JPH0193041A - Phase difference electron microscope for magnetic domain observation - Google Patents

Phase difference electron microscope for magnetic domain observation

Info

Publication number
JPH0193041A
JPH0193041A JP25021587A JP25021587A JPH0193041A JP H0193041 A JPH0193041 A JP H0193041A JP 25021587 A JP25021587 A JP 25021587A JP 25021587 A JP25021587 A JP 25021587A JP H0193041 A JPH0193041 A JP H0193041A
Authority
JP
Japan
Prior art keywords
magnetization
circuit
component
intensity
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25021587A
Other languages
Japanese (ja)
Other versions
JPH0624109B2 (en
Inventor
Masao Inoue
雅夫 井上
Katsushige Tsuno
勝重 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP25021587A priority Critical patent/JPH0624109B2/en
Publication of JPH0193041A publication Critical patent/JPH0193041A/en
Publication of JPH0624109B2 publication Critical patent/JPH0624109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to observe magnetization intensity in an optional direction with good accuracy without rotating an observation data by detecting an angular component of magnetization from the magnetization component in each direction so as to calculate magnetization strength by only selection of the angular component in the optional direction. CONSTITUTION:A magnetization component in each direction is found out by difference signals between two sets of the x-direction and the y-direction respectively through operation circuits 11 and 12. This output is processed through an operation circuit 13 and a logical circuit 14 for finding out an angular component of magnetization. A comparator 15 controlled by a control device 16, which selects an optional magnetization directional component theta and selection width deltatheta, operates only when the output theta of the operation circuit 13 is in the range of theta+deltatheta-theta so as to close a gate circuit 17. A signal passing through the gate circuit 17 indicates magnetization intensity of a sample through the operation circuit 18 on an indicator 19. Magnetization intensity in an optional direction desired to be observed can be observed without rotating the sample 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は走査透過電子顕微鏡を用いて磁性体の磁区観察
を可能にした磁区観察用位相差電子顕微鏡に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a phase-contrast electron microscope for observing magnetic domains, which makes it possible to observe the magnetic domains of a magnetic material using a scanning transmission electron microscope.

〔従来の技術〕[Conventional technology]

従来、走査透過電子顕微鏡を用いた位相差像観察法DP
C(Differential Phase  Con
trast)による磁性体の磁区観察においては、対物
レンズの前側焦点の直前に置かれた磁性体試料の回折像
を、中間レンズ、投影レンズで拡大投影して円対称に4
分割または多分割された検出素子からなる検出器で検出
し、各検出素子の電子線強度を像信号として演算処理し
て磁区コントラストを得るようにしている。
Conventionally, phase contrast image observation method DP using a scanning transmission electron microscope
C (Differential Phase Con
When observing the magnetic domains of a magnetic material using a magnetic material (trust), the diffraction image of a magnetic material sample placed just in front of the front focus of the objective lens is enlarged and projected using an intermediate lens and a projection lens to form a circularly symmetrical 4-diffraction image.
Detection is performed using a detector consisting of divided or multi-divided detection elements, and the electron beam intensity of each detection element is processed as an image signal to obtain magnetic domain contrast.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

しかしながら、従来の磁区観察においては、特定の磁化
方向のコントラストを観察するためには、観察試料の回
転、または検出素子の像信号の選択を行う必要があり、
その上有限の検出素子では精度良く任意の磁化方向のコ
ントラストを得ることは困難である。
However, in conventional magnetic domain observation, in order to observe the contrast of a specific magnetization direction, it is necessary to rotate the observation sample or select the image signal of the detection element.
Moreover, it is difficult to obtain contrast in any magnetization direction with high precision using a limited number of detection elements.

本発明は上記問題点を解決するためのもので、任意の方
向の磁化強度を観察試料を回転させる必要がなく、精度
良く観察することができる磁区観察用位相差電子顕微鏡
を徒供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and aims to provide a phase-contrast electron microscope for magnetic domain observation that can observe magnetization intensity in any direction with high accuracy without the need to rotate the sample. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の磁区観察用位相差電子顕微鏡は、対
物レンズでできた磁性体試料の回折像を、中間レンズ、
投影レンズで拡大投影して4分割された検出素子からな
る検出器で検出し、各検出素子の電子線強度を像信号と
して演算処理して磁区コントラストを得る磁区観察用(
立相差電子顕微鏡において、χ方向、V方向各々2組の
差信号により、各方向の磁化成分を算出する第1の演算
回路と、各方向の磁化成分から磁化の角度成分を算出す
る第2の演算回路と、第2の演算回路出力が所定角度範
囲内にあるときゲート信号を出力するコンパレータと、
コンパレータからのゲート信号により導通制御され、第
1の演算回路出力を抽出するゲート回路と、抽出された
所定角度範囲内の磁化成分から磁化強度を算出する第3
の演算回路と、走査信号に同期して磁化強度を表示する
表示手段とを備えたことを特徴とする。
To this end, the phase-contrast electron microscope for magnetic domain observation of the present invention uses a diffraction image of a magnetic sample formed by an objective lens, an intermediate lens,
Magnetic domain observation (for magnetic domain observation (
In a phase contrast electron microscope, a first calculation circuit calculates magnetization components in each direction based on two sets of difference signals in the χ direction and V direction, and a second calculation circuit calculates an angular component of magnetization from the magnetization components in each direction. an arithmetic circuit; a comparator that outputs a gate signal when the output of the second arithmetic circuit is within a predetermined angle range;
A gate circuit whose conduction is controlled by a gate signal from a comparator and extracts the output of the first arithmetic circuit, and a third gate circuit which calculates the magnetization intensity from the extracted magnetization component within a predetermined angle range.
The present invention is characterized by comprising an arithmetic circuit and display means for displaying magnetization intensity in synchronization with a scanning signal.

〔作用〕[Effect]

本発明は、χ方向、V方向各々2&IIの差信号により
、各方向の磁化成分を算出し、各方向の磁化成分から磁
化の角度成分を算出すると共に、磁化の角度成分が所定
角度範囲内にあるとき各方向の磁化成分を抽出し、抽出
された所定角度範囲内の磁化成分から磁化強度を算出し
て表示することにより任意の方向の磁化強度を観察する
ことができる。
The present invention calculates magnetization components in each direction using the difference signals of 2 & II in the χ direction and V direction, calculates the angular component of magnetization from the magnetization component in each direction, and makes sure that the angular component of magnetization is within a predetermined angular range. At some point, the magnetization intensity in any direction can be observed by extracting magnetization components in each direction, calculating and displaying the magnetization intensity from the extracted magnetization components within a predetermined angle range.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.

第1図は本発明の磁区観察用位相差電子顕微鏡の構成を
示す図で、図中、1は電子線、2は走査コイル、3は光
軸、4は磁性体試料、5aは照射側対物レンズ、5bは
結像側対物レンズ、6は中間レンズ、7は投影レンズ、
8は検出器、9は走査コイルl[j動部、10I、10
t、101.1゜4は増幅器、11〜13は演算回路、
14は論理回路、15はコンパレーク、16は制御装置
、17はゲート回路、1日は演算回路、19は表示装置
である。
FIG. 1 is a diagram showing the configuration of a phase contrast electron microscope for magnetic domain observation according to the present invention. In the figure, 1 is an electron beam, 2 is a scanning coil, 3 is an optical axis, 4 is a magnetic sample, and 5a is an irradiation side objective. 5b is an objective lens on the imaging side, 6 is an intermediate lens, 7 is a projection lens,
8 is a detector, 9 is a scanning coil l[j moving part, 10I, 10
t, 101.1° 4 is an amplifier, 11 to 13 are arithmetic circuits,
14 is a logic circuit, 15 is a comparator, 16 is a control device, 17 is a gate circuit, 1 is an arithmetic circuit, and 19 is a display device.

図において、電子銃(図示せず)から発生した電子線1
は、走査コイル2により(A−A′)または(B−B’
)のように走査され、対物レンズ5aにより試料4に収
束される。試料4は結像側対物レンズ5bの前側焦点の
近傍に置かれ、2次元的にみて光軸3を中心として紙面
に垂直に左側下向(■)、右側上向(0)にそれぞれ磁
化されているものとする。
In the figure, an electron beam 1 generated from an electron gun (not shown)
is (A-A') or (B-B') by the scanning coil 2.
) and is focused on the sample 4 by the objective lens 5a. The sample 4 is placed near the front focal point of the imaging side objective lens 5b, and is magnetized vertically to the plane of the paper with the optical axis 3 as the center in two-dimensional terms, downward to the left (■) and upward to the right (0). It is assumed that

この試料4へ入射角2α1で電子線を入射させると、第
2図に示すように対物レンズ5bの後焦点面上に直径D
=f0X2α+  Cfoは焦点距離)のディスクパタ
ーンが生ずる。
When an electron beam is incident on this sample 4 at an incident angle of 2α1, as shown in FIG.
A disk pattern of =f0X2α+Cfo is the focal length) is generated.

そして、電子線1が試料4を透過するとき、ローレン゛
ンカによって試料の磁化方向に応じて偏向され、試料照
射角に対応して(A−A’)は(C−C゛)に、(B−
B’)は(D−D’)となり、(C−C’)、(D−D
′)は中間レンズ6、投影レンズ7の結像作用により検
出器8上に回折ディスクとして結像投影される。
When the electron beam 1 passes through the sample 4, it is deflected by the Laurent anchor according to the magnetization direction of the sample, and (A-A') becomes (C-C') according to the sample irradiation angle. B-
B') becomes (D-D'), (C-C'), (D-D
') is imaged and projected onto the detector 8 as a diffraction disk by the imaging action of the intermediate lens 6 and the projection lens 7.

一方、走査コイル2における偏向主面を物体面とみた場
合、(A−A’)、(B−B’)は同様に静止ディスク
パターンとして検出器8上に結像する。
On the other hand, when the main deflection plane in the scanning coil 2 is regarded as the object plane, (AA') and (BB') are similarly imaged on the detector 8 as a stationary disk pattern.

従って走査コイル2により試料上を面走査した場合、試
料4の磁化方向が一定の領域では試料の走査条件によら
ず静止回折ディスク(C−C’)、又は(D−D’)が
得られ、これは磁化方向に応じて分離される。検出器8
は、図示するようにχ軸、V軸方向においてS8、S2
、S3、S4に分割されているので、例えば(SZ  
33)の差信号を検出すれば磁区コントラストが得られ
ることになる。
Therefore, when the surface of the sample is scanned by the scanning coil 2, in a region where the magnetization direction of the sample 4 is constant, a stationary diffraction disk (CC') or (D-D') can be obtained regardless of the scanning conditions of the sample. , which are separated according to the magnetization direction. Detector 8
are S8 and S2 in the χ-axis and V-axis directions as shown in the figure.
, S3, and S4, so for example (SZ
33), magnetic domain contrast can be obtained by detecting the difference signal.

各検出器St 、St 、St 、Ssの検出信号は増
幅されて演算回路11.12に入力され、次の演算が行
われる。
The detection signals from each of the detectors St , St , St , and Ss are amplified and input to the arithmetic circuits 11 and 12, where the following arithmetic operations are performed.

(sz +33 )−(s+ +S3 )(S+ +S
t )   (Ss +Sa )この分母(S+ +S
z +S3 +S4)は信号を規格化するためのもので
ある。演算回路11.12の出力は演算回路13に入力
される。演算回路13においては、磁化?=’i+Vと
したとき、その角度成分θに関して、 θ=tan −’ l y/χ1+nπ/2が演算され
る。この場合、nの値は演算回路14から入力される。
(sz +33)-(s+ +S3)(S+ +S
t ) (Ss +Sa) This denominator (S+ +S
z +S3 +S4) is for normalizing the signal. The outputs of the arithmetic circuits 11 and 12 are input to the arithmetic circuit 13. In the arithmetic circuit 13, magnetization? ='i+V, then θ=tan-'ly/χ1+nπ/2 is calculated for the angle component θ. In this case, the value of n is input from the arithmetic circuit 14.

即ち論理回路14は、出力信号χ、Vの正負を以下の■
〜■の条件で判断したnの値を出力する。
That is, the logic circuit 14 converts the positive and negative of the output signals χ and V into the following
The value of n determined under the conditions of ~■ is output.

■χ≧o、y≧0の場合:n冨O ■χ<Q、y≧0の場合:n=1 ■χ<Q、y<Qの場合:n=2 ■χ≧o、y<Qの場合:n=3 コンパレータ15は、任意の磁化方向成分θ及び選択幅
δθを選択する制御装置工6により制御され、演算回路
13の出力θが、θ+δθ〜θの範囲にある場合にのみ
動作し、ゲート回路17を閉じる。その結果、演算回路
11.12の出力信号はゲート回路17を経由して演算
回路18に入力され、試料の磁化強度11”llが次式
により算出される。
■When χ≧o, y≧0: n-Ten O ■When χ<Q, y≧0: n=1 ■When χ<Q, y<Q: n=2 ■χ≧o, y<Q In the case of n=3, the comparator 15 is controlled by the control device 6 which selects an arbitrary magnetization direction component θ and selection width δθ, and operates only when the output θ of the arithmetic circuit 13 is within the range of θ+δθ to θ. Then, the gate circuit 17 is closed. As a result, the output signals of the arithmetic circuits 11 and 12 are input to the arithmetic circuit 18 via the gate circuit 17, and the magnetization intensity of the sample 11''ll is calculated by the following equation.

1閂1= 1χI”+lv1” こうして任意の磁化方向の角度θ(θ+6θ〜θ)を制
御装置で選択することにより、選択されたθに対する試
料の磁化強度11”llを表示器19で磁区コントラス
トとして観察することができる。
1 bar 1 = 1χI''+lv1'' In this way, by selecting an arbitrary angle θ (θ+6θ~θ) of the magnetization direction using the control device, the magnetization strength of the sample 11”ll for the selected θ is displayed as the magnetic domain contrast on the display 19. can be observed.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、4分割型検出素子をχ、
V各々2分割2組の差信号として取り出すことにより試
料の磁化方向のベクトルnをχ、Vとして抽出すること
ができ、任意の方向の磁化強度を観察することができる
As described above, according to the present invention, the four-segment detection element is
By dividing each of V into two and taking out two sets of difference signals, the vector n of the magnetization direction of the sample can be extracted as χ and V, and the magnetization intensity in any direction can be observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁区観察用位相差電子顕微鏡の構成を
示す図、第2図は試料のディスクパターンを示す図であ
る。 l・・・電子線、2・・・走査コイル、3・・・光軸、
4・・・磁性体試料、5a・・・照射側対物レンズ、5
b・・・結像側対物レンズ、6・・・中間レンズ、7・
・・投影レンズ、8・・・検出器、9・・・走査コイル
駆動部、10+、10t110s、104・・・増幅器
、11〜13・・・演算回路、14・・・論理回路、1
5・・・コンパレータ、16・・・制御装置、17・・
・ゲート回路、18・・・演X回路、19・・・表示装
置。 出  願  人  日本電子株式会社
FIG. 1 is a diagram showing the configuration of a phase contrast electron microscope for magnetic domain observation according to the present invention, and FIG. 2 is a diagram showing a disk pattern of a sample. l...electron beam, 2...scanning coil, 3...optical axis,
4... Magnetic sample, 5a... Irradiation side objective lens, 5
b... Imaging side objective lens, 6... Intermediate lens, 7...
...Projection lens, 8...Detector, 9...Scanning coil drive unit, 10+, 10t110s, 104...Amplifier, 11-13...Arithmetic circuit, 14...Logic circuit, 1
5... Comparator, 16... Control device, 17...
- Gate circuit, 18... Performance X circuit, 19... Display device. Applicant: JEOL Ltd.

Claims (1)

【特許請求の範囲】[Claims] 磁性体試料の対物レンズでできた回折像を、中間レンズ
、投影レンズで拡大投影して4分割された検出素子から
なる検出器で検出し、各検出素子の電子線強度を像信号
として演算処理して磁区コントラストを得る磁区観察用
位相差電子顕微鏡において、x方向、y方向各々2組の
差信号により、各方向の磁化成分を算出する第1の演算
回路と、各方向の磁化成分から磁化の角度成分を算出す
る第2の演算回路と、第2の演算回路出力が所定角度範
囲内にあるときゲート信号を出力するコンパレータと、
コンパレータからのゲート信号により導通制御され、第
1の演算回路出力を抽出するゲート回路と、抽出された
所定角度範囲内の磁化成分から磁化強度を算出する第3
の演算回路と、走査信号に同期して磁化強度を表示する
表示手段とを備えた磁区観察用位相差電子顕微鏡。
The diffraction image of the magnetic sample formed by the objective lens is enlarged and projected using an intermediate lens and a projection lens, and detected by a detector consisting of four divided detection elements, and the electron beam intensity of each detection element is processed as an image signal. In a phase-contrast electron microscope for magnetic domain observation that obtains magnetic domain contrast, a first calculation circuit calculates magnetization components in each direction using two sets of difference signals in the x direction and y direction, and a first calculation circuit calculates magnetization components from the magnetization components in each direction. a comparator that outputs a gate signal when the output of the second arithmetic circuit is within a predetermined angle range;
A gate circuit whose conduction is controlled by a gate signal from a comparator and extracts the output of the first arithmetic circuit, and a third gate circuit which calculates the magnetization intensity from the extracted magnetization component within a predetermined angle range.
A phase-contrast electron microscope for observing magnetic domains, comprising an arithmetic circuit and display means for displaying magnetization intensity in synchronization with a scanning signal.
JP25021587A 1987-10-03 1987-10-03 Phase contrast electron microscope for magnetic domain observation Expired - Lifetime JPH0624109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25021587A JPH0624109B2 (en) 1987-10-03 1987-10-03 Phase contrast electron microscope for magnetic domain observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25021587A JPH0624109B2 (en) 1987-10-03 1987-10-03 Phase contrast electron microscope for magnetic domain observation

Publications (2)

Publication Number Publication Date
JPH0193041A true JPH0193041A (en) 1989-04-12
JPH0624109B2 JPH0624109B2 (en) 1994-03-30

Family

ID=17204540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25021587A Expired - Lifetime JPH0624109B2 (en) 1987-10-03 1987-10-03 Phase contrast electron microscope for magnetic domain observation

Country Status (1)

Country Link
JP (1) JPH0624109B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320669A (en) * 2001-04-26 2002-11-05 Asahi Medical Co Ltd Method for blood filtration
JP2009277618A (en) * 2008-05-19 2009-11-26 Jeol Ltd Magnetic domain structural image acquisition method and scanning transmission electron microscope
JP2010113972A (en) * 2008-11-07 2010-05-20 Jeol Ltd Scanning transmission electron microscope
JP2014020784A (en) * 2012-07-12 2014-02-03 Astro Design Inc Electromagnetic wave measurement system
EP3330997A2 (en) 2016-12-05 2018-06-06 Jeol Ltd. Method of image acquisition and electron microscope
US10332720B2 (en) 2015-09-07 2019-06-25 Jeol Ltd. Charged particle system and method for measuring deflection fields in a sample

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320669A (en) * 2001-04-26 2002-11-05 Asahi Medical Co Ltd Method for blood filtration
JP2009277618A (en) * 2008-05-19 2009-11-26 Jeol Ltd Magnetic domain structural image acquisition method and scanning transmission electron microscope
JP2010113972A (en) * 2008-11-07 2010-05-20 Jeol Ltd Scanning transmission electron microscope
JP2014020784A (en) * 2012-07-12 2014-02-03 Astro Design Inc Electromagnetic wave measurement system
US10332720B2 (en) 2015-09-07 2019-06-25 Jeol Ltd. Charged particle system and method for measuring deflection fields in a sample
EP3330997A2 (en) 2016-12-05 2018-06-06 Jeol Ltd. Method of image acquisition and electron microscope
US10923314B2 (en) 2016-12-05 2021-02-16 Jeol Ltd. Method of image acquisition and electron microscope

Also Published As

Publication number Publication date
JPH0624109B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US5004918A (en) Differential phase contrast scanning transmission electron microscope
Fuller et al. Domains in thin magnetic films observed by electron microscopy
EP0457317B1 (en) Electron microscope, electron microscope specimen actuator and method for observing microscopic image
US10340118B2 (en) Scanning transmission electron microscope and method of image generation
US11270867B2 (en) Method for improving transmission Kikuchi diffraction pattern
JPH0193041A (en) Phase difference electron microscope for magnetic domain observation
WO2018037444A1 (en) Electron microscope and observation method
US9551674B1 (en) Method of producing an un-distorted dark field strain map at high spatial resolution through dark field electron holography
US10636622B2 (en) Scanning transmission electron microscope
Morrison et al. The measurement of narrow domain‐wall widths in SmCo5 using differential phase contrast electron microscopy
Warrington et al. The use of ferromagnetic domain structure to determine the thickness of iron foils in transmission electron microscopy
JPS607048A (en) Phase-contrast electron microscope
JP2588833B2 (en) Analytical electron microscope
JP3392550B2 (en) Method for measuring deflection angle of charged particle beam and charged particle beam apparatus
JPH06139988A (en) Electron microscope
Haydon et al. Optical shadowing in the electron microscope
EP0595548B1 (en) An apparatus for measuring electromagnetic field distribution using a focused electron beam
Cullis et al. High-resolution topographical imaging by direct transmission electron microscopy
JPH027504B2 (en)
JPH0274846A (en) Particle measuring apparatus
JPH01129113A (en) Measuring method of surface roughness
Yamamoto et al. Features and applications of the laser scanning microscope
JPH07282763A (en) Transmission electron microscope device
JPH0513033A (en) Electron microscope and microscopic observation using this
SU884005A1 (en) Method of measuring diameter of electronic probe in raster electron microscope