JPH0159826B2 - - Google Patents

Info

Publication number
JPH0159826B2
JPH0159826B2 JP57027809A JP2780982A JPH0159826B2 JP H0159826 B2 JPH0159826 B2 JP H0159826B2 JP 57027809 A JP57027809 A JP 57027809A JP 2780982 A JP2780982 A JP 2780982A JP H0159826 B2 JPH0159826 B2 JP H0159826B2
Authority
JP
Japan
Prior art keywords
cooling medium
partition plate
stator
pressure chamber
stator frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57027809A
Other languages
Japanese (ja)
Other versions
JPS58144549A (en
Inventor
Toshuki Aeba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57027809A priority Critical patent/JPS58144549A/en
Publication of JPS58144549A publication Critical patent/JPS58144549A/en
Publication of JPH0159826B2 publication Critical patent/JPH0159826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は固定子枠の構造を改良したタービン発
電機などの回転電機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a rotating electrical machine such as a turbine generator with an improved stator frame structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、ある種の回転磁界形の回転電機は、回
転子の回転磁界によつて生ずる振動力を受ける。
例えば、2極タービン発電機の場合、固定子鉄心
上のある一点に着目すると、この点は回転磁界の
作用によつて回転子速度の2倍の振動数で振動す
る。即ち、回転子速度50(r・p・s)の2極回
転子の場合、その強制振動数は100(Hz)となるこ
とはよく知られている。
In general, some types of rotating magnetic field-type rotating electric machines are subjected to vibration forces generated by the rotating magnetic field of a rotor.
For example, in the case of a two-pole turbine generator, focusing on a certain point on the stator core, this point vibrates at a frequency twice the rotor speed due to the action of the rotating magnetic field. That is, it is well known that in the case of a two-pole rotor with a rotor speed of 50 (r.p.s), its forced frequency is 100 (Hz).

このような固定子鉄心の強制振動による固定子
振動を防止する方法の1つとしては、固定子枠の
内周にばね板を設けるものがある。これは、固定
子枠の軸方向に複数個離設された環状なる仕切板
の内径面に、水平ばね板の両端を固着し、さらに
水平ばね板の中央部に固定子鉄心を固着するよう
にしている。この場合、固定子鉄心は水平ばね板
を介して仕切板により支持され、この仕切板は固
定子枠内に溶接される構造となつている。また上
記仕切板は固定子鉄心の支持・固定子枠に剛性を
付与するとともに、冷却媒体の流通路を形成して
いる。
One method for preventing stator vibration caused by such forced vibration of the stator core is to provide a spring plate on the inner periphery of the stator frame. This is done by fixing both ends of a horizontal spring plate to the inner diameter surface of a plurality of annular partition plates spaced apart in the axial direction of the stator frame, and then fixing the stator core to the center of the horizontal spring plate. ing. In this case, the stator core is supported by a partition plate via a horizontal spring plate, and the partition plate is welded into the stator frame. Further, the partition plate supports the stator core and provides rigidity to the stator frame, and also forms a flow path for the cooling medium.

また従来、このような構成の固定子枠は、固定
子鉄心から伝達される強制振動数での振動を防止
するため、振動する固定子鉄心の振動数よりも高
い固有振動数を有するように設計されてきた。し
かしながら、固定子枠が高い固有振動数を有する
には、その固定子枠の剛性を主として負担する仕
切板の剛性を高めることになり、必然的に仕切板
の内径と外径の差は大きくなる。従つて、こうし
た設計技法を用いれば、回転電機の定格が大きく
なればなる程、即ち、固定子鉄心の外径が大きく
なればなる程、固定子枠の外径を大きくすること
になり、輸送制限に触れたり、また価格の高い回
転電機になるといつた問題点があつた。
Furthermore, conventionally, stator frames with this type of configuration were designed to have a natural frequency higher than the frequency of the vibrating stator core in order to prevent vibrations at the forced frequency transmitted from the stator core. It has been. However, in order for the stator frame to have a high natural frequency, the rigidity of the partition plate, which mainly bears the rigidity of the stator frame, must be increased, which inevitably increases the difference between the inner and outer diameters of the partition plate. . Therefore, if such a design technique is used, the larger the rating of the rotating electrical machine becomes, that is, the larger the outer diameter of the stator core, the larger the outer diameter of the stator frame becomes. There were problems such as limitations and the high cost of rotating electric machines.

そこで、近年は強制振動する固定子鉄心の振動
数よりも低い固有振動数を有するような固定子枠
が採用されるようになつた。その一例として、仕
切板の内外周に切欠きを設けることにより仕切板
の剛性を低下させ、よつて固定子枠の固有振動数
を低くするようにしたものがある。ところが、仕
切板の内外周に設ける切欠き部は、冷却媒体の流
通経路に影響を与えない部分としなければならな
いが、各仕切板に設ける切欠き部は同数・同面積
に揃えることは難しい。従つて、各仕切板の固有
振動数は一致しにくく、固定子枠が数種の固有振
動数を持つことになり、最適固有振動数に集中し
ない。
Therefore, in recent years, a stator frame having a natural frequency lower than the frequency of the stator core that undergoes forced vibration has been adopted. One example is one in which notches are provided on the inner and outer peripheries of the partition plate to reduce the rigidity of the partition plate, thereby lowering the natural frequency of the stator frame. However, although the cutouts provided on the inner and outer peripheries of the partition plates must not affect the flow path of the cooling medium, it is difficult to arrange the same number and area of the cutouts on each partition plate. Therefore, the natural frequencies of each partition plate are difficult to match, and the stator frame has several types of natural frequencies, which do not concentrate on the optimum natural frequency.

また他の一例として、固定子枠の各仕切板にそ
れぞれ同数・同面積の孔を設け、各仕切板の剛
性、即ち固有振動数をある値に略同一にし、固定
子枠の固有振動数を最適な値にしたものがある。
そして前記仕切板の孔のうち、冷却媒体の流通に
不要な孔は、仕切板材料に比べて殆んど剛性の無
視出来る材料によつて閉鎖し、冷却媒体の流通経
路を構成している。ところが、このような構成の
ものにあつては、孔の閉鎖に伴う若干の剛性変化
量の定量的な評価が難かしいという欠点があつ
た。
As another example, each partition plate of the stator frame is provided with holes of the same number and area, and the rigidity, that is, the natural frequency, of each partition plate is made approximately the same to a certain value, and the natural frequency of the stator frame is There is one that has been set to an optimal value.
Of the holes in the partition plate, those that are not necessary for the flow of the cooling medium are closed with a material that is almost negligible in rigidity compared to the material of the partition plate, thereby forming a flow path for the cooling medium. However, with such a configuration, there is a drawback that it is difficult to quantitatively evaluate the amount of slight change in rigidity due to the closure of the hole.

またタービン発電機などにおいては、固定子鉄
心の軸方向中心を境に、原動機に対し直結側と反
直結側は構造上完全に対称でない。対称でない主
要因としては、通常、原動機に対し直結側半分に
設置される固定子巻線端部の相接続リングや出力
リードの強制風冷ブツシング等があげられる。上
述した固定子の構造上の非対称性の故に、従来、
冷却媒体の風量分布に非対称が生じ、タービン発
電機内の温度分布の不均一性が助長され、その分
だけ局部的に温度が高くなる欠点があつた。
Furthermore, in a turbine generator or the like, the direct connection side and the non-direct connection side with respect to the prime mover are not completely symmetrical in structure with respect to the axial center of the stator core. The main reasons for the lack of symmetry include the phase connection ring at the end of the stator winding, which is usually installed in the half directly connected to the prime mover, and the forced air cooling bushings of the output leads. Due to the above-mentioned structural asymmetry of the stator, conventionally,
This has the disadvantage that an asymmetry occurs in the air flow distribution of the cooling medium, which promotes non-uniformity in the temperature distribution within the turbine generator, resulting in a correspondingly high local temperature.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情にかんがみてなされたもの
で、固定子鉄心の強制振動に共振することが無
く、且つ外形寸法が小さい固定子枠を備え、内部
における局部的な温度上昇を抑制し得る回転電機
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a rotating electrical machine that does not resonate with forced vibrations of a stator core, has a stator frame with small external dimensions, and can suppress local temperature rises inside. The purpose is to provide

〔発明の概要〕[Summary of the invention]

本発明は回転電機の固定子枠の固有振動数を、
固定子鉄心の強制振動の振動数よりも低い値にす
るために、固定子枠内の各仕切板に複数個の孔を
設けたものにあつて、この孔を冷却媒体の流通路
として、またいくつかの孔には仕切板に比して剛
性の無視できるような材質の管を挿通し、流通経
路を形成した構成とする。
The present invention improves the natural frequency of the stator frame of a rotating electric machine by
In order to lower the frequency of forced vibration of the stator core, each partition plate in the stator frame has multiple holes, and these holes can be used as cooling medium flow paths. Pipes made of a material whose rigidity is negligible compared to that of the partition plate are inserted into some of the holes to form flow paths.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を図面を参照して説明
する。第1図はこの発明の一実施例である回転電
機の固定子を正面から見た一部断面図、第2図は
第1図のA−A′線断面の矢視図、第3図は第2
図のB−B′線に沿つた固定子鉄心の外周におい
て冷却媒体の流れを示す展開図を示す。第1図に
おいて、1は円筒状なる固定子枠である。2は固
定子鉄心3の支持及び固定子枠1の補強をする環
状なる仕切板で、この仕切板2は回転子軸方向に
複数個適宜な間隔で配設されている。固定子鉄心
3は回転子軸方向に伸びる水平バネ4を介して、
仕切板2の内径面に支持され、上記仕切板2の外
径面は固定子枠1の内径面に溶接されている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a partial cross-sectional view of a stator of a rotating electrical machine according to an embodiment of the present invention viewed from the front, FIG. 2 is a cross-sectional view taken along the line A-A' in FIG. 1, and FIG. Second
A developed view showing the flow of the cooling medium around the outer periphery of the stator core along line B-B' in the figure is shown. In FIG. 1, 1 is a cylindrical stator frame. Reference numeral 2 denotes an annular partition plate for supporting the stator core 3 and reinforcing the stator frame 1, and a plurality of partition plates 2 are arranged at appropriate intervals in the rotor axial direction. The stator core 3 is connected via a horizontal spring 4 extending in the rotor axial direction.
It is supported by the inner diameter surface of the partition plate 2, and the outer diameter surface of the partition plate 2 is welded to the inner diameter surface of the stator frame 1.

また、各仕切板2には長円状の孔5が複数個設
けられ、この孔5には、断面が長円状の管が挿通
され、冷却媒体の流通路を形成している。この流
通路6は後述する供給管6aと回収管6bとバラ
ンス管6cに分類される。
Further, each partition plate 2 is provided with a plurality of oval holes 5, into which a tube having an oval cross section is inserted to form a flow path for a cooling medium. The flow path 6 is classified into a supply pipe 6a, a recovery pipe 6b, and a balance pipe 6c, which will be described later.

次に固定子枠1の固有振動数について述べる。
例として、回転子速度50(r・p・s)の2極回
転子の場合を考えると、この場合、固定子鉄心3
の強制振動数は前述したように100Hzであり、固
定子枠1は100Hz近辺及び、50Hz近辺で共振する。
従つて固定子枠1の固有振動数は75Hz近辺に設定
する必要があり、また固定子枠1の剛性を主に担
当している各仕切板2の固有振動数も75Hz近辺に
設定する必要がある。
Next, the natural frequency of the stator frame 1 will be described.
As an example, consider the case of a two-pole rotor with a rotor speed of 50 (r.p.s).
As mentioned above, the forced vibration frequency is 100Hz, and the stator frame 1 resonates around 100Hz and around 50Hz.
Therefore, the natural frequency of the stator frame 1 needs to be set around 75Hz, and the natural frequency of each partition plate 2, which is mainly responsible for the rigidity of the stator frame 1, also needs to be set around 75Hz. be.

ここで仕切板2の固有振動数の設定方法につい
て述べる。周知のように円環の固有振動数fは下
記(1)式で算出される。
Here, a method for setting the natural frequency of the partition plate 2 will be described. As is well known, the natural frequency f of the ring is calculated by the following equation (1).

f=1/2π{E・g/γ・I/Ar4・i2(1−i22
/1+i21/2 ……(1) ただし、Eは円環材料の縦弾性係数、gは動加
速度、γは円環材料の比重量、Aは円環断面積、
rは円環等価半径、Iは円環等価剛性、iは円周
に対する波長の数である。2極機の場合は、i=
2となるので、上記(1)は下式(2)のように変形され
る。
f=1/2π{E・g/γ・I/Ar 4・i 2 (1−i 2 ) 2
/1+i 2 } 1/2 ...(1) where E is the longitudinal elastic modulus of the annular material, g is the dynamic acceleration, γ is the specific weight of the annular material, A is the annular cross-sectional area,
r is the equivalent radius of the ring, I is the equivalent stiffness of the ring, and i is the number of wavelengths with respect to the circumference. For a two-pole machine, i=
2, the above (1) is transformed into the following equation (2).

f=1/π・(9/5)1/2・(E・g/γ・I/Ar4
1/2……(2) 従つて仕切板2の固有振動数fは上式(2)により
設計時に算出可能であり、また本発明において
は、仕切板2に孔5を設けているが、第5図に示
したように、孔5の面積、個数及び配置により仕
切板2の固有振動数fはその割合が定量的に把握
できる。上述したように、仕切板2の固有振動数
f、ひいては固定子枠の固有振動数f′は容易に75
Hz近辺に設定可能である。
f=1/π・(9/5) 1/2・(E・g/γ・I/Ar 4
) 1/2 ...(2) Therefore, the natural frequency f of the partition plate 2 can be calculated at the time of design using the above formula (2), and in the present invention, although the hole 5 is provided in the partition plate 2, As shown in FIG. 5, the ratio of the natural frequency f of the partition plate 2 can be quantitatively determined by the area, number, and arrangement of the holes 5. As mentioned above, the natural frequency f of the partition plate 2 and, by extension, the natural frequency f' of the stator frame can be easily reduced to 75
It can be set around Hz.

ところで、固定子枠内の各々両側の仕切板2と
固定子枠1と固定子鉄心3によつて形成された環
状なる空間は、第2図に示すような固定子枠内を
循環する冷却媒体の循環路7で、高圧室7aと低
圧室7bに分類される。高圧室7aは図示してな
い回転子に装備された、図示してないフアンによ
つて、高圧にされた冷却媒体が送りこまれる。低
圧室7bは固定子鉄心3から排出された低圧の冷
却媒体が送りこまれる。
Incidentally, the annular space formed by the partition plates 2 on both sides of the stator frame, the stator frame 1, and the stator core 3 is a space where a cooling medium circulates within the stator frame as shown in FIG. The circulation path 7 is classified into a high pressure chamber 7a and a low pressure chamber 7b. A high-pressure cooling medium is fed into the high-pressure chamber 7a by a fan (not shown) mounted on a rotor (not shown). A low-pressure cooling medium discharged from the stator core 3 is fed into the low-pressure chamber 7b.

次に冷却媒体の流通路6について述べる。75Hz
近辺に固有振動数を設定した仕切板2に設けられ
た長円状の孔5には、仕切板2に比して剛性が無
視できる材質で、断面が長円状の管が挿通され、
冷却媒体の流通路6を形成し、第3図に示すよう
に、供給管6aと、回収管6bと、バランス管6
cとに分類されている。供給管6aは、図示して
ない回転子に装備された図示してないフアンによ
つて高圧にされた冷却媒体を、前述の高圧室7a
に送りこむためのものである。回収管6bは、低
圧室7bの低圧で、暖められた冷却媒体を冷却器
8に送りこむためのものである。バランス管6c
は、原動機に対し直結側と反直結側の高圧室7a
間を連通する高圧バランス管6c1と、原動機に対
し直結側と反直結側の低圧室7b間を連通する低
圧バランス管6c2とに構成されて、これらは冷却
媒体の圧力の不均衡を解消する。
Next, the cooling medium flow path 6 will be described. 75Hz
A tube made of a material whose rigidity is negligible compared to the partition plate 2 and having an oval cross section is inserted into the oval hole 5 provided in the partition plate 2 with a natural frequency set in the vicinity.
A cooling medium flow path 6 is formed, and as shown in FIG. 3, a supply pipe 6a, a recovery pipe 6b, and a balance pipe 6.
It is classified as c. The supply pipe 6a supplies the cooling medium made to high pressure by a fan (not shown) installed on a rotor (not shown) to the high pressure chamber 7a.
It is intended for sending to. The recovery pipe 6b is for sending the coolant warmed under low pressure in the low pressure chamber 7b to the cooler 8. balance tube 6c
are the high pressure chambers 7a on the direct connection side and the non-direct connection side with respect to the prime mover.
A high-pressure balance pipe 6c 1 communicates between the two, and a low-pressure balance pipe 6c 2 communicates between the low-pressure chambers 7b on the direct-coupled side and the non-direct-coupled side with respect to the prime mover. do.

尚、固定子鉄心3の端部近傍では、固定子鉄心
3の内部から排気される冷却媒体の量が多いの
で、低圧室7bを2つ隣接して設けている。ま
た、冷却媒体が容易に冷却器8に流入するよう
に、冷却器8に近接する仕切板2の孔5には管を
挿通せず、従つて流通路6は設けていない。
In addition, near the end of the stator core 3, since the amount of cooling medium exhausted from the inside of the stator core 3 is large, two low pressure chambers 7b are provided adjacent to each other. Furthermore, in order to allow the cooling medium to easily flow into the cooler 8, no pipes are inserted into the holes 5 of the partition plate 2 adjacent to the cooler 8, and therefore no flow passages 6 are provided.

冷却媒体の流通経路は、第2図及び第3図に示
すように、図示してない回転子に装備された、図
示してないフアンにより高圧にされた冷却媒体
は、仕切板2の孔に挿通された管により形成され
た供給管6aを介して、固定子内の高圧室7aに
入り、高圧室7a内で循環しながら、固定子鉄心
3の図示しない溝に流入し固定子鉄心を冷却す
る。この冷却媒体は、上記固定子鉄心3の図示し
ない溝及び図示しない回転子と固定子鉄心3間の
ギヤツプを通過し、低圧室7bに入る。低圧室7
bの暖められた低圧の冷却媒体は、回収管6bを
介して、もしくは、直接仕切板2の孔5を介し
て、冷却器8に流入する。また、機内の部位によ
つて高圧室7a及び低圧室7bの冷却媒体の圧力
は異なるが、バランス管6cによつて、相互に冷
却媒体が流入、流出するので、均一な風量分布と
なる。
As shown in FIGS. 2 and 3, the cooling medium is brought to a high pressure by a fan (not shown) installed on a rotor (not shown), and the cooling medium flows through the holes in the partition plate 2. It enters the high pressure chamber 7a in the stator through the supply pipe 6a formed by the inserted tube, and while circulating within the high pressure chamber 7a, it flows into the groove (not shown) in the stator core 3 and cools the stator core. do. This cooling medium passes through a groove (not shown) in the stator core 3 and a gap (not shown) between the rotor and the stator core 3, and enters the low pressure chamber 7b. Low pressure chamber 7
The warmed low-pressure cooling medium b flows into the cooler 8 via the recovery pipe 6b or directly via the hole 5 of the partition plate 2. Furthermore, although the pressure of the cooling medium in the high pressure chamber 7a and the low pressure chamber 7b differs depending on the location within the machine, the balance pipe 6c allows the cooling medium to flow in and out of each other, resulting in a uniform air volume distribution.

このような構成によると、固定子鉄心3の強制
振動と共振することがない仕切板2と固定子枠1
とすることができる。また、供給管6aと回収管
6bとバランス管6cとにより、効率のよい冷却
が可能となり、原動機に対し直結側と反直結の高
圧室7a間及び低圧室7b間の冷却媒体の圧力の
不均衡を解消出来、もつて原動機に対し直結側と
反直結側の通風量の不均衡及び温度上昇の差異を
解消し、機内の最高温度を抑制することが可能と
なる。
According to such a configuration, the partition plate 2 and the stator frame 1 do not resonate with the forced vibration of the stator core 3.
It can be done. In addition, the supply pipe 6a, the recovery pipe 6b, and the balance pipe 6c enable efficient cooling, resulting in an imbalance in the pressure of the cooling medium between the high-pressure chamber 7a and the low-pressure chamber 7b, which are directly connected to the prime mover and oppositely connected to the prime mover. This makes it possible to eliminate the imbalance in the amount of ventilation and the difference in temperature rise between the direct-coupled side and the non-direct-coupled side of the prime mover, thereby making it possible to suppress the maximum temperature inside the machine.

第4図は本発明の他の実施例を示すもので、各
高圧室7aへの冷却媒体の供給を、原動機に対
し、直結側と反直結側の双方から行ない、且つ各
低圧室7bからの冷却媒体の回収を、原動機に対
し直結側と反直結側の双方から行なうように、供
給管6aと、回収管6bと、バランス管6c(第
4図においては低圧バランス管6c2)を構成して
いる。
FIG. 4 shows another embodiment of the present invention, in which the cooling medium is supplied to each high pressure chamber 7a from both the direct connection side and the non-direct connection side of the prime mover, and the cooling medium is supplied to each high pressure chamber 7a from each low pressure chamber 7b. The supply pipe 6a, the recovery pipe 6b, and the balance pipe 6c (low-pressure balance pipe 6c 2 in FIG. 4) are configured so that the cooling medium is recovered from both the direct connection side and the non-direct connection side of the prime mover. ing.

また、各仕切板2の固有振動数は略同一にしつ
つ、固定子鉄心3の両端部の近傍の仕切板2の孔
5の形状及び配置を、冷却媒体が冷却器8により
流入し易い構造としてもよい。また各仕切板2に
孔5の代わりに切欠きを設けて、この切欠きに管
を挿通した構成としてもよい。その他本発明の要
旨を変更しない範囲で変形して実施できる。
In addition, while making the natural frequencies of each partition plate 2 substantially the same, the shape and arrangement of the holes 5 of the partition plate 2 near both ends of the stator core 3 are designed so that the cooling medium can easily flow into the cooler 8. Good too. Further, each partition plate 2 may have a notch instead of the hole 5, and a tube may be inserted through the notch. Other modifications can be made without changing the gist of the invention.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、固定子鉄心の強制
振動に共振することが無く、且つ外形寸法が小さ
い固定子枠を備え、内部における局部的な温度上
昇を抑制し得る回転電機が提供できる。
According to the present invention described above, it is possible to provide a rotating electrical machine that does not resonate with the forced vibration of the stator core, has a stator frame with small external dimensions, and can suppress local temperature rises inside.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例である回転電機の
固定子を正面から見た一部断面図、第2図は第1
図のA−A′線断面を図示矢視方向から見た断面
図、第3図は第2図のB−B′線に沿つた固定子
枠の展開図、第4図は本発明の他の実施例による
固定子枠の展開図、第5図は仕切板に占める孔の
割合と仕切板の固有振動数の関係を示す曲線図で
ある。 1……固定子枠、2……仕切板、3……固定子
鉄心、4……水平ばね、5……孔、6……流通
管、6a……供給管、6b……回収管、6c……
バランス管、7……循環路、7a……高圧室、7
b……低圧室、8……冷却器。
FIG. 1 is a partial sectional view of a stator of a rotating electrical machine according to an embodiment of the present invention, viewed from the front, and FIG.
3 is a developed view of the stator frame taken along line BB' in FIG. 2, and FIG. FIG. 5 is a developed view of the stator frame according to the embodiment, and FIG. 5 is a curve diagram showing the relationship between the proportion of holes in the partition plate and the natural frequency of the partition plate. 1... Stator frame, 2... Partition plate, 3... Stator core, 4... Horizontal spring, 5... Hole, 6... Distribution pipe, 6a... Supply pipe, 6b... Recovery pipe, 6c ……
Balance pipe, 7...Circulation path, 7a...High pressure chamber, 7
b...Low pressure chamber, 8...Cooler.

Claims (1)

【特許請求の範囲】[Claims] 1 固定子枠の回転子軸方向の内周に複数個離間
して配設される固定子鉄心を支持する仕切板に、
複数個の孔又は切欠きを設けて、前記固定子鉄心
に作用する強制振動の振動数よりも低値の固有振
動数を持たせ、この各仕切板間が、低温・高圧の
冷却媒体が前記固定子枠の内周面を循環する高圧
室と、高温・低圧の冷却媒体が前記固定子枠の内
周面を循環する低圧室とを形成した回転電機にお
いて、前記各仕切板の孔又は切欠きに、仕切板と
比較して剛性が小さい材質の管を挿通し、この管
が、冷却媒体を前記高圧室に供給する供給管と、
冷却媒体を前記低圧室から回収する回収管と、冷
却媒体を前記高圧室間にあつて連通させる高圧バ
ランス管と、冷却媒体を前記低圧室間にあつて連
通させる低圧バランス管とに構成されたことを特
徴とする回転電機。
1 A plurality of partition plates supporting the stator core are arranged at intervals on the inner periphery of the stator frame in the rotor axial direction,
A plurality of holes or notches are provided so as to have a natural frequency lower than the frequency of forced vibration acting on the stator core, and a low-temperature, high-pressure cooling medium is provided between each partition plate. In a rotating electrical machine that has a high pressure chamber that circulates around the inner circumferential surface of the stator frame and a low pressure chamber that circulates a high-temperature, low-pressure cooling medium around the inner circumferential surface of the stator frame, holes or cuts in each of the partition plates are provided. A supply pipe, in which a pipe made of a material having lower rigidity than the partition plate is inserted into the notch, and this pipe supplies the cooling medium to the high pressure chamber;
The cooling medium is configured to include a recovery pipe for recovering the cooling medium from the low pressure chamber, a high pressure balance pipe for communicating the cooling medium between the high pressure chambers, and a low pressure balance pipe for communicating the cooling medium between the low pressure chambers. A rotating electric machine characterized by:
JP57027809A 1982-02-23 1982-02-23 Rotary electric machine Granted JPS58144549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57027809A JPS58144549A (en) 1982-02-23 1982-02-23 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57027809A JPS58144549A (en) 1982-02-23 1982-02-23 Rotary electric machine

Publications (2)

Publication Number Publication Date
JPS58144549A JPS58144549A (en) 1983-08-27
JPH0159826B2 true JPH0159826B2 (en) 1989-12-19

Family

ID=12231298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57027809A Granted JPS58144549A (en) 1982-02-23 1982-02-23 Rotary electric machine

Country Status (1)

Country Link
JP (1) JPS58144549A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19526689A1 (en) * 1995-07-21 1997-01-23 Abb Management Ag Tube generator
US6471392B1 (en) 2001-03-07 2002-10-29 Holl Technologies Company Methods and apparatus for materials processing
US6742774B2 (en) 1999-07-02 2004-06-01 Holl Technologies Company Process for high shear gas-liquid reactions
US20030066624A1 (en) * 2001-09-13 2003-04-10 Holl Richard A. Methods and apparatus for transfer of heat energy between a body surface and heat transfer fluid
US7098360B2 (en) 2002-07-16 2006-08-29 Kreido Laboratories Processes employing multiple successive chemical reaction process steps and apparatus therefore
JP4947740B2 (en) * 2009-10-02 2012-06-06 株式会社セイワ Core support device
CN108718130A (en) * 2018-06-22 2018-10-30 安徽知之信息科技有限公司 One kind is around tubular type New energy automobile motor shell
CN111769685A (en) 2020-06-30 2020-10-13 精进电动科技股份有限公司 Motor casing structure

Also Published As

Publication number Publication date
JPS58144549A (en) 1983-08-27

Similar Documents

Publication Publication Date Title
RU2179778C2 (en) Axle generator
SU1412604A3 (en) Dynamoelectric machine with horizontal shaft
JPH10146022A (en) Electric machine cooled with gas
US5602435A (en) Gas-cooled electrical machine
US4546279A (en) Dynamoelectric machine with rotor ventilation system including exhaust coolant gas diffuser and noise baffle
JPH0159826B2 (en)
US20110266895A1 (en) Rotating electrical machine
US3502920A (en) Electrical machine incorporating gas bearings
US3714478A (en) Gas cooled dynamoelectric machine
JP2001258195A (en) Nonmetallic structure of rotor casing
JP3556273B2 (en) Horizontal axis electric machine
US3441758A (en) Dynamoelectric machine cooling arrangement
JPH09285052A (en) Dynamo-electric machine
JPH05304742A (en) Stator of electric rotary machine
US2199156A (en) Dynamoelectric machine
KR102415383B1 (en) Rotating electric machine
JPS6343977B2 (en)
KR20210026599A (en) Generator
WO2020158389A1 (en) Dynamo-electric machine
US2217431A (en) Totally enclosed dynamoelectric machine
USRE22161E (en) Dynamoelectric machine
JPH083171Y2 (en) Rotating electric machine
GB660942A (en) Improvements in and relating to dynamoelectric machines
SU1092665A1 (en) Salient-pole electric machine
JPS62213554A (en) Rotor of superconducting rotary electric machine