半導体であれば、BaTi0.や
5rZrO。
[Description of Embodiment] FIGS. 1 and 3 are a plan view and a front view of an embodiment of the present invention. The temperature difference sensing element 11 of this embodiment is constructed using a substrate 12 made of semiconductor ceramics. As the semiconductor ceramic constituting the substrate 12, if it is an n-type ceramic semiconductor, BaTi0. and 5rZrO.

のようなペロブスカイト型半導体、MnTLO=のよう
なイルメナイト型半導体、Fe、O,やMnFe2O4
のようなスピネル型半導体、PbxNb206のような
タングステンブロンズ型半導体、ソノ他ZrO,TiO
2,V20.等のセラミック半導体が挙げられる。また
、p型セラミック半導体としては、Cu20.Nip、
C,)O。
perovskite type semiconductors such as MnTLO=, ilmenite type semiconductors such as MnTLO=, Fe, O, and MnFe2O4
Spinel type semiconductors such as PbxNb206, tungsten bronze type semiconductors such as Sono, ZrO, TiO
2, V20. Ceramic semiconductors such as Moreover, as a p-type ceramic semiconductor, Cu20. Nip,
C,)O.

Fed、MnO,LaMn0.、NiMnO3゜LaF
e0.等が挙げられる。このうち、n型セラミック半導
体の場合は還元雰囲気中で処理された過剰半導体として
、また、p型セミツク半導体の場合は酸化雰囲気中で処
理された不足半導体として使用してもよい。さらに、n
型セラミック半導体の場合はLa、Ce、Pr、Nd等
の希土類元素やTiO2,ZrO,CdO等の酸化物を
添加して、また、p型の場合はSrO,Cab、Li2
O等の酸化物を添加して原子価制御半導体を形成し使用
してもよい。
Fed, MnO, LaMn0. , NiMnO3゜LaF
e0. etc. Among these, an n-type ceramic semiconductor may be used as an excess semiconductor treated in a reducing atmosphere, and a p-type ceramic semiconductor may be used as an insufficient semiconductor treated in an oxidizing atmosphere. Furthermore, n
For type ceramic semiconductors, rare earth elements such as La, Ce, Pr, and Nd and oxides such as TiO2, ZrO, and CdO are added, and for p-type ceramic semiconductors, SrO, Cab, and Li2 are added.
A valence control semiconductor may be formed and used by adding an oxide such as O.

基板12の一方主面には、複数の電極13a〜16a、
13b〜16bが形成されている。このうち、電極13
a〜16aは基板12の一方主面上において一方の長手
方向に延びる端縁に沿って分散して形成されている。他
方、電極13b〜16bは、基板12の他方端縁側にお
いて、電極13a〜16aと対向するように分散形成さ
れている。言換えれば、基板12の一方主面において4
対の電極13a、13b、−16a、16bが、所定距
離を隔てて形成されている。
On one main surface of the substrate 12, a plurality of electrodes 13a to 16a,
13b to 16b are formed. Of these, electrode 13
a to 16a are formed on one main surface of the substrate 12 in a distributed manner along one edge extending in one longitudinal direction. On the other hand, the electrodes 13b to 16b are formed in a distributed manner on the other edge side of the substrate 12 so as to face the electrodes 13a to 16a. In other words, on one main surface of the substrate 12, 4
Pairs of electrodes 13a, 13b, -16a, 16b are formed at a predetermined distance apart.

この実施例では、上述した対をなす電極、たとえば電極
13a、13bと、該対をなす電極13a、13b間の
半導体セラミックス基板12部分とにより、1の熱電素
子が構成されている。さらに、隣り合う熱電素子は、相
互に、接続用導電路17a〜17cにより電気的に接続
され、結果として4個の熱電素子が直列に接続されてい
る。
In this embodiment, one thermoelectric element is constituted by the pair of electrodes described above, for example, electrodes 13a and 13b, and the portion of the semiconductor ceramic substrate 12 between the pair of electrodes 13a and 13b. Further, adjacent thermoelectric elements are electrically connected to each other by connecting conductive paths 17a to 17c, and as a result, four thermoelectric elements are connected in series.

上記した電極13a〜16bは、オーミックな接触を与
える金属材料、たとえばニッケル、アルミニウム、金、
インジウムなどの金属またはこれらの合金により形成す
ることができる。形成方法については、蒸着あるいはス
パッタ等の種々の薄膜形成方法を用いることができる。
The electrodes 13a to 16b described above are made of a metal material that provides ohmic contact, such as nickel, aluminum, gold, or
It can be formed from a metal such as indium or an alloy thereof. As for the formation method, various thin film formation methods such as vapor deposition or sputtering can be used.

しかも、好ましくは、接続用導電路17a〜17cを電
極13a〜13bと同一材料で構成する場合には、電極
13a〜16bと同時に基板12上に形成することがで
きる。もっとも、接続用導電路17a〜17Cについて
は、電極材料と異なる導電性材料で形成してもよく、ま
たセラミック半導体基板に対して非オーミツク接触とな
る導電性材料でもよい。
Moreover, preferably, when the connecting conductive paths 17a to 17c are made of the same material as the electrodes 13a to 13b, they can be formed on the substrate 12 at the same time as the electrodes 13a to 16b. However, the connection conductive paths 17a to 17C may be formed of a conductive material different from the electrode material, or may be formed of a conductive material that makes non-ohmic contact with the ceramic semiconductor substrate.

第1図および第3図実施例では、単一の半導体セラミッ
クス基板12を用いて4個の熱電素子が直列に接続され
た温度差検知素子が構成されている。したがって、厚み
の薄い基板12を用いれば、全体の厚みを効果的に薄く
し得ることがわかる。
In the embodiments shown in FIGS. 1 and 3, a single semiconductor ceramic substrate 12 is used to construct a temperature difference sensing element in which four thermoelectric elements are connected in series. Therefore, it can be seen that by using a thin substrate 12, the overall thickness can be effectively reduced.

また、複数枚の基板を積層するものでないため、積層作
業や接着作業を実施する必要もない。のみならず、電極
13a〜16bと同時に接続用導電路17a〜17cを
形成し得るので、煩雑な接続作業も必要でない。
Furthermore, since a plurality of substrates are not laminated, there is no need to perform lamination work or adhesion work. Furthermore, since the connection conductive paths 17a to 17c can be formed simultaneously with the electrodes 13a to 16b, no complicated connection work is required.

なお、第1図および第3図に示した実施例では、矩形の
半導体セラミックス基板12を用いたが、他の平面形状
を有する半導体セラミックス基板を用いることも可能で
ある。たとえば、円板型の半導体セラミックス基板を用
い、該半導体セラミックス基板の一方主面上に放射状の
複数個の熱電素子を構成し、相互に直列に接続してもよ
い。
In the embodiments shown in FIGS. 1 and 3, a rectangular semiconductor ceramic substrate 12 is used, but it is also possible to use a semiconductor ceramic substrate having another planar shape. For example, a disk-shaped semiconductor ceramic substrate may be used, and a plurality of radial thermoelectric elements may be formed on one main surface of the semiconductor ceramic substrate and connected to each other in series.

また、各熱電素子を構成するための電極は、半導体セラ
ミックス基板の他方主面側にも形成されていてもよく、
その場合には半導体セラミックス基板の両面において、
それぞれ、複数個の熱電素子が構成される。両生面上で
熱電素子を構成した場合には、好ましくは、一方主面側
に形成された熱電素子と他方主面側に形成された熱電素
子とを直列に接続することにより、接続段数を倍増する
ことができるので、より大きな出力電圧を得ることがで
きる。
Further, the electrodes for configuring each thermoelectric element may also be formed on the other main surface side of the semiconductor ceramic substrate,
In that case, on both sides of the semiconductor ceramic substrate,
Each thermoelectric element is configured with a plurality of thermoelectric elements. When thermoelectric elements are configured on bidirectional surfaces, it is preferable to double the number of connection stages by connecting in series the thermoelectric elements formed on one main surface and the thermoelectric elements formed on the other main surface. Therefore, a larger output voltage can be obtained.

次に、具体的な実験例につき説明する。Next, a specific experimental example will be explained.

比抵抗29にΩ・cmの半導体化されたBaTio、系
の非還元性材料を用いた半導体セラミックス板を用意し
、#800の研磨材を用いて研磨し、10X20X0.
5mmの大きさの基板12を得た。この基板12を、純
水、イソプロピルアルコールを、この順番で用いて超音
波洗浄を行なった。次に、基板12の一方主面に、電極
13a〜16bを形成した。電極の形成は、蒸着により
行ない、〜10−’TorrにてNiを最初に付着させ
、その上にAgを付着させた。
A semiconductor ceramic plate using a non-reducing material based on semiconductor BaTio with a resistivity of 29 Ω·cm was prepared, and polished using a #800 abrasive to form a 10×20×0.
A substrate 12 having a size of 5 mm was obtained. This substrate 12 was subjected to ultrasonic cleaning using pure water and isopropyl alcohol in this order. Next, electrodes 13a to 16b were formed on one main surface of the substrate 12. The electrodes were formed by vapor deposition, with Ni first deposited at ~10-' Torr, followed by Ag.

上記のようにして得られた温度差検知素子における各電
極対すなわち電極13a−電極13b。
Each electrode pair, that is, electrode 13a-electrode 13b in the temperature difference sensing element obtained as described above.

電極14a−14b、電極15a−15b、電極16a
−16bの出力と、電極13a−14b。
Electrodes 14a-14b, electrodes 15a-15b, electrodes 16a
-16b output and electrodes 13a-14b.

電極13a−電極15b1電極13a−電極16b間の
各出力を測定した。この結果を、第4図にグラフで示す
。第4図から明らかなように、電極13a−電極16b
間の出力は、4段の熱電素子の出力の総和となっている
ことがわかる。
Each output between electrode 13a and electrode 15b1 and electrode 13a and electrode 16b was measured. The results are shown graphically in FIG. As is clear from FIG. 4, electrode 13a-electrode 16b
It can be seen that the output between them is the sum of the outputs of the four stages of thermoelectric elements.

[発明の効果] この発明では、単一の半導体セラミックス基板を用いて
、複数個の熱電素子が直列に接続された多段直列接続型
の温度差検知器を得ることができる。よって、従来のよ
うに複数枚の基板を電気的に接続するものでないため、
全体の構造を効果的に簡略化することができる。また、
位置合わせや接着作業を要せず、さらに各熱電素子間の
接続も基板上に導電路を形成するだけでよいため、従来
の多段直列セラミック半導体サーモパイルに比べて製造
工程を飛躍的に簡略化することが可能となる。
[Effects of the Invention] According to the present invention, a multi-stage series-connected temperature difference detector in which a plurality of thermoelectric elements are connected in series can be obtained using a single semiconductor ceramic substrate. Therefore, since it does not connect multiple boards electrically like in the past,
The overall structure can be effectively simplified. Also,
There is no need for positioning or bonding work, and the connection between each thermoelectric element only requires forming a conductive path on the substrate, which dramatically simplifies the manufacturing process compared to conventional multi-stage series ceramic semiconductor thermopiles. becomes possible.

なお、この発明によれば、たとえば赤外線検知器に適用
した場合には、小形でかつ出力電圧の大きなサーモパイ
ル型赤外1G!検知器を実現することができる。
According to this invention, when applied to an infrared detector, for example, the thermopile type infrared 1G! which is small and has a large output voltage! A detector can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の平面図、第2図は従来
の熱線検知器の一例を説明するための略図的平面図、第
3図は第1図実施例の正面図、第4図は第1図実施例を
用いた実験結果を説明するための図である。 図において、11は温度差検知素子、12は半導体セラ
ミックスよりなる基板、13a〜16bは電極、17a
〜17cは熱電素子層を電気的に接続するための接続用
導電路を示す。
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2 is a schematic plan view for explaining an example of a conventional heat ray detector, and FIG. 3 is a front view of the embodiment of FIG. FIG. 4 is a diagram for explaining the experimental results using the embodiment shown in FIG. In the figure, 11 is a temperature difference detection element, 12 is a substrate made of semiconductor ceramics, 13a to 16b are electrodes, and 17a
17c indicates a connection conductive path for electrically connecting the thermoelectric element layers.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体セラミックスよりなる基板と、前記基板の
少なくとも一方の面に、温接点および冷接点を構成する
ために対をなすように形成された複数対の電極とを備え
、 前記対をなす電極と該対をなす電極間の半導体セラミッ
クス基板部分とにより複数個の熱電素子が構成されてお
り、 前記複数個の熱電素子は基板上で直列に接続されている
、温度差検知素子。
(1) A substrate made of semiconductor ceramics, and a plurality of pairs of electrodes formed on at least one surface of the substrate to form a hot junction and a cold junction, the paired electrodes A plurality of thermoelectric elements are constituted by a semiconductor ceramic substrate portion between the pair of electrodes, and the plurality of thermoelectric elements are connected in series on the substrate.
(2)前記半導体セラミックスは、Cu、Ba、Sr、
Ti、Zr、Ca、Mn、Mo、Mg、Fe、Sn、V
、Al、Pb、Ni、Co、Crのうちの少なくとも一
つを主成分とした酸化物より成るn型セラミック半導体
、または、Cu、Ni、Co、Fe、Mn、Cr、Bi
、Y、Mo、Tl、Ag、Laのうちの少なくとも一つ
を主成分とした酸化物より成るp型セラミック半導体で
ある、特許請求の範囲第1項記載の温度差検知素子。
(2) The semiconductor ceramics include Cu, Ba, Sr,
Ti, Zr, Ca, Mn, Mo, Mg, Fe, Sn, V
, an n-type ceramic semiconductor made of an oxide containing at least one of Al, Pb, Ni, Co, and Cr as a main component, or Cu, Ni, Co, Fe, Mn, Cr, Bi
2. The temperature difference sensing element according to claim 1, which is a p-type ceramic semiconductor made of an oxide containing at least one of the following as a main component:
(3)前記半導体セラミックスよりなる基板の両面に、
前記複数対の熱電素子が構成されており、双方の面に構
成された複数個の熱電素子は、直列に接続されている、
特許請求の範囲第1項または第2項記載の温度差検知素
子。
(3) On both sides of the substrate made of semiconductor ceramics,
The plurality of pairs of thermoelectric elements are configured, and the plurality of thermoelectric elements configured on both surfaces are connected in series.
A temperature difference sensing element according to claim 1 or 2.
JP62251345A 1987-10-05 1987-10-05 Temperature difference detector Pending JPH0193178A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62251345A JPH0193178A (en) 1987-10-05 1987-10-05 Temperature difference detector
US07/253,719 US4938244A (en) 1987-10-05 1988-10-05 Temperature difference detecting element using semiconductive ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251345A JPH0193178A (en) 1987-10-05 1987-10-05 Temperature difference detector

Publications (1)

Publication Number Publication Date
JPH0193178A true JPH0193178A (en) 1989-04-12

Family

ID=17221441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251345A Pending JPH0193178A (en) 1987-10-05 1987-10-05 Temperature difference detector

Country Status (1)

Country Link
JP (1) JPH0193178A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211540A (en) * 2012-02-28 2013-10-10 Univ Of Yamanashi Thermo-electric material and process of manufacturing the same
US10260213B2 (en) 2014-09-30 2019-04-16 Kubota Corporation Working machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211540A (en) * 2012-02-28 2013-10-10 Univ Of Yamanashi Thermo-electric material and process of manufacturing the same
US10260213B2 (en) 2014-09-30 2019-04-16 Kubota Corporation Working machine

Similar Documents

Publication Publication Date Title
US4938244A (en) Temperature difference detecting element using semiconductive ceramic material
JPWO2008065799A1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
KR100254611B1 (en) Manufacturing method and structure of thin-film infrared sensor
JPH0193178A (en) Temperature difference detector
JPH02214175A (en) Thin-film thermoelectric element
JPH04199755A (en) Laminated thermoelectric element
JPH0193179A (en) Temperature difference detector
JPS5923120B2 (en) Josephson integrated circuit with multilayer structure
JPH0714079B2 (en) Oxide superconducting three-terminal device
US4983838A (en) Pyroelectric element
JPH0193181A (en) Temperature difference detector
JPH0193182A (en) Thermoelectric element
JPH0193180A (en) Temperature difference detector
JPH0422248B2 (en)
JPH07169995A (en) Thermoelement array
JPH08306865A (en) Capacitor which uses laminar bismuth ferroelectric material and manufacture of this capacitor
US20200227616A1 (en) Multilayer pyroelectric element
JP2536101B2 (en) Electrostrictive effect element
JPH0311672A (en) Thermoelectric element and its manufacture
JPH05110151A (en) Josephson junction element and its manufacture
JP2000261053A (en) Superconducting junction and manufacture of the same
JPH08330641A (en) Superconducting element as well as its manufacture and operating method
JPH07174624A (en) Dual pyroelectric sensor
JPH02189901A (en) Laminated thermistor
JP2606097B2 (en) Superconducting device fabrication method