JPH019051Y2 - - Google Patents

Info

Publication number
JPH019051Y2
JPH019051Y2 JP9743583U JP9743583U JPH019051Y2 JP H019051 Y2 JPH019051 Y2 JP H019051Y2 JP 9743583 U JP9743583 U JP 9743583U JP 9743583 U JP9743583 U JP 9743583U JP H019051 Y2 JPH019051 Y2 JP H019051Y2
Authority
JP
Japan
Prior art keywords
heat pipe
heat
insulator
power transmission
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9743583U
Other languages
Japanese (ja)
Other versions
JPS605019U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9743583U priority Critical patent/JPS605019U/en
Publication of JPS605019U publication Critical patent/JPS605019U/en
Application granted granted Critical
Publication of JPH019051Y2 publication Critical patent/JPH019051Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Suspension Of Electric Lines Or Cables (AREA)
  • Cable Accessories (AREA)
  • Insulators (AREA)

Description

【考案の詳細な説明】 この考案は送電線懸吊支持体上の気中終端接続
部に付着たい積する氷雪を解かすための装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a device for melting ice and snow that accumulates on air terminations on power transmission line suspension supports.

冬季に送電線懸吊支持体いわゆる鉄塔に氷雪が
付着たい積する場合があり、そのような状態の鉄
塔は、氷雪によつて風に当たる表面積が大となる
から、風圧抵抗が大きくなるとともに、氷雪によ
る負荷荷重が大きくなる等の理由により倒壊の危
険があるのみならず短絡の危険もある。例えば鉄
塔上の気中終端接続部すなわち鉄塔によつて懸吊
された送電線と地中ケーブルとを接続するために
設けられかつ碍子や絶縁材等から構成された接続
部の碍子に氷雪が付着した場合、氷雪の電導性に
よつて送電線と鉄塔との間で氷雪を介して短絡が
起こる場合がある。その短絡に対する対策として
前記碍子の形状を大きくすることによつて碍子に
取付けられた送電線と鉄塔との間隔を大きくした
り、あるいは碍子の形状を雪が付着し難い形状に
する等の対策がある。しかしながらこれらの対策
の前者の場合には、鉄塔の強度の限界内で碍子の
大きさを決めなければならないとともに、特に豪
雪地帯では形状の大きい碍子に付着する雪が多量
になり鉄塔にかかる負荷が大きくなる等の理由に
よつて碍子の大きさに制限がある。また後者の場
合でも確実に氷雪の付着を防止することは困難で
あるから、短絡を確実に阻止することができな
い。そこでこのような不都合を解消するために、
従来、前記碍子に付着たい積する氷雪を解かす装
置が考えられており、その一例としてエネルギー
コストのかからない地下水あるいは地熱が有する
熱エネルギーをヒートパイプを介して前記碍子に
輸送する融雪装置を挙げることができる。すなわ
ちこの種の融雪装置は、ヒートパイプの一端部を
碍子下面付近に設けるとともに、井戸を掘つて汲
み上げる地下水あるいは地熱井に給水した結果得
られる温水を前記ヒートパイプの他端部に導く構
成が一般的である。しかしながらこのような構成
の融雪装置では、地下水を汲み上げるあるいは地
熱井に給水するためのポンプ等の設備などが必要
となるから、設備コストの上昇あるいは維持費が
嵩みランニングコストが高い等の問題がある。そ
こで前記井戸あるいは前記地熱井にヒートパイプ
の前記他端部を挿入する融雪装置が考えられる。
しかしながら融雪に充分な地下水あるいは地熱を
得るために掘られる井戸あるいは地熱井は、地下
10数mの深さになる場合があるとともに、鉄塔上
の碍子の高さも10数mの高さになる場合があるか
ら、前記融雪装置においては、相当長尺のヒート
パイプが要求される。ところが従来のヒートパイ
プは、外装体が剛性の高い直管で構成されている
のが通常であるから、相当長尺のヒートパイプを
輸送することは不可能に近いのみならず、もし仮
に輸送できたとしても相当長尺の直管から構成さ
れたヒートパイプを折り曲げずに地下10数mに挿
入する作業は、甚だ困難である等の問題があつ
た。したがつて従来の融雪装置は、そのような問
題を有しているため、容易に設置できないという
欠点があつた。
In winter, ice and snow may accumulate on power transmission line suspension supports, so-called steel towers.In such conditions, steel towers have a large surface area that is exposed to the wind due to ice and snow, resulting in increased wind pressure resistance and Due to the increased load, etc., there is not only a risk of collapse but also a risk of short circuit. For example, ice and snow may adhere to the insulators of aerial termination connections on steel towers, i.e. connections made of insulators, insulating materials, etc., which are installed to connect power transmission lines suspended by the tower and underground cables. In such cases, due to the conductivity of ice and snow, a short circuit may occur between the transmission line and the tower through the ice and snow. Countermeasures against short circuits include enlarging the shape of the insulator to increase the distance between the power transmission line attached to the insulator and the steel tower, or changing the shape of the insulator to a shape that makes it difficult for snow to adhere to it. . However, in the case of the former of these measures, the size of the insulator must be determined within the strength limits of the steel tower, and especially in areas with heavy snowfall, a large amount of snow adheres to the large insulator, resulting in a large load on the steel tower. There are limits to the size of insulators for reasons such as: Furthermore, even in the latter case, it is difficult to reliably prevent the adhesion of ice and snow, and therefore it is not possible to reliably prevent short circuits. Therefore, in order to eliminate this inconvenience,
Conventionally, devices have been considered to melt the ice and snow that has accumulated on the insulator, and one example is a snow melting device that transports thermal energy possessed by underground water or geothermal heat, which does not require energy costs, to the insulator via a heat pipe. can. In other words, this type of snow melting device generally has one end of the heat pipe installed near the bottom surface of the insulator, and hot water obtained as a result of underground water pumped up by digging a well or water supplied to a geothermal well, to the other end of the heat pipe. It is true. However, snow melting equipment with this type of configuration requires equipment such as pumps to pump up groundwater or supply water to geothermal wells, leading to problems such as increased equipment costs, increased maintenance costs, and high running costs. be. Therefore, a snow melting device may be considered in which the other end of the heat pipe is inserted into the well or the geothermal well.
However, wells or geothermal wells that are dug to obtain sufficient groundwater or geothermal heat for snow melting are underground.
The snow melting device requires a fairly long heat pipe because the depth may be more than 10 meters and the height of the insulator on the steel tower may be more than 10 meters. However, since the exterior of conventional heat pipes is usually composed of a straight pipe with high rigidity, it is not only nearly impossible to transport a fairly long heat pipe, but even if it were not possible to transport it, it would be difficult to transport it. Even so, there were problems such as the extremely difficult task of inserting a heat pipe, which is made up of a fairly long straight pipe, 10 meters underground without bending it. Therefore, conventional snow melting devices have such problems and have the disadvantage that they cannot be easily installed.

この考案は上記の事情に鑑みてなされたもの
で、容易に設置できる気中終端接続部における融
雪装置を提供することを目的とするものである。
This invention was made in view of the above-mentioned circumstances, and the object is to provide a snow melting device for an air termination connection that can be easily installed.

そしてこの考案は、送電線懸吊支持体の所定個
所に立設した碍子に対し地熱源から熱を輸送する
ヒートパイプが少なくとも一部分に可撓性を有す
ることを特徴とするものである。
This invention is characterized in that a heat pipe that transports heat from a geothermal source to an insulator erected at a predetermined location of a power transmission line suspension support has flexibility at least in part.

以下この考案の実施例を添付の図面を参照して
説明する。第1図ないし第3図はこの考案の一実
施例を示し、送電線懸吊支持体いわゆる鉄塔1に
ほぼ水平に突設された懸架部2上に気中終端接続
部3が支持台4を介して突設されている。その気
中終端接続部3は、外装体をなす碍子5と絶縁材
料等から構成されている。また第1図に示す如く
気中終端接続部3において他の鉄塔1から導かれ
た送電線6が引留めされるとともに、その引留め
られた送電線6は、碍子5に内通されかつ地中ケ
ーブルと接続されている。さらに碍子5の基端部
に支持台4を介して放熱板7が設けられている。
その放熱板7は、第2図に示すように気中終端接
続部3の下側の突起部に当たらないように半円形
の切欠を有した形状を有しかつ一対となつている
とともに、内部に半円形の切欠を有する端面と直
交する方向に複数の円柱状の空間が形成され前記
端面と逆の端面にのみその円柱状の空間が突抜け
ている。さらにその円柱状の空間に放熱板用ヒー
トパイプ8が挿入されかつ放熱板用ヒートパイプ
8を内蔵した放熱板7がヘツダー9によつて塞が
れている。またその各ヘツダー9には、地熱を輸
送するヒートパイプ10の上端部が接続されてい
るとともに、ヒートパイプ10は上端部から所定
寸法の位置で分岐しかつその分岐点以下で一本と
なつた下端部が地熱井11に挿入されている。そ
のヒートパイプ10の構成は、第3図に示すよう
に外装体12として一部分にコルゲート管例えば
直径50mmのステンレス製コルゲート管が使用され
ているとともに、外装体12に可撓性を有するウ
イツク13を内蔵し、さらに外装体12に作動流
体を封入しかつ外装体12の少なくとも地上に位
置する部分の外周面に断熱材14を被覆した構成
とされている。
Embodiments of this invention will be described below with reference to the accompanying drawings. Figures 1 to 3 show an embodiment of this invention, in which an air terminal connection part 3 is connected to a support base 4 on a suspension part 2 that projects almost horizontally from a power transmission line suspension support, so-called a steel tower 1. It is protruded through. The air terminal connection portion 3 is composed of an insulator 5 forming an exterior body, an insulating material, and the like. Further, as shown in FIG. 1, the power transmission line 6 led from another tower 1 is held back at the aerial termination connection 3, and the held power transmission line 6 is passed through the insulator 5 and is connected to the ground. Connected to the middle cable. Further, a heat dissipation plate 7 is provided at the base end of the insulator 5 with a support base 4 interposed therebetween.
As shown in FIG. 2, the heat dissipation plate 7 has a shape with a semicircular notch so as not to hit the lower protrusion of the air terminal connection part 3, and is formed in a pair. A plurality of cylindrical spaces are formed in a direction perpendicular to the end face having a semicircular notch, and the cylindrical spaces penetrate only to the end face opposite to the end face. Further, a heat sink plate heat pipe 8 is inserted into the cylindrical space, and the heat sink plate 7 containing the heat sink plate heat pipe 8 is closed by a header 9. Further, the upper end of a heat pipe 10 for transporting geothermal heat is connected to each header 9, and the heat pipe 10 branches off at a predetermined position from the upper end and becomes one line below the branching point. The lower end is inserted into the geothermal well 11. As shown in FIG. 3, the heat pipe 10 has a structure in which a corrugated pipe, for example, a stainless steel corrugated pipe with a diameter of 50 mm, is used in a part as the exterior body 12, and a flexible wick 13 is used in the exterior body 12. It has a structure in which a working fluid is sealed in an exterior body 12, and a heat insulating material 14 is coated on the outer peripheral surface of at least a portion of the exterior body 12 located on the ground.

したがつて以上のように構成された融雪装置に
よつて以下の如く気中終端接続部における融雪を
行なう。すなわちヒートパイプ10は、一端部と
他端部に温度差があれば熱輸送を行なうから、降
雪時にはヘツダー9に接続したヒートパイプ10
の一端部が低温となるため、地熱井11に挿入し
た他端部と前記一端部とに温度差が生じるから、
ヒートパイプ10はヘツダー9を介して地熱を放
熱板7に輸送する。そして放熱板7に輸送された
熱が放熱して碍子5を基端部から温める。その結
果碍子5に付着たい積した氷雪をヒートパイプ1
0を介して地熱によつて解かすことができる。と
ころで前述のように構成された融雪装置を設置す
る場合、ヒートパイプ10の一端部を地熱井11
に挿入する際には、ヒートパイプ10の可撓性を
有する部分でヒートパイプ10を曲げながら地熱
井11に挿入する。さらにヒートパイプ10を地
熱井11から鉄塔1上のヘツダー9に導く際に
も、前述と同様ヒートパイプ10を曲げながら鉄
塔1の側部に取付けることによつて容易にヒート
パイプ10を固定できかつヘツダー9にヒートパ
イプ10を接続する場合でも、ヒートパイプ10
を変形させながら接続を容易に行なえる。
Therefore, the snow melting device constructed as described above melts snow at the aerial terminal connection as follows. That is, the heat pipe 10 transports heat if there is a temperature difference between one end and the other end, so when it snows, the heat pipe 10 connected to the header 9
Since one end is at a low temperature, a temperature difference occurs between the other end inserted into the geothermal well 11 and the one end.
The heat pipe 10 transports geothermal heat to the heat sink 7 via the header 9. The heat transferred to the heat sink 7 is radiated and warms the insulator 5 from the base end. As a result, the ice and snow that have accumulated on the insulator 5 are removed from the heat pipe 1.
It can be solved by geothermal energy through 0. By the way, when installing the snow melting device configured as described above, one end of the heat pipe 10 is connected to the geothermal well 11.
When inserting the heat pipe 10 into the geothermal well 11, the heat pipe 10 is bent at the flexible portion of the heat pipe 10. Furthermore, when leading the heat pipe 10 from the geothermal well 11 to the header 9 on the steel tower 1, the heat pipe 10 can be easily fixed by bending the heat pipe 10 and attaching it to the side of the steel tower 1 as described above. Even when connecting the heat pipe 10 to the header 9, the heat pipe 10
Connections can be easily made while deforming the

以上の説明から明らかなように、この考案によ
れば地下水あるいは地熱を利用した融雪装置にお
いてフレキシブルな構造を有するヒートパイプを
用いたから、地下水あるいは地熱を利用するため
に掘られる井戸や地熱井が相当深い場合でも、相
当長尺のヒートパイプを変形させて輸送できると
ともに、井戸や地熱井に長尺のヒートパイプを容
易に挿入できるため、この考案の融雪装置を容易
に設置できる。またヒートパイプの外装体として
フレキシブルなコルゲート管を用いた場合には、
そのコルゲート管の外径と等しい直管を外装体と
して用いたヒートパイプよりもコルゲート管を用
いたヒートパイプの方が表面積が広いから、電熱
面積が広くなる。したがつてヒートパイプによる
単位時間当りの熱輸送量が多くなる。その結果気
中終端接続部に付着たい積した氷雪の融雪能率が
向上する。さらにヒートパイプは、ヒートパイプ
における入熱部と放熱部との温度差が大きい程、
輸送熱量が増大する特性を有しているから、降雪
時等の低温気象条件下では一層の融雪効果を期待
できる等の効果がある。
As is clear from the above explanation, since this invention uses a heat pipe with a flexible structure in a snow melting device that uses groundwater or geothermal heat, the number of wells and geothermal wells that are dug to utilize groundwater or geothermal heat is considerable. Even in deep areas, a fairly long heat pipe can be deformed and transported, and a long heat pipe can be easily inserted into a well or geothermal well, making it easy to install the snow melting device of this invention. In addition, when a flexible corrugated pipe is used as the exterior body of the heat pipe,
Since a heat pipe using a corrugated pipe has a larger surface area than a heat pipe using a straight pipe as an exterior body that has the same outer diameter as the corrugated pipe, the electric heating area is larger. Therefore, the amount of heat transported per unit time by the heat pipe increases. As a result, the efficiency of melting the ice and snow that has accumulated on the air terminal connection is improved. Furthermore, the larger the temperature difference between the heat input part and the heat radiation part of the heat pipe, the more
Since it has the property of increasing the amount of heat transported, it can be expected to have an even greater snow melting effect under low temperature weather conditions such as during snowfall.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の一実施例を示す概略的な全
体図、第2図は放熱板およびヘツダーを上から見
た部分断面図、第3図はヒートパイプの概略的な
断面図である。 1……鉄塔、3……気中終端接続部、5……碍
子、6……送電線、7……放熱板、10……ヒー
トパイプ。
FIG. 1 is a schematic overall view showing an embodiment of this invention, FIG. 2 is a partial sectional view of a heat sink and a header viewed from above, and FIG. 3 is a schematic sectional view of a heat pipe. 1... Steel tower, 3... Air termination connection section, 5... Insulator, 6... Power transmission line, 7... Heat sink, 10... Heat pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 送電線懸吊支持体の所定個所に立設した碍子を
介して送電線を引留めするとともに、その送電線
を地中ケーブルに接続するよう構成した気中終端
接続部において、前記碍子の基端部に放熱板が設
けられるとともに、少なくとも一部分に可撓性を
有するヒートパイプの下端部が地熱源に接続され
かつ上端部が前記放熱板に接続されていることを
特徴とする気中終端接続部における融雪装置。
In an air terminal connection part configured to hold down a power transmission line via an insulator erected at a predetermined location of a power transmission line suspension support and to connect the power transmission line to an underground cable, the base end of the insulator is The air termination connection part is characterized in that a heat sink is provided in the heat pipe, and a lower end of a heat pipe having flexibility at least in part is connected to a geothermal source, and an upper end is connected to the heat sink. snow melting equipment.
JP9743583U 1983-06-24 1983-06-24 Snow melting device at air termination connection Granted JPS605019U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9743583U JPS605019U (en) 1983-06-24 1983-06-24 Snow melting device at air termination connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9743583U JPS605019U (en) 1983-06-24 1983-06-24 Snow melting device at air termination connection

Publications (2)

Publication Number Publication Date
JPS605019U JPS605019U (en) 1985-01-14
JPH019051Y2 true JPH019051Y2 (en) 1989-03-13

Family

ID=30231770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9743583U Granted JPS605019U (en) 1983-06-24 1983-06-24 Snow melting device at air termination connection

Country Status (1)

Country Link
JP (1) JPS605019U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227840A (en) * 1987-03-17 1988-09-22 東レ株式会社 Cloth excellent in cool feeling

Also Published As

Publication number Publication date
JPS605019U (en) 1985-01-14

Similar Documents

Publication Publication Date Title
US5477914A (en) Ground source heat pump system comprising modular subterranean heat exchange units with multiple parallel secondary conduits
US20040129408A1 (en) Insulated sub-surface liquid line direct expansion heat exchange unit with liquid trap
FI119201B (en) System and manhole for low energy network
JPH019051Y2 (en)
ES2563864T3 (en) Dovela for wind tower and method of manufacturing a wind tower using said dovela
CN104833134B (en) Ground heat exchanger and heat exchange system
CN111998536B (en) Anti-freezing electric heating heat dissipation bridge for channels in cold regions
JP2008292057A (en) Heat exchanger, heat exchange system and manufacturing method of heat exchanger
JPH116263A (en) Heat exchange type roof panel
JP4084897B2 (en) Snow melting equipment for multi-building houses
US7841200B1 (en) Sub-surface tubing spacer means for direct expansion heating/cooling systems
CN113373876A (en) Take out and hold power station with cover prevents frostbite
EP2557385B1 (en) Thermal Energy Stores and Heat Exchange Assemblies Therefor
CN207009687U (en) Environment-protective ion earthing or grounding means
JPH1026286A (en) Fluid flow pipe and freezing prevention method for fluid flow pipe
KR102597648B1 (en) Ice and snow prevention system
CN214536895U (en) Novel U-shaped buried pipe heat exchange structure of ground source heat pump
CN221034646U (en) Reducing type anti-corrosion high-temperature-resistant buried composite heat-insulating pipeline
CN116254801B (en) Freezing-resistant system for wading concrete structure in cold region and construction method
CN219062800U (en) Pipeline repair structure
CN218633085U (en) A cable temporary support for rainy season foundation ditch
CN218386680U (en) Electric wire freeze-proof device for electric wire netting
CN215105496U (en) Assembled steel corrugated pipe gallery support beam connection structure
ES2323306T3 (en) A COUPLING SYSTEM.
US20230047310A1 (en) Piles providing support and geothermal heat exchange