JPH0192323A - Method for controlling sheet temperature in continuous annealing furnace - Google Patents

Method for controlling sheet temperature in continuous annealing furnace

Info

Publication number
JPH0192323A
JPH0192323A JP24733887A JP24733887A JPH0192323A JP H0192323 A JPH0192323 A JP H0192323A JP 24733887 A JP24733887 A JP 24733887A JP 24733887 A JP24733887 A JP 24733887A JP H0192323 A JPH0192323 A JP H0192323A
Authority
JP
Japan
Prior art keywords
furnace
line speed
coil
temp
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24733887A
Other languages
Japanese (ja)
Other versions
JPH0510414B2 (en
Inventor
Masaaki Kawakami
川上 雅章
Akiyoshi Honda
昭芳 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24733887A priority Critical patent/JPH0192323A/en
Publication of JPH0192323A publication Critical patent/JPH0192323A/en
Publication of JPH0510414B2 publication Critical patent/JPH0510414B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To control temp. difference between both plates to the temp. in the range of permissible value and to prevent lowering of the productivity by starting of reducing the line speed before side changing part reaches to inlet of a furnace and shifting the aimed value for the sheet temp. at outlet of the furnace to reversely by half of the temp. difference. CONSTITUTION:In direction firing type continuous annealing furnace for metal sheet, the aimed sheet temps. at the outlet for the preceded coil and the following coil are controlled so as to come to the same temp. In the sheet temp. control at the time of changing the above sizes, the changing line speed is decided by the formula model, so that the temp. difference between the preceded coil and the following coil at the outlet of the furnace comes to less than the prescribed value. The sheet speed is started to change at this line speed. Further, before the size changing part reaches to the inlet of the furnace, the reducing lines speed is started at the timing becoming the above changing line speed, and also the temp. control is executed by shifting the aimed value for the sheet temp. at the outlet of the furnace to reversely by half of the above temp. difference. After that, after size changing part passes through the outlet of the furnace, the line speed is returned back to the normal speed for the following coil and the aimed value of the sheet temp. at the outlet is returned back to the value at the initial stage.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、薄板コイルの端部に別コイルの端部を溶接し
て−続きの金属板とし、これを連続的に炉内に通板する
ことによって、所定の加熱・冷却パターンを金属板に与
える、連続焼鈍炉の板温制御に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention involves welding the end of a thin plate coil to the end of another coil to form a continuous metal plate, which is then continuously passed through a furnace. This invention relates to plate temperature control in a continuous annealing furnace, which provides a predetermined heating/cooling pattern to a metal plate.

[従来技術] 連続焼鈍炉では連続的に金属板を炉内に通板するため、
先行コイルと後行コイルの板厚・板幅が異なる場合、そ
の溶接部では異サイズの金属板を加熱することになり、
先行コイルと後行コイルの炉出口温度は溶接部前後では
不連続となり、先行コイルと後行コイルの板温め差(板
温ジャンプ量)を生じることになる。このために、溶接
部付近では板温外れが発生し易い、特に近年生産性向上
の目的からラインが高速化されるにつれて、サイズ変更
部の板温のジャンプ量は増大し、サイズ変更部周辺で焼
き過ぎまたは焼き不足による不良品が発生するという問
題が起こっている。
[Prior art] In a continuous annealing furnace, metal plates are continuously passed through the furnace.
If the leading coil and trailing coil have different plate thicknesses and plate widths, metal plates of different sizes will be heated at the welding part.
The furnace outlet temperatures of the leading coil and the trailing coil become discontinuous before and after the welding part, resulting in a plate heating difference (plate temperature jump amount) between the leading coil and the trailing coil. For this reason, deviations in sheet temperature tend to occur near the welding area.In particular, as lines have become faster in recent years to improve productivity, the amount of jump in sheet temperature around the size change area has increased, and A problem has arisen in which defective products are produced due to over-baking or under-baking.

このような温度制御不良を解消する方法として、従来よ
り、燃料流量を一時的に過大に操作して応答の遅れを補
償するもの(特開昭61−113728号公報)や、炉
出口板温と燃料流量、炉温、板厚、板幅、ライン速度と
の関係を表す数式モデルを用いて、サイズ変更時または
ヒートサイクル変更時に所定の評価関数の最小値を与え
る板温の推移軌道、ライン速度変更量およびライン速度
の変更開始時期を予め求め、この推移軌道に向かって板
温が追随するように燃料流量を制御するものく特開昭6
1−190026号公報)、サイズ変更時のストリップ
移送速度を板厚変更前の定常速度および板厚変更後の定
常速度のいずれよりも小さくしてストリップの通過時間
を延長させてサーマルヘッドを小さくし、かつ、前記ス
トリップの移送速度の変化を予め計算すると共に、該計
算結果およびストリップの諸条件をもとに前もって炉温
を計算し、その計算値に見合ったフィードフォワード方
式による加熱制御を行なう方法(特公昭57−1441
3号公報)が提案されている。
Conventionally, methods for solving such temperature control defects include compensating for response delays by temporarily increasing the fuel flow rate (Japanese Unexamined Patent Publication No. 113728/1983), and adjusting the furnace exit plate temperature. Using a mathematical model that expresses the relationship between fuel flow rate, furnace temperature, plate thickness, plate width, and line speed, we calculate the plate temperature transition trajectory and line speed that give the minimum value of a predetermined evaluation function when changing the size or heat cycle. Japanese Patent Laid-Open No. 6, No. 6, which calculates in advance the change amount and line speed change start time, and controls the fuel flow rate so that the plate temperature follows this transition trajectory.
1-190026), the strip transfer speed at the time of size change is made smaller than both the steady speed before the plate thickness change and the steady speed after the plate thickness change, thereby extending the strip passage time and making the thermal head smaller. , and a method in which the change in the transfer speed of the strip is calculated in advance, the furnace temperature is calculated in advance based on the calculation result and various conditions of the strip, and heating control is performed by a feedforward method commensurate with the calculated value. (Tokuko Sho 57-1441
Publication No. 3) has been proposed.

[発明が解決しようとする問題点] しかしながら、前記特開昭61−113728号公報や
特開昭61−190026号公報に開示されている方法
は、溶接部近傍における板温の変化を管理するものでは
ないので、サイズ変更時の溶接部近傍での先行コイルと
後行コイルの板温を共に目標炉出口温度に保持すること
が不可能になる場合があり、特公昭57−14413号
公報に開示される方法では、移送速度の変更量と変更の
パターンはは予め決められており、板厚、目標炉出口温
度等によって変化させていないので、通常その変更は余
裕を持たせて歯侵に行わざるをえず、そのなめ生産性が
必要以上に低下するという問題がある。
[Problems to be Solved by the Invention] However, the methods disclosed in JP-A-61-113728 and JP-A-61-190026 manage changes in plate temperature in the vicinity of the weld. Therefore, it may become impossible to maintain the plate temperature of both the leading coil and the trailing coil near the welding part at the target furnace outlet temperature when changing the size, which is disclosed in Japanese Patent Publication No. 14413/1983. In this method, the amount and pattern of changes in the transfer speed are predetermined and are not changed depending on plate thickness, target furnace outlet temperature, etc., so changes are usually made with some margin. Inevitably, there is a problem in that productivity drops more than necessary.

本発明はこのような問題点を解決するためにされたもの
で、その目的はサイズ変更時の溶接部近傍における先行
コイルと後行コイルの板温を共に目標炉出口温度の許容
値以内に保ち、しかも生産性を必要以上に低下させない
連続焼鈍炉の板温制御方法を提供することにある。
The present invention was made to solve these problems, and its purpose is to maintain the plate temperatures of the leading coil and the trailing coil near the welding area during size change within the allowable value of the target furnace outlet temperature. Another object of the present invention is to provide a method for controlling plate temperature in a continuous annealing furnace that does not unnecessarily reduce productivity.

[問題点を解決するための手段] 前記目的を達成するために本発明においては、金属板用
直火型連続焼鈍炉における被焼鈍材の、先行コイルと後
行コイルの目標出口板温が同じである場合における、サ
イズ変更時の板温制御において、先行コイルと後行コイ
ルの炉出口における温度の差が所定値以下となるように
、変更ライン速度を数式モデルにより決定し、サイズ変
更部が炉入口に到達する以前に前記変更ライン速度とな
るような時点で、ライン速度の減速を開始すると共に炉
出口板温の目標値を前記温度差の半分だけ温度変化の逆
方向にシフトさせ、サイズ変更部が炉出口を通過した後
は、ライン速度を後行コイルの規定ライン速度に戻すと
共に、出口板温の目標値を初期の値に戻す制御方法を採
用している。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method in which the target outlet plate temperatures of the leading coil and the trailing coil of the material to be annealed in a direct-fired continuous annealing furnace for metal plates are the same. In plate temperature control during size change in a case where the change line speed is determined by a mathematical model and the size change section is At the time when the line speed reaches the changed line speed before reaching the furnace inlet, the line speed is started to be reduced, and the target value of the furnace outlet plate temperature is shifted by half of the temperature difference in the opposite direction of the temperature change, and the size After the changing section passes through the furnace outlet, a control method is adopted in which the line speed is returned to the specified line speed of the trailing coil, and the target value of the outlet plate temperature is returned to the initial value.

[作用] 本発明においては、先行コイルと後行コイルの炉出口に
おける温度の差が所定値以下となるように、ライン速度
を数式モデルにより決定しているので、必要以上に生産
性を低下させることがない、また、サイズ変更部が炉入
口に到達する以前に前記変更ライン速度となるような時
点で、ライン速度の減速を開始すると共に炉出口板温の
目標値を前記温度差の半分だけ温度変化の逆方向にシフ
トさせているので、サイズ変更部で板温の急変が起こっ
ても、先行コイル、後行コイルとも板温は許容範囲内に
保たれる。
[Function] In the present invention, the line speed is determined by a mathematical model so that the difference in temperature at the furnace outlet between the leading coil and the trailing coil is below a predetermined value, so productivity is unnecessarily reduced. In addition, at the time when the line speed reaches the changed line speed before the size changing section reaches the furnace inlet, the line speed is started to be decelerated and the target value of the furnace outlet plate temperature is reduced by half of the temperature difference. Since it is shifted in the opposite direction of the temperature change, even if a sudden change in plate temperature occurs at the size change section, the plate temperature of both the leading coil and the trailing coil will be maintained within the allowable range.

[発明の実施例] 以下、本発明の実施例を第1図を使用して説明する。第
1図において1は連続焼鈍炉のうちの加熱炉、2は被焼
鈍材であるコイル、4はライン駆動電動機、5は板温検
出器、6はライン速度検出器、7は炉温検出器、9は焼
鈍条件指令器、10はライン速度変更パターン計算器、
11は炉出口板温設定器、12はライン速度設定器、1
3は炉出口板温調節器、14は燃料流量調節器、16は
ライン速度調節器である。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described using FIG. 1. In Fig. 1, 1 is a heating furnace of the continuous annealing furnace, 2 is a coil that is the material to be annealed, 4 is a line drive motor, 5 is a plate temperature detector, 6 is a line speed detector, and 7 is a furnace temperature detector. , 9 is an annealing condition command device, 10 is a line speed change pattern calculator,
11 is a furnace outlet plate temperature setting device, 12 is a line speed setting device, 1
3 is a furnace outlet plate temperature regulator, 14 is a fuel flow rate regulator, and 16 is a line speed regulator.

先行コイルの尾端に後行コイルの端部を溶接機(図示せ
ず)で溶接し連続したコイルときれたコイル2は、入側
ルーパ(図示せず)を経て加熱炉1に送られ、ここで所
定の温度まで加熱された後、均熱炉、ガスジェット炉、
過時効炉、急冷炉(図示せず)に通板されて必要を熱サ
イクルが加えられる。加熱炉1における加熱燃料の流量
制御は、燃料供給配管3に設置した燃料流量調節弁15
および燃料流量検出器°8と燃料流量調節器14によっ
て行われる。また、ライン速度制御はライン速度検出器
6とライン速度調節器16によってライン駆動電動機4
の回転数を制御することによって行われる。
The end of the trailing coil is welded to the tail end of the leading coil using a welding machine (not shown), and the continuous coil 2 is sent to the heating furnace 1 through an inlet looper (not shown). After being heated to a predetermined temperature here, it is heated to a soaking furnace, a gas jet furnace,
The plate is passed through an overaging furnace and a quenching furnace (not shown) to undergo heat cycles as necessary. The flow rate of heating fuel in the heating furnace 1 is controlled by a fuel flow control valve 15 installed in the fuel supply pipe 3.
and is performed by the fuel flow detector °8 and the fuel flow regulator 14. In addition, line speed control is performed by a line speed detector 6 and a line speed regulator 16.
This is done by controlling the rotation speed of the

本発明においては、板厚、板幅などのサイズ変更部を検
出すると、焼鈍条件指令器9によって、後述する板温予
測モデルに必要な板厚、板幅、目標出口板温等の焼鈍条
件が設定される。サイズ変更部の検出は、例えば先行コ
イルと後行コイルの端部の溶接の完了信号で行なっても
よく、ラインの途中に周知の光学式または磁気式溶接部
を設置して検出してもよい、ライン速度変更パターン計
算器10は後述するように第4図のフローに従ってサイ
ズ変更部の先行コイルと後行コイルの炉出口板温の差の
絶対値が所定値α以下となるように、ライン速度変更パ
ターンを計算する。先行コイルと後行コイルの炉出口板
温の差の絶対値はライン速度が遅くなるほど炉内通過時
間が長くなるのでコイルと燃焼ガス温度、炉壁温度との
サーマルヘッドが小さくなることから、第2図に示すよ
うに小さくなる。
In the present invention, when a size change part such as plate thickness or plate width is detected, the annealing condition command unit 9 sets the annealing conditions such as plate thickness, plate width, target outlet plate temperature, etc. necessary for a plate temperature prediction model to be described later. Set. The size change portion may be detected by, for example, a welding completion signal at the ends of the leading coil and the trailing coil, or may be detected by installing a well-known optical or magnetic welding portion in the middle of the line. As will be described later, the line speed change pattern calculator 10 adjusts the line speed so that the absolute value of the difference in furnace outlet plate temperature between the preceding coil and the following coil in the size changing section is equal to or less than a predetermined value α according to the flow shown in FIG. Calculate speed change patterns. The absolute value of the difference in furnace exit plate temperature between the leading coil and the trailing coil is determined by It becomes smaller as shown in Figure 2.

所定値αとしては普通は炉出口の目標板温の上下に設け
られている板温許容幅を基にして決定される。ここで炉
出口板温は以下の数式モデルを基にして計算される。
The predetermined value α is normally determined based on the permissible plate temperature range provided above and below the target plate temperature at the furnace outlet. Here, the furnace exit plate temperature is calculated based on the following mathematical model.

p ・h−v−(dQ(Ts)/dxl= 2・Ua−
・6 ・((Tg + 273)’   (Ts + 
273)’ 1−+2・LIws・σ・((7w+27
3)”(Ts+273)’ )−=−−−=−−(1’
) (dT、/dt)=ft(u)           
  −(2)Tx=f2(u、Tw)        
−−−−−−−m−”  (3)ここに、T、:板温[
’c]、’rg:燃焼ガス温度[”C]、Tw:炉壁温
度[’C] 、 Q (Ts):コイル含熱量[1d/
kgコ、vニライン速度[mpm]U:燃料流量[N 
n(/h ] 、ρ:コイル密度[kg/n(]、h:
板厚[m]、U、、:燃焼ガスからコイルへの総括熱吸
収率、Uws :炉壁からコイルへの総括熱吸収率、σ
:ステファン・ボルツマン定数[W/ m2・h−に’
] 、x :炉入口からの距離[m]である。
p ・h−v−(dQ(Ts)/dxl= 2・Ua−
・6 ・((Tg + 273)' (Ts +
273)' 1-+2・LIws・σ・((7w+27
3)"(Ts+273)')-=---=--(1'
) (dT, /dt)=ft(u)
−(2) Tx=f2(u, Tw)
−−−−−−−m−” (3) Here, T: plate temperature [
'c], 'rg: Combustion gas temperature ['C], Tw: Furnace wall temperature ['C], Q (Ts): Coil heat content [1d/
kg, v Ni Line speed [mpm] U: Fuel flow rate [N
n(/h], ρ: Coil density [kg/n(], h:
Plate thickness [m], U,: Overall heat absorption rate from combustion gas to coil, Uws: Overall heat absorption rate from furnace wall to coil, σ
: Stefan-Boltzmann constant [W/ m2 h-'
], x: Distance [m] from the furnace inlet.

炉出口板温は、炉入り口板温を初期条件として数式(1
)、(2)、(3)を炉入口から炉出口まで炉長しにわ
たって数値積分することによって求められる。
The plate temperature at the furnace exit is calculated using the formula (1) using the plate temperature at the furnace entrance as an initial condition.
), (2), and (3) are calculated by numerically integrating them over the length of the furnace from the furnace inlet to the furnace outlet.

以下第4図に基づいてライン速度変更パターン計算器1
0がライン速度変更パターンを計算する手順を説明する
Line speed change pattern calculator 1 based on Figure 4 below
0 will explain the procedure for calculating the line speed change pattern.

まず、現在のライン速度での先行コイルと後行コイルの
炉出口板温の差を求める(ステップ41)、この差の絶
対値が所定値α以下か判断しくステップ42)、もし所
定値以下ならばライン速度は変更しない(ステップ43
)、所定値以上の場合はラインー速度を予め定めた一定
量減速した値に基づいて先行コイルと後行コイルの炉出
口板温の差を求める(ステップ44)6そしてこの差の
絶対値が所定値α以下か判断しくステップ45)、所定
値より大きければ再びステップ44に戻って所定値以下
になるまで繰り返す、このよ、うにして求まった先行コ
イルと後行コイルの炉出口板温の差の絶対値は所定値α
以下なので、1ステツプ前のライン速度と炉出口板温の
差の絶対値との間で線形補間を行ない、先行コイルと後
行コイルの炉出口板温の差の絶対値が所定値αとなる変
更ライン速度を求める(ステップ46)0次に計算され
たライン速度に基づいてライン速度変更パターンを計算
する(ステップ47)。
First, find the difference in furnace outlet plate temperature between the leading coil and the trailing coil at the current line speed (step 41), determine whether the absolute value of this difference is less than a predetermined value α (step 42), and if it is less than the predetermined value If the line speed is not changed (step 43)
), if the line speed is reduced by a predetermined amount, the difference in furnace outlet plate temperature between the leading coil and the trailing coil is calculated (step 44), and the absolute value of this difference is determined as a predetermined value. If it is determined whether it is less than or equal to the value α (step 45), if it is greater than a predetermined value, the process returns to step 44 and repeated until it becomes less than or equal to the predetermined value. Thus, the difference between the furnace outlet plate temperatures of the leading coil and the trailing coil determined in this way The absolute value of is the predetermined value α
Since it is as follows, linear interpolation is performed between the line speed one step before and the absolute value of the difference in furnace outlet plate temperature, and the absolute value of the difference in furnace outlet plate temperature between the preceding coil and the following coil becomes the predetermined value α. Calculate the changed line speed (step 46). A line speed change pattern is calculated based on the line speed calculated at the 0th order (step 47).

このライン速度変更パターンの計算方法の一例について
第5図に基づいて説明する。まずバーナの燃焼量を最小
とする(ステップ471 ) 、次にうインに許容され
る最大速度変更率で一定速度だけ減速したとして数式(
1)、(2)、(3)を解いてコイルの板温を求める(
ステップ472.473>。
An example of a method for calculating this line speed change pattern will be explained based on FIG. 5. First, the combustion amount of the burner is minimized (step 471), and then, assuming that the speed is decelerated by a constant speed at the maximum allowable speed change rate, the formula
Solve 1), (2), and (3) to find the coil plate temperature (
Steps 472.473>.

コイルの板温か許容値以内であるかどうかを判断しくス
テップ474 ) 、許容値を越える場合には板温か許
容値に保たれるような最大許容速度変更率を求める(ス
テップ475)。次にライン速度が変更ライン速度に達
したかどうかを判断しくステップ476 ) 、達して
いなければステップ472に戻って繰り返し計算を行な
う。
It is determined whether the plate temperature of the coil is within the permissible value (step 474), and if it exceeds the permissible value, the maximum permissible speed change rate that will keep the plate temperature within the permissible value is determined (step 475). Next, it is determined whether the line speed has reached the changed line speed (step 476), and if it has not, the process returns to step 472 and repeats the calculation.

なお、この速度変更パターンの求めがた自体は本発明の
要旨とするところではなく、ラインの特性に合わせて任
意に決定することが出来る0例えば、現在のライン速度
から変更ライン速度まで一定の速度変更率で減速するこ
ととし、その速度変更率をコイルの板温か許容値以内に
保たれるように数式(1)、(2)、(3)を解くこと
によって求めてもよい、減速の開始点は前記方法により
求められた速度変更率でラインを減速した場合、サイズ
変更点が炉入口に入る前にライン速度が変更ライン速度
に達するような時点とする0以上説明したごとく、求め
られた速度変更パターンに従ってライン速度の変更を行
えば板温は許容値以内に保たれ、先行コイルと後行コイ
ルの炉出口板温の差の絶対値が所定値α以内となる。ラ
イン速度変更パターン計算器10はライン速度設定器1
2にこの速度変更パターンの指令を与えライン速度調節
器16を介してライン速度を制御する。
The method for determining this speed change pattern itself is not the gist of the present invention, and can be arbitrarily determined according to the characteristics of the line. The start of deceleration may be determined by solving equations (1), (2), and (3) so that the speed change rate is kept within the allowable value of the coil plate temperature. The point is the point at which the line speed reaches the changed line speed before the size change point enters the furnace inlet when the line is decelerated at the speed change rate determined by the above method. If the line speed is changed according to the speed change pattern, the plate temperature is maintained within the allowable value, and the absolute value of the difference in furnace outlet plate temperature between the preceding coil and the following coil is within the predetermined value α. Line speed change pattern calculator 10 is line speed setting device 1
A command for this speed change pattern is given to the line speed controller 2 to control the line speed via the line speed regulator 16.

また、サイズ変更部が炉出口を通過した時点でライン速
度を後行コイルの規定ライン速度にしなければならない
が、このライン速度の変更パターンも同様の手法により
求める。この場合、バーナ、ライン速度等の操作は前記
減速の場合と逆になる。
Furthermore, when the size changing section passes through the furnace outlet, the line speed must be set to the specified line speed of the trailing coil, and the change pattern of this line speed is also determined by the same method. In this case, the operations of the burner, line speed, etc. are reversed to the case of deceleration.

一方、板温の制御は以下のように行なう、即ち、炉出口
板温設定器11はライン速度の変更開始と同時に、ライ
ン速度変更パターン計算器10によって与えられる先行
コイルと後行コイルの炉出口板温の差(αまたは−α)
の半分を逆方向に上乗せした温度を、設定炉出口板温と
して炉出口板温調節器13に与える。炉出口板温調節器
13は前記設定炉出口板温とライン速度検出器6によっ
て検出されたライン速度、板温検出器5によって検出さ
れた炉出口板温に基づいて燃料流量の設定値を求め燃料
流量調節器14に設定信号を送る。炉出口板温調節器1
3は周知の温度調節計である。
On the other hand, the plate temperature is controlled as follows: At the same time as the line speed change starts, the furnace outlet plate temperature setter 11 controls the furnace outlet temperature of the leading coil and the trailing coil given by the line speed change pattern calculator 10. Difference in plate temperature (α or -α)
A temperature obtained by adding half of the above in the opposite direction is applied to the furnace outlet plate temperature regulator 13 as the set furnace outlet plate temperature. The furnace outlet plate temperature regulator 13 determines the set value of the fuel flow rate based on the set furnace outlet plate temperature, the line speed detected by the line speed detector 6, and the furnace outlet plate temperature detected by the plate temperature detector 5. A setting signal is sent to the fuel flow regulator 14. Furnace outlet plate temperature regulator 1
3 is a well-known temperature controller.

サイズ変更部が炉出口を通過したとき、炉出口板温設定
器11は設定炉出口板温を初期の値に戻す。
When the size changing section passes through the furnace outlet, the furnace outlet plate temperature setter 11 returns the set furnace outlet plate temperature to the initial value.

本発明によるライン速度変更パターンおよび炉出口板温
の設定値の計算結果の一例を第3図に示す。第3図は先
行コイルが薄物、後行コイルが厚物の場合の計算例であ
り、先行コイルのライン速度v1から、先行コイルと後
行コイルの炉出口板温の差の絶対値が所定値α以内とな
る変更ライン速度v2に減速した後サイズ変更部を炉内
に迎え、サイズ変更部が炉出口に到達した時点で後行コ
イルの規定ライン速度v3とするようにしている。Vl
からv2 、V3からv3への速度変更過程で加減速率
が2段階に分かれているのは、前述したようにバーナの
燃料流量を最大または最小とした場合に、ラインの最大
加減速率で加減速しても板温が規定範囲内に入る範囲と
、板温を規定範囲内に′入れるために加減速率が制限さ
れる場合があるからである。
An example of calculation results of the line speed change pattern and the set value of the furnace exit plate temperature according to the present invention is shown in FIG. Figure 3 is an example of calculation when the leading coil is a thin material and the trailing coil is a thick material. Based on the line speed v1 of the leading coil, the absolute value of the difference in furnace outlet plate temperature between the leading coil and the trailing coil is a predetermined value. After decelerating to a modified line speed v2 that is within α, the size changing section is brought into the furnace, and when the size changing section reaches the furnace outlet, the specified line speed of the trailing coil is set to v3. Vl
The reason why the acceleration/deceleration rate is divided into two stages in the speed change process from V2 to V3 and from V3 to V3 is that when the burner fuel flow rate is set to the maximum or minimum, as mentioned above, the acceleration/deceleration rate is the maximum acceleration/deceleration rate of the line. This is because the acceleration/deceleration rate may be limited in order to keep the plate temperature within the specified range and the plate temperature within the specified range.

[発明の効果コ 以上説明したごとく本発明によれば、サイズ変更時の溶
接部近傍における先行コイルと後行コイルの板温を共に
目標炉出口温度の許容値以内に保ち、しかも生産性を必
要以上に低下させない連続焼鈍炉の板温制御方法を実現
することができ、生産性、品質の向上という極めて有益
な効果がある。
[Effects of the Invention] As explained above, according to the present invention, both the plate temperatures of the leading coil and the trailing coil in the vicinity of the welding area during size change can be maintained within the allowable value of the target furnace outlet temperature, and at the same time productivity can be maintained as required. It is possible to realize a method of controlling the plate temperature of a continuous annealing furnace that does not cause the temperature to drop further than the above, and has extremely beneficial effects of improving productivity and quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を実現するための装置の構成
を示すブロック図、第2図はライン速度と板温ジャンプ
量の関係を示す図、第3図は本発明の1実施例における
ライン速度と炉出口板温設定値の変化の計算例を示す図
、第4図、第5図はライン速度変更パターンの計算手順
の1例を示すフローチャート図である。 1・・・加熱炉、2・・・コイル、3・・・燃料供給配
管、4・・・ライン駆動電動機、5・・・板温検出器、
6・・・ライン速度検出器、7・・・炉温検出器、8・
・・燃料流量検出器、9・・・焼鈍条件指令器、10・
・・ライン速度変更パターン計算器、11・・・炉出口
板温設定器、12・・・ライン速度設定器、13・・・
炉出口板温調節器、14・・・燃料流量調節器、15・
・・燃料流量調節弁、16・・・ライン速度調節器。
Fig. 1 is a block diagram showing the configuration of an apparatus for realizing one embodiment of the present invention, Fig. 2 is a diagram showing the relationship between line speed and plate temperature jump amount, and Fig. 3 is an embodiment of the present invention. Figures 4 and 5 are flowcharts showing an example of a calculation procedure for a line speed change pattern. DESCRIPTION OF SYMBOLS 1... Heating furnace, 2... Coil, 3... Fuel supply piping, 4... Line drive motor, 5... Plate temperature detector,
6... Line speed detector, 7... Furnace temperature detector, 8.
...Fuel flow rate detector, 9...Annealing condition command device, 10.
... Line speed change pattern calculator, 11... Furnace outlet plate temperature setting device, 12... Line speed setting device, 13...
Furnace outlet plate temperature regulator, 14...Fuel flow rate regulator, 15.
...Fuel flow rate control valve, 16...Line speed regulator.

Claims (1)

【特許請求の範囲】 金属板用直火型連続焼鈍炉における被焼鈍材の、先行コ
イルと後行コイルの目標出口板温が同じである場合にお
ける、サイズ変更時の板温制御において、 イ、先行コイルと後行コイルの炉出口における温度の差
が所定値以下となるように、変更ライン速度を数式モデ
ルにより決定し、 ロ、サイズ変更部が炉入口に到達する以前に前記変更ラ
イン速度となるような時点で、ライン速度の減速を開始
すると共に炉出口板温の目標値を前記温度差の半分だけ
温度変化の逆方向にシフトさせ、 ハ、サイズ変更部が炉出口を通過した後は、ライン速度
を後行コイルの規定ライン速度に戻すと共に、出口板温
の目標値を初期の値に戻すことを特徴とする連続焼鈍炉
の板温制御方法。
[Scope of Claims] In plate temperature control at the time of size change in the case where the target outlet plate temperature of the preceding coil and the following coil of the material to be annealed in a direct-fired continuous annealing furnace for metal plates is the same, The changing line speed is determined by a mathematical model so that the temperature difference between the leading coil and the following coil at the furnace outlet is below a predetermined value, and (b) the changing line speed is adjusted before the size changing section reaches the furnace inlet. At the point when A method for controlling a plate temperature in a continuous annealing furnace, characterized in that the line speed is returned to a specified line speed of a trailing coil, and the target value of the outlet plate temperature is returned to an initial value.
JP24733887A 1987-09-30 1987-09-30 Method for controlling sheet temperature in continuous annealing furnace Granted JPH0192323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24733887A JPH0192323A (en) 1987-09-30 1987-09-30 Method for controlling sheet temperature in continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24733887A JPH0192323A (en) 1987-09-30 1987-09-30 Method for controlling sheet temperature in continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPH0192323A true JPH0192323A (en) 1989-04-11
JPH0510414B2 JPH0510414B2 (en) 1993-02-09

Family

ID=17161922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24733887A Granted JPH0192323A (en) 1987-09-30 1987-09-30 Method for controlling sheet temperature in continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPH0192323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213624A (en) * 2004-01-30 2005-08-11 Jfe Steel Kk Continuous heat treatment method of metal strip
JP2010090455A (en) * 2008-10-09 2010-04-22 Nippon Steel Corp Method, apparatus and program for controlling speed in continuous heat-treatment facility
JP2014173104A (en) * 2013-03-07 2014-09-22 Jfe Steel Corp Plate temperature control method in continuous annealing furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211960B2 (en) * 2014-03-13 2017-10-11 東京エレクトロン株式会社 Control device, substrate processing apparatus, and substrate processing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213624A (en) * 2004-01-30 2005-08-11 Jfe Steel Kk Continuous heat treatment method of metal strip
JP2010090455A (en) * 2008-10-09 2010-04-22 Nippon Steel Corp Method, apparatus and program for controlling speed in continuous heat-treatment facility
JP2014173104A (en) * 2013-03-07 2014-09-22 Jfe Steel Corp Plate temperature control method in continuous annealing furnace

Also Published As

Publication number Publication date
JPH0510414B2 (en) 1993-02-09

Similar Documents

Publication Publication Date Title
US4239483A (en) Method of controlling steel strip temperature in continuous heating equipment
EP0715550B1 (en) Rolling of metal strip
JPH0192323A (en) Method for controlling sheet temperature in continuous annealing furnace
US4725321A (en) Method for cooling a steel strip in a continuous annealing furnace
US4724014A (en) Method for cooling a steel strip in a continuous annealing furnace
JPH0192322A (en) Method for controlling sheet temperature in continuous annealing furnace
EP0128734B1 (en) Method for cooling a steel strip in a continuous-annealing furnace
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JPH0890036A (en) Method for controlling coiling temperature in hot rolling mill
JPH0910812A (en) Method for controlling coiling temperature of hot rolled steel sheet
JPH0754055A (en) Method for controlling temperature of steel strip in continuous annealing furnace
JPH06108161A (en) Method for continuously annealing metal strip
JPH052728B2 (en)
KR100794753B1 (en) The Method for Cooling Strip in Cooling Section of Continuous Annealing Line
JP2596229B2 (en) Manufacturing method of galvannealed steel sheet
JPH0625756A (en) Method for controlling strip temperature in continuous annealing line
JPH059590A (en) Strip temperature control method for continuous heat annealing furnace
JPS5831370B2 (en) Ondo Seigiyohou
JPH04323324A (en) Method for controlling temperature of steel sheet in continuous heating furnace
JPH06238312A (en) Method for controlling cooling of hot rolled steel sheet
JPS6337170B2 (en)
KR100431607B1 (en) Method for controlling strip temperature by adjusting a strip target temperature in a continuous annealing furnace
JPH0474825A (en) Method for controlling temperature of steel sheet in continuous heating furnace
JP2921420B2 (en) Combustion control method in continuous annealing furnace
JP3697881B2 (en) Winding temperature control method for hot-rolled steel sheet