JPH0191833A - Ophthalmic apparatus - Google Patents

Ophthalmic apparatus

Info

Publication number
JPH0191833A
JPH0191833A JP62250536A JP25053687A JPH0191833A JP H0191833 A JPH0191833 A JP H0191833A JP 62250536 A JP62250536 A JP 62250536A JP 25053687 A JP25053687 A JP 25053687A JP H0191833 A JPH0191833 A JP H0191833A
Authority
JP
Japan
Prior art keywords
cornea
eye
probe
examined
measurement system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62250536A
Other languages
Japanese (ja)
Other versions
JPH0420349B2 (en
Inventor
Yukitsugu Nakamura
中村 行告
Yoshimasa Hamano
好正 濱野
Takashi Masuda
増田 高
Isao Matsumura
勲 松村
Shigeo Maruyama
茂男 丸山
Kazunobu Kobayashi
小林 萬伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62250536A priority Critical patent/JPH0191833A/en
Priority to DE8888116028T priority patent/DE3878123T2/en
Priority to EP88116028A priority patent/EP0310045B1/en
Publication of JPH0191833A publication Critical patent/JPH0191833A/en
Priority to US07/767,360 priority patent/US5116114A/en
Publication of JPH0420349B2 publication Critical patent/JPH0420349B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/10Eye inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To safely and easily change over a measuring system, by providing a drive means for moving a detection terminal to the position brought into contact with the cornea of an eye to be examined when the measuring state of the first measuring system is changed over to that of the second measuring state and a means for making the contact force of the detection terminal with the cornea almost constant. CONSTITUTION:When the refractivity of the cornea is measured, an ultrasonic probe 12 is retracted behind a mirror 4 so as not to obstruct a cornea refractivity measuring light path but, when a mode is changed over to an eye axial length measuring mode by a change-over switch, an objective lens 3 and mirrors 4, 5 fall and the probe 12 is subsequently advanced until brought into contact with the cornea of an eye E to be examined. At this time, the falling operation of the objective lens 3 and the mirrors 4, 5 is performed by an electromotor 9 and a wire 10 and the movement of the probe 12 is also performed by an electromotor 16 and a wire 17. Since the probe 12 is retracted against the weak force of a tension spring 15 even when allowed to be close to the eye E to be examined too much, the end surface of the probe 12 is brought into contact with the cornea of the eye E to be examined under weak constant pressure and the unreasonable depression of the cornea or the damaging thereof is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば角膜屈折力を測定するaSと、眼軸長
を測定する機能を複合させた装置のように4作動距離が
異なる複数の測定、検査機能を複合した眼科装置に関す
るものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is applicable to a plurality of devices having four different working distances, such as an aS that measures corneal refractive power and a device that combines the functions of measuring ocular axial length. This invention relates to an ophthalmological device that has multiple measurement and inspection functions.

[従来の技術] 例えば、白濁した水晶体を摘出し、人工水晶体を挿入す
る白内障手術において、適正な屈折力の人工水晶体を選
定する場合に、角膜屈折力の測定を光学式の測定装置で
行い、次に角膜から網膜までの長さを超音波式銀、軸長
測定装置で求め1両者の値から所定の計算式によって人
工水晶体の屈折力を算出する方法が一般に行われている
[Prior Art] For example, in cataract surgery in which a cloudy crystalline lens is extracted and an artificial crystalline lens is inserted, when selecting an artificial crystalline lens with an appropriate refractive power, the corneal refractive power is measured using an optical measuring device. Next, the length from the cornea to the retina is determined using an ultrasonic silver and axial length measuring device, and the refractive power of the artificial crystalline lens is calculated from both values using a predetermined formula.

[発明が解決しようとする問題点] しかし、従来は角膜屈折力と眼軸長の測定は別個の装置
によって行っていたため、装置の顔受は部に患者の顔を
固定し、摺動台のアライメントを行ってから測定すると
いう操作をそれぞれ行わなければならず、測定が面倒で
時間が掛かるという問題がある。更には、広い設置スペ
ースが必要であるばかりでなく、視力の悪い患者を移動
しなければならない等の問題点もある。そこで、角膜屈
折力を測定する機能と眼軸長を測定する機能を1台の装
置に複合したいという要望があるが、一方の測定系は比
較的長い空間距離を有するのに対し、他方の測定系は検
出端子を被検眼の角膜に接触させる必要がある。このよ
うな2つの測定を行うために、摺動台を光軸方向に移動
させて実施しようとすると、被検眼との位置合わせ状態
が崩れてしまい、結局はアライメントをし直さなければ
ならないという問題点がある。
[Problems to be solved by the invention] However, in the past, corneal refractive power and axial length were measured using separate devices. There is a problem that measurement is troublesome and time-consuming because operations such as alignment and measurement must be performed respectively. Furthermore, not only is a large installation space required, but there are also other problems, such as the need to move patients with poor eyesight. Therefore, there is a desire to combine the functions of measuring corneal refractive power and axial length in one device, but one measurement system has a relatively long spatial distance, while the other measurement system has a relatively long spatial distance. The system requires the detection terminal to be in contact with the cornea of the eye to be examined. If you try to move the sliding table in the optical axis direction to perform these two measurements, the alignment with the subject's eye will collapse, resulting in the problem of having to re-align it. There is a point.

[発明の目的J 本発明の目的は、上述の問題点を解消し5機能が異なる
2つの測定系の切換えを安全にかつ容易に行い得る眼科
装置を提供することにある。
[Objective of the Invention J] An object of the present invention is to provide an ophthalmological apparatus that solves the above-mentioned problems and can safely and easily switch between two measuring systems with five different functions.

[発明の概要] 上述の目的を達成するための本発明の要旨は、被検眼の
角膜に対して光学的に第1の被検眼情報を検出する第1
の測定系と、被検眼の角膜に検出端子を接触させて第2
の被検眼情報を検出する第2の測定系とを、同一の摺動
台に支持した測定本体内に備え、前記第1の測定系の測
定状態から前記第2の測定系の測定状態に切換える際に
前記検出端子を被検眼の角膜に接触する位置に移動させ
る駆動手段と、前記検出端子が角膜に接触する力をほぼ
一定にする手段とを有することを特徴とする眼科装置で
ある。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide a first test eye that optically detects first test eye information with respect to the cornea of the test eye.
The measurement system and the second detection terminal are brought into contact with the cornea of the eye to be examined.
a second measurement system for detecting information on the eye to be examined, the measurement system being provided in a measurement main body supported on the same sliding table, and switching from the measurement state of the first measurement system to the measurement state of the second measurement system. The ophthalmologic apparatus is characterized in that it has a driving means for moving the detection terminal to a position where it contacts the cornea of the eye to be examined, and a means for making the force with which the detection terminal contacts the cornea substantially constant.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図において、摺動台1上に設けられた本体2内に、
被検眼Eの角膜屈折力を測定する第1の測定系と、角膜
の眼軸長を求めるための第2の測定系が設けられている
。第1の測定系においては、被検眼Eに対向して対物レ
ンズ3が配置され、その後方に光路に沿ってミラー4,
5、結像レンズ6、COD等から成る二次元撮像素子7
が配置され、この二次元撮像素子7の出力はテレビモニ
タ8に接続されている。そして、対物レンズ3、ミラー
4,5は一体構造とされ、電動4I!9により駆動する
ワイヤ10により上下動し得るようになっている。また
、対物レンズlの周囲には2図に示すように発光ダイオ
ードから成る複数個の投影指標光源11a〜lidが配
置されている。
In FIG. 1, inside the main body 2 provided on the sliding table 1,
A first measurement system for measuring the corneal refractive power of the eye E to be examined and a second measurement system for determining the axial length of the cornea are provided. In the first measurement system, an objective lens 3 is placed facing the eye E to be examined, and a mirror 4 is placed behind it along the optical path.
5, imaging lens 6, two-dimensional imaging device 7 consisting of COD, etc.
is arranged, and the output of this two-dimensional image sensor 7 is connected to a television monitor 8. The objective lens 3 and mirrors 4 and 5 are integrally constructed, and the electric 4I! It can be moved up and down by a wire 10 driven by a wire 9. Further, as shown in FIG. 2, a plurality of projection index light sources 11a to 11d made of light emitting diodes are arranged around the objective lens l.

更に、第2の測定系においては、ミラー4の後方に配置
された超音波探触子12が探触子ホルダ13を介して摺
動案内部材14により保持され。
Furthermore, in the second measurement system, an ultrasound probe 12 placed behind the mirror 4 is held by a sliding guide member 14 via a probe holder 13.

この超音波探触子12はテンションばね15によって前
方に付勢されている。また、超音波ホルダ13は電動機
16により動くワイヤ17によって前後進し得るように
なっている。
This ultrasonic probe 12 is urged forward by a tension spring 15. Further, the ultrasonic holder 13 can be moved back and forth by a wire 17 moved by an electric motor 16.

ここで、投影視標光源11a〜lidを所定の空間距離
を設けて被検眼Eの角膜に投影すると、角膜の凸面鏡作
用によって投影視標光源11a〜lidの角膜反射像が
形成されるわけであるが、角膜の曲率半径や乱視度の大
きさに応じてこれらの角膜反射像の光点位置の相互関係
が変化するために、この変化を検出することによって角
膜屈折力や角膜乱視度、軸角度を求めることができるこ
とは周知の通りである。
Here, when the projection optotype light sources 11a to lid are projected onto the cornea of the subject's eye E with a predetermined spatial distance, corneal reflection images of the projection optotype light sources 11a to lid are formed by the convex mirror action of the cornea. However, since the mutual relationship between the light spot positions of these corneal reflection images changes depending on the radius of curvature and degree of astigmatism of the cornea, by detecting this change, it is possible to determine the corneal refractive power, degree of corneal astigmatism, and axial angle. It is well known that it is possible to obtain

第1の測定系は前述したように、投影視標光源11a 
N11dの角膜反射像を対物レンズ3、ミラー4,5、
結像レンズ6より成る光学系により、二次元−像素子7
に結像させることによって検知している。この検知信号
を図示しない電気回路において信号処理を行い、更には
演算処理等を行って角膜屈折力や角膜乱視度、軸角度を
求める。なお、二次元撮像素子7は測定信号検出のみで
なく、被検眼Eの前眼部観察機構としても利用でき、テ
レビモニタ8で前眼部観察を行いながら、摺動台1を操
作してアライメントできるようにされである。
As described above, the first measurement system is the projection target light source 11a.
The corneal reflection image of N11d is captured by the objective lens 3, mirrors 4, 5,
An optical system consisting of an imaging lens 6 allows a two-dimensional imaging element 7
It is detected by focusing the image on the This detection signal is processed in an electric circuit (not shown) and further subjected to arithmetic processing to determine corneal refractive power, corneal astigmatism, and axial angle. The two-dimensional image sensor 7 can be used not only to detect measurement signals but also as a mechanism for observing the anterior segment of the eye E. While observing the anterior segment on the TV monitor 8, alignment can be performed by operating the sliding table 1. It is made possible.

第2の測定系は前述したように、超音波探触子12、探
触子ホルダ13、摺動案内部材14、テンションばね1
5により構成されている。探触子12の中には超音波発
振子、受信子が内蔵されており、ケーブルを介して図示
しない電気回路部と接続されている。超音波探触子12
を被検眼Eの角膜に接触させた状態で、探触子12の先
端から超音波パル亥を発振し、被検眼Eの網膜からの反
射エコーを受信することによって、角膜表面から網膜ま
での眼軸長を検出し、測定値を求めることができること
は周知の通りである。
As described above, the second measurement system includes the ultrasonic probe 12, the probe holder 13, the sliding guide member 14, and the tension spring 1.
5. An ultrasonic oscillator and a receiver are built into the probe 12, and are connected to an electric circuit section (not shown) via a cable. Ultrasonic probe 12
While the probe 12 is in contact with the cornea of the eye E, ultrasonic pulses are emitted from the tip of the probe 12 and the reflected echo from the retina of the eye E is received. It is well known that the axial length can be detected and a measured value obtained.

このようにして、被検眼Eの角膜屈折力と眼軸長を測定
したら、これらの値を経験的に得られた計算式により、
人工水晶体の屈折力を算出することができることも良く
知られている。
After measuring the corneal refractive power and axial length of the eye E in this way, these values can be calculated using empirically obtained formulas.
It is also well known that the refractive power of an artificial lens can be calculated.

本実施例では、角膜屈折力測定時には超音波探触子12
は角膜屈折力測定光路を妨げないように、ミラー4の後
方に退避されているが、図示しない切換スイッチより眼
軸長測定モードに切換えると、対物レンズ3、ミラー4
.5が下降し、次に探触子12が被検眼Eの角膜に接触
するまで前進して第3図に示す状態になる。このとき、
対物レンズ3、ミラー4.5の下降動作は、電動機9、
ワイヤ10によって動かされる。同様に、探触子12の
移動も電動機16とワイヤ17によって行われる。
In this embodiment, when measuring the corneal refractive power, the ultrasound probe 12
is retracted behind the mirror 4 so as not to obstruct the corneal refractive power measurement optical path. However, when switching to the axial length measurement mode using a changeover switch (not shown), the objective lens 3 and mirror 4
.. 5 is lowered, and then the probe 12 advances until it comes into contact with the cornea of the eye E to be examined, resulting in the state shown in FIG. At this time,
The lowering operation of the objective lens 3 and mirror 4.5 is carried out by an electric motor 9,
It is moved by wire 10. Similarly, movement of the probe 12 is also performed by an electric motor 16 and a wire 17.

ここで、角膜屈折力測定時における被検眼Eの角膜の位
置と、眼軸長測定時における超音波探触子12の先端の
位置とを概略一致させておくか、又は光軸方向に若干付
き出すような構成にしておく、かくすることにより、角
膜屈折力測定時にテレビモニタ8を観察しながら、適正
なアライメント操作を行ってから眼軸長測定モードに切
換えて、アライメントの再調整をしなくとも探触子12
の先端は角膜に接触する位置まで前進し、直ちに眼軸長
の測定を行うことができる。なお、このときの切換え操
作に時間が掛かると患者が動いてしまい、角膜の位置が
適正でなくなる可能性があるが、本実゛施例では切換え
操作時の動作は電動機16による駆動方式であるために
迅速に行われるので2角膜が動いてしまう危険性は少な
い。
Here, the position of the cornea of the eye E to be examined when measuring the corneal refractive power should be approximately the same as the position of the tip of the ultrasound probe 12 when measuring the axial length, or the position of the tip of the ultrasound probe 12 should be slightly aligned in the optical axis direction. By doing so, it is possible to perform appropriate alignment operations while observing the TV monitor 8 during corneal refractive power measurement, and then switch to the axial length measurement mode and readjust the alignment. Tomo probe 12
The tip of the eyepiece is advanced to a position where it touches the cornea, and the axial length can be immediately measured. Note that if the switching operation takes time at this time, the patient may move and the position of the cornea may not be appropriate; however, in this embodiment, the operation during the switching operation is driven by the electric motor 16. Because it is performed quickly, there is little risk of the two corneas moving.

また、もし眼軸長のみを測定する場合でも、超音波探触
子12の先端を見なから摺動台1を移動することもでき
るが、−旦角膜屈折力の測定モードにして、テレビモニ
タ8を観察しなから摺動台1によるアライメントを行っ
た後に、眼軸長測定モードに切換える方が測定操作は容
易かつ能率的である。
Furthermore, even if only the axial length of the eye is to be measured, the sliding table 1 can be moved without looking at the tip of the ultrasound probe 12. The measurement operation is easier and more efficient if the alignment is performed using the sliding table 1 without observing the eye 8, and then the mode is switched to the axial length measurement mode.

ところで、超音波探触子12は探触子ホルダ13によっ
て前後方向、即ち測定光軸りの方向に低摩擦力で摺動で
きるよう保持されると共に、微弱なテンションばね15
によって前方に付勢されている。このため、もし探触子
12を被検眼Eに近付は過ぎた場合でも、探触子12は
テンションばね15の微弱な力に抗して後退することに
よって被検眼Eの角膜に対して、探触子12の端面ば微
弱な一定圧で接触され、角膜を無理に凹ませたり危害を
加えることのないようにされている。
Incidentally, the ultrasonic probe 12 is held by a probe holder 13 so as to be able to slide in the front-rear direction, that is, in the direction of the measurement optical axis, with a low frictional force, and also by a weak tension spring 15.
is urged forward by. Therefore, even if the probe 12 is brought too close to the eye E to be examined, the probe 12 will retreat against the weak force of the tension spring 15, and will move against the cornea of the eye E to be examined. The end face of the probe 12 is brought into contact with a weak constant pressure so as not to forcibly dent the cornea or cause any harm.

上述の実施例において、眼軸長測定モードに切換えたと
きに超音波探触子12が前進し、その先端が被検眼Eの
角膜に接触すると、角膜表面、水晶体前嚢、後置、網膜
の超音波エコー信号が検出されるが、特に角膜表面の信
号は顕著に現われる。この角膜表面の超音波信号が検知
されたら電動機16の駆動電源をオフにし、探触子ホル
ダ13の移動を停止するようにしてもよい、或いは、角
膜表面の超音波信号が検知された位置から更に数ミリメ
ートル前進した位置で、探触子ホルダ13の移動を停止
する構造にして、探触子12がテンションばね15によ
る余圧を持った状態で角膜に接触するようにしてもよい
In the embodiment described above, when the ultrasonic probe 12 moves forward when switching to the axial length measurement mode and its tip contacts the cornea of the eye E, the corneal surface, anterior lens capsule, posterior lens capsule, and retina are measured. Ultrasonic echo signals are detected, and signals from the corneal surface are particularly noticeable. When this ultrasonic signal on the corneal surface is detected, the driving power of the electric motor 16 may be turned off and the movement of the probe holder 13 may be stopped, or alternatively, the movement of the probe holder 13 may be stopped from the position where the ultrasonic signal on the corneal surface is detected. It is also possible to adopt a structure in which the movement of the probe holder 13 is stopped at a position further advanced by several millimeters, so that the probe 12 comes into contact with the cornea with an extra pressure exerted by the tension spring 15.

更に、別の応用例として超音波探触子12を移動させる
行程において、探触子12が被検眼Eの角膜に近付くま
では早い速度で移動し、角膜に近付いたら探触子12を
低速度で移動するようにしてもよい、その実施の方法と
しては1例えば第3図に示すように探触子ホルダ13が
被検眼Eの方向へ移動する際に、移動行程の途中に設け
られたマイクロスイッチ20に探触子ホルダ13が当接
するまでは早い速度で移動するように電動機16に駆動
電圧が与えられ、探触子ホルダ13がマイクロスイッチ
20で検知されれば、電動機16への駆動電圧を低下す
る等の方法で、電動機16の回転数を低下することによ
り探触子ホルダ13の移動速度を遅くする。これにより
、切換え時間を短くしかつ探触子12が角膜に強い慣性
力のまま突き当たるという危険性を回避できる。
Furthermore, as another application example, in the process of moving the ultrasound probe 12, the probe 12 moves at a high speed until it approaches the cornea of the eye E, and once it approaches the cornea, the probe 12 is moved at a low speed. For example, as shown in FIG. 3, when the probe holder 13 moves in the direction of the eye E, a micro- A driving voltage is applied to the motor 16 so that the probe holder 13 moves at a fast speed until it comes into contact with the switch 20, and when the probe holder 13 is detected by the microswitch 20, the driving voltage is applied to the motor 16. The moving speed of the probe holder 13 is slowed down by lowering the rotational speed of the electric motor 16 by, for example, lowering the rotation speed of the electric motor 16. This makes it possible to shorten the switching time and avoid the risk that the probe 12 hits the cornea with strong inertial force.

[発明の効果1 以上説明したように本発明に係る眼科装置は、作動距離
の異なる2つの測定機能を1個の装置に複合することを
可能にし、しかも一方の測定でアライメントが調整され
ていれば、他方の測定において再度アライメント調整を
する必要がなくなる。また、2つの測定系の切換えは、
駆動源による動力で迅速に移動部材が移動する構成のた
め、切換え途中に患者が動いてしまう危険性も少ない。
[Effect of the invention 1 As explained above, the ophthalmological device according to the present invention makes it possible to combine two measurement functions with different working distances into one device, and furthermore, it is possible to combine two measurement functions with different working distances into one device, and furthermore, it is possible to combine two measurement functions with different working distances into one device. For example, there is no need to perform alignment adjustment again in the other measurement. Also, switching between the two measurement systems is as follows:
Since the movable member is configured to move quickly using power from the drive source, there is less risk of the patient moving during switching.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る眼科装置の実施例を示し、第1図は
全体の構成図、第2図は対物レンズと投影視標光源の配
置図、第3図は超音波探触子を前進させた状態の構成図
である。 符号1は摺動台、2は本体、3は対物レンズ、7は二次
元撮像素子、8はテレビモニタ、9.16は電動機、l
la〜lidは投影視標光源、12は超音波探触子、1
3は探触子ホルダ、14は摺動案内部材、20はマイク
ロスイッチである。 特許出願人   キャノン株式会社 図面  第1図 第2図 第3図
The drawings show an embodiment of the ophthalmological apparatus according to the present invention, in which Fig. 1 is an overall configuration diagram, Fig. 2 is a layout diagram of an objective lens and a projection target light source, and Fig. 3 is a diagram showing an example of an ophthalmological device in which an ultrasound probe is advanced. FIG. Reference numeral 1 is a sliding table, 2 is a main body, 3 is an objective lens, 7 is a two-dimensional image sensor, 8 is a television monitor, 9.16 is an electric motor, l
la to lid are projection target light sources, 12 is an ultrasound probe, 1
3 is a probe holder, 14 is a sliding guide member, and 20 is a microswitch. Patent applicant Canon Co., Ltd. Drawings Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、被検眼の角膜に対して光学的に第1の被検眼情報を
検出する第1の測定系と、被検眼の角膜に検出端子を接
触させて第2の被検眼情報を検出する第2の測定系とを
、同一の摺動台に支持した測定本体内に備え、前記第1
の測定系の測定状態から前記第2の測定系の測定状態に
切換える際に前記検出端子を被検眼の角膜に接触する位
置に移動させる駆動手段と、前記検出端子が角膜に接触
する力をほぼ一定にする手段とを有することを特徴とす
る眼科装置。 2、前記第2の測定系は超音波式の眼軸長計であり、前
記検出端子は超音波探触子とし、該探触子の先端が被検
眼の角膜に接触した際に発生する超音波エコー信号を、
前記駆動手段の停止信号に用いるようにした特許請求の
範囲第1項に記載の眼科装置。 3、前記検出端子の被検眼方向への移動行程において、
前記駆動手段は前記検出端子が被検眼の角膜に近付くと
移動速度を遅くするようにした特許請求の範囲第1項に
記載の眼科装置。
[Scope of Claims] 1. A first measurement system that optically detects first eye information on the cornea of the eye to be examined; A second measurement system for detecting information is provided in the measurement main body supported on the same sliding table, and the first measurement system includes a second measurement system for detecting information.
a driving means for moving the detection terminal to a position where it contacts the cornea of the eye to be examined when switching from the measurement state of the second measurement system to the measurement state of the second measurement system; 1. An ophthalmological device, comprising: means for making it constant. 2. The second measurement system is an ultrasonic axial length meter, the detection terminal is an ultrasonic probe, and the ultrasonic wave generated when the tip of the probe contacts the cornea of the eye to be examined. echo signal,
The ophthalmologic apparatus according to claim 1, wherein the ophthalmologic apparatus is used as a stop signal for the drive means. 3. In the movement process of the detection terminal toward the eye to be examined,
2. The ophthalmologic apparatus according to claim 1, wherein the driving means slows down the moving speed when the detection terminal approaches the cornea of the eye to be examined.
JP62250536A 1987-09-30 1987-09-30 Ophthalmic apparatus Granted JPH0191833A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62250536A JPH0191833A (en) 1987-09-30 1987-09-30 Ophthalmic apparatus
DE8888116028T DE3878123T2 (en) 1987-09-30 1988-09-28 DEVICE FOR Ophthalmology.
EP88116028A EP0310045B1 (en) 1987-09-30 1988-09-28 Ophthalmologic apparatus
US07/767,360 US5116114A (en) 1987-09-30 1991-09-30 Ophthalmologic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62250536A JPH0191833A (en) 1987-09-30 1987-09-30 Ophthalmic apparatus

Publications (2)

Publication Number Publication Date
JPH0191833A true JPH0191833A (en) 1989-04-11
JPH0420349B2 JPH0420349B2 (en) 1992-04-02

Family

ID=17209360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62250536A Granted JPH0191833A (en) 1987-09-30 1987-09-30 Ophthalmic apparatus

Country Status (1)

Country Link
JP (1) JPH0191833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019213751A (en) * 2018-06-14 2019-12-19 株式会社トプコン Ophthalmologic apparatus and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019213751A (en) * 2018-06-14 2019-12-19 株式会社トプコン Ophthalmologic apparatus and control method thereof

Also Published As

Publication number Publication date
JPH0420349B2 (en) 1992-04-02

Similar Documents

Publication Publication Date Title
US5116114A (en) Ophthalmologic apparatus
US6309068B1 (en) Eye examining apparatus
US8016418B2 (en) Eye axial length measurement apparatus
JP4349934B2 (en) Ophthalmic equipment
JP4492847B2 (en) Eye refractive power measuring device
US10820793B2 (en) Biological object observation system and non-transitory computer-readable medium
US11134842B2 (en) Observation system and non-transitory computer-readable medium storing computer-readable instructions
US4950068A (en) Ophthalmic disease detection apparatus
JP3636917B2 (en) Eye refractive power measurement device
JP4988301B2 (en) Ophthalmic equipment
JP3108261B2 (en) Ophthalmic instruments
JP3594466B2 (en) Eye refractive power measuring device
CN111557637A (en) Ophthalmologic measuring system
JPH0191833A (en) Ophthalmic apparatus
JP3004653B2 (en) Ophthalmic equipment
CN110123262B (en) Ophthalmic measurement system and method
JP4819534B2 (en) Ophthalmic equipment
JP2659986B2 (en) Ophthalmic equipment
JPH0394728A (en) Ophthalmic apparatus
JPH01181843A (en) Ophthalmic device
JPH04114625A (en) Ophthalmological apparatus
JPH0434893B2 (en)
JPH0884703A (en) Ophthalmological apparatus
JPH01300922A (en) Opthalmic measuring apparatus
JPS63216529A (en) Ophthalmic apparatus