JPH0158241B2 - - Google Patents

Info

Publication number
JPH0158241B2
JPH0158241B2 JP59148626A JP14862684A JPH0158241B2 JP H0158241 B2 JPH0158241 B2 JP H0158241B2 JP 59148626 A JP59148626 A JP 59148626A JP 14862684 A JP14862684 A JP 14862684A JP H0158241 B2 JPH0158241 B2 JP H0158241B2
Authority
JP
Japan
Prior art keywords
powder
sus
less
precipitation hardening
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59148626A
Other languages
Japanese (ja)
Other versions
JPS6130601A (en
Inventor
Yukio Tokuyama
Tetsuo Myazaki
Yoshihito Kamata
Masabumi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP59148626A priority Critical patent/JPS6130601A/en
Publication of JPS6130601A publication Critical patent/JPS6130601A/en
Publication of JPH0158241B2 publication Critical patent/JPH0158241B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、圧縮性に優れた析出硬化型ステンレ
ス鋼粉末に関するものである。 従来の技術 従来、硬さと、耐食性とを要求される焼結ステ
ンレス鋼の分野においては、一般的には、GIS
G 4303によつて規定されているSUS 631(17−
4PH)(C 0.05%、Cr 17%、Ni 4%、Cu 4
%、残部 Fe)のプレアロイ粉末が使用されて
いる。 しかしながら、このような化学成分を有するプ
レアロイ粉末は、 (1) 粉末自体の組織がマルテンサイトであり、硬
いために、冷間成型時のグリーン密度が低いこ
と (2) 通常の焼結温度(1300℃以下)においては、
液相の発生が認められず、高焼結密度を得るこ
とができないこと などの問題点があつた。 発明が解決しようとする問題点 そこで、本発明は、冷間時の圧縮性に優れ且つ
通常の焼結法により高密度が得られる析出硬化型
ステンレス鋼粉末を得ることを、その目的とする
ものである。 問題点を解決するための手段 本発明は、この目的を達成するために、軟かい
オーステナイト組織を有し、圧縮性に優れたJIS
G 4303によるSUS 304L、又はSUS 316Lの粉
末と、同様に軟かいフエライト組織を持ち、圧縮
性に優れたSUS 410Lの微粉末と、低融点の電解
銅粉末とを、最終組成においてマルテンサイト型
析出硬化組成となるような配合率でブレンドし、
必要に応じて拡散接合した析出硬化型ステンレス
鋼粉末を特徴とするものである。なお、この拡散
接合をする場合には、拡散接合の処理後の各成分
が上記所定の成分量含まれている必要がある。 この発明の鋼粉末は、冷間成型において高いグ
リーン密度が得られ、さらに1200〜1300℃におい
て焼結すれば、SUS 410Lの微粉末の有効な固相
拡散と、低融点の電解銅粉末の液相効果により、
均質で高密度の焼結体を得ることができる。 実施例 以下、本発明をその実施例などに基づいて、詳
細に説明する。 まず、本発明は、上記のように、JIS G 4303
によるSUS 410Lの粉末20〜60%、電解銅粉末1.5
〜5.0%、残部がJIS G 4303によるSUS 304Lの
粉末を、最終組成がマルテンサイト型析出硬化組
成となるように、C 0.10%以下、Si 1.2%以下、
Mn 0.4%以下、Cr 14〜17%、Ni 3.5〜7.5%、
Cu 1.5〜5.0%、残部 Feから成るようにブレン
ドし、必要により拡散接合したことを特徴とする
圧縮性に優れた析出硬化型ステンレス鋼粉末、又
は、JIS G 4303によるSUS 410Lの粉末20〜60
%、電解銅の粉末1.5〜5.0%、残部がJIS G4303
によるSUS 316Lの粉末を、最終組成がマルテン
サイト型析出硬化組成となるように、C 0.10%
以下、Si 1.2%以下、Mn 0.4%以下、Cr 14〜17
%、Ni 3.5〜7.5%、Mo 0.5〜1.6%、Cu 1.5〜
5.0%、残部Feから成るようにブレンドし、必要
により拡散接合したことを特徴とする圧縮性に優
れた析出硬化型ステンレス鋼粉末を特徴とするも
のである。なお、SUS 410Lの粉末は粒径が350
メツシユ以下、または20μm以下、SUS 304Lの
の粉末は粒径が100メツシユ以下のものが好まし
い。 なお、本発明の析出硬化型ステンレス鋼粉末
は、プレス成型、真空焼結、焼き入れ、析出硬化
の各処理を施すことによつて焼結体となし得るも
のである。 次ぎに、本発明の実施例を説明する。 まず、表1に示すような組成を有するSUS
316L、SUS 304L、SUS 410L及びCuの各粉末
を、表2に示すような配合率によりブレンドおよ
びブレンド後拡散接合し、それぞれ、同表に示す
ような、配合後の組成を有する試料A、B、C及
びDを調製した。なお、この場合、拡散接合は、
還元又は真空雰囲気中において800゜〜1000℃で行
つた。また、従来材として、同表に示すように、
17−4PHプレアロイ粉末も調製したが、その組
成は、同表に示すとおりであつた。表2から分か
るように、本発明による析出型ステンレス鋼粉末
は、その最終組成は、マルテンサイト型析出硬化
組成となつているが、本発明鋼粉末の各試料A、
B、C、D及び比較試料とに、潤滑剤として1%
ステアリン酸亜鉛を添加し、6t/cm2の圧力の下に
プレス成型し、1200゜〜1300℃において真空焼結
し、焼き入れし更に、析出硬化処理を施したもの
についての試験結果が、表3に示されている。 表3から分かるように、本発明による析出硬化
型ステンレス鋼粉末を成型、焼結、析出硬化処理
を施した焼結体は、比較試料に比べ、冷間成型時
のグリーン密度、焼結密度が大きいだけではな
く、硬度も高く、無論、耐食性にも優れている。
INDUSTRIAL APPLICATION FIELD The present invention relates to precipitation hardening stainless steel powder with excellent compressibility. Conventional technology In the field of sintered stainless steel, which requires hardness and corrosion resistance, GIS has generally been used.
SUS 631 (17-
4PH) (C 0.05%, Cr 17%, Ni 4%, Cu 4
%, balance Fe) is used. However, pre-alloyed powders with such chemical components suffer from the following problems: (1) The structure of the powder itself is martensite, which is hard, resulting in a low green density during cold molding. ℃ or below),
There were problems such as no liquid phase was observed and high sintered density could not be obtained. Problems to be Solved by the Invention Therefore, an object of the present invention is to obtain a precipitation-hardening stainless steel powder that has excellent cold compressibility and can obtain high density by ordinary sintering. It is. Means for Solving the Problems In order to achieve this object, the present invention has developed a JIS material having a soft austenite structure and excellent compressibility.
SUS 304L or SUS 316L powder produced by G 4303, SUS 410L fine powder that also has a soft ferrite structure and excellent compressibility, and low melting point electrolytic copper powder are combined into martensitic precipitation in the final composition. Blend at a blending ratio that will result in a cured composition,
It features precipitation-hardened stainless steel powder that is optionally diffusion bonded. In addition, when performing this diffusion bonding, it is necessary that each component after the diffusion bonding process is contained in the above-mentioned predetermined amount. The steel powder of this invention has a high green density when cold formed, and when sintered at 1200 to 1300℃, effective solid phase diffusion of SUS 410L fine powder and liquid state of low melting point electrolytic copper powder can be achieved. Due to the phase effect,
A homogeneous and high-density sintered body can be obtained. Examples Hereinafter, the present invention will be described in detail based on examples thereof. First, as mentioned above, the present invention complies with JIS G 4303
SUS 410L powder 20~60%, electrolytic copper powder 1.5% by
~5.0%, the balance is SUS 304L powder according to JIS G 4303, C 0.10% or less, Si 1.2% or less, so that the final composition is a martensitic precipitation hardening composition.
Mn 0.4% or less, Cr 14-17%, Ni 3.5-7.5%,
Precipitation hardening stainless steel powder with excellent compressibility characterized by blending 1.5 to 5.0% Cu and the balance Fe and diffusion bonding if necessary, or SUS 410L powder 20 to 60 according to JIS G 4303.
%, electrolytic copper powder 1.5-5.0%, the balance is JIS G4303
SUS 316L powder was mixed with C 0.10% so that the final composition was a martensitic precipitation hardening composition.
Below, Si 1.2% or less, Mn 0.4% or less, Cr 14-17
%, Ni 3.5~7.5%, Mo 0.5~1.6%, Cu 1.5~
It is characterized by a precipitation-hardening stainless steel powder with excellent compressibility, which is blended so that it consists of 5.0% and the balance Fe, and is diffusion bonded if necessary. In addition, the particle size of SUS 410L powder is 350
The particle size of the SUS 304L powder is preferably 100 mesh or less, or 20 μm or less. The precipitation hardening stainless steel powder of the present invention can be made into a sintered body by subjecting it to press molding, vacuum sintering, quenching, and precipitation hardening. Next, examples of the present invention will be described. First, SUS with the composition shown in Table 1
316L, SUS 304L, SUS 410L, and Cu powders were blended and blended and then diffusion bonded using the blending ratios shown in Table 2 to produce samples A and B, each having the composition after blending as shown in the same table. , C and D were prepared. In this case, diffusion bonding is
It was carried out at 800° to 1000°C in a reducing or vacuum atmosphere. In addition, as shown in the same table, as conventional materials,
A 17-4PH prealloy powder was also prepared, and its composition was as shown in the same table. As can be seen from Table 2, the final composition of the precipitation-type stainless steel powder according to the present invention is a martensitic precipitation-hardening composition, but each sample A of the steel powder according to the present invention,
1% as a lubricant to B, C, D and comparative samples.
The test results for products added with zinc stearate, press-molded under a pressure of 6t/ cm2 , vacuum sintered at 1200° to 1300°C, quenched, and subjected to precipitation hardening treatment are shown in the table below. 3. As can be seen from Table 3, the sintered body obtained by molding, sintering, and precipitation hardening the precipitation hardening stainless steel powder according to the present invention has a green density and a sintered density during cold forming compared to the comparative sample. Not only is it large, but it also has high hardness and, of course, excellent corrosion resistance.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 以上のように、本発明による析出硬化型ステン
レス鋼粉末から作られる焼結体は、冷間成型時の
グリーン密度および焼結後の焼結密度が高いの
で、例えば、腕時計のケース、内燃機関用耐熱耐
摩部品などの素材として、最適のものである。
[Table] Effects of the Invention As described above, the sintered body made from the precipitation hardening stainless steel powder according to the present invention has a high green density during cold molding and a high sintered density after sintering, so it can be used, for example, in wristwatches. It is ideal as a material for cases, heat-resistant and wear-resistant parts for internal combustion engines, etc.

Claims (1)

【特許請求の範囲】 1 JIS G 4303によるSUS 410Lの粉末20〜60
%、電解銅粉末1.5〜5.0%、残部がJIS G 4303
によるSUS 304Lの粉末を、最終組成がマルテン
サイト型析出硬化組成となるように、C 0.10%
以下、Si 1.2%以下、Mn 0.4%以下、Cr 14〜17
%、Ni 3.5〜7.5%、Cu 1.5〜5.0%、残部Feから
成るようにブレンドしたことを特徴とする圧縮性
に優れた析出硬化型ステンレス鋼粉末。 2 ブレンド後の各粉末を、還元、又は、真空雰
囲気中において、800゜〜1200℃において拡散接合
した特許請求の範囲第1項記載の圧縮性に優れた
析出硬化型ステンレス鋼粉末。 3 JIS G 4303によるSUS 410Lの粉末20〜60
%、電解銅の粉末1.5〜5.0%、残部がJIS G
4303によるSUS 316Lの粉末を、最終組成がマル
テンサイト型析出硬化組成となるように、C
0.10%以下、Si 1.2%以下、Mn 0.4%以下、Cr
14〜17%、Ni 3.5〜7.5%、Mo 0.5〜1.6%、Cu
1.5〜5.0%、残部Feから成るようにブレンドした
ことを特徴がとする圧縮性に優れた析出硬化型ス
テンレス鋼粉末。 4 ブレンド後の各粉末を、還元、又は、真空雰
囲気中において、800゜〜1200℃において拡散接合
した特許請求の範囲第3項記載の圧縮性に優れた
析出硬化型ステンレス鋼粉末。
[Claims] 1 SUS 410L powder 20 to 60 according to JIS G 4303
%, electrolytic copper powder 1.5-5.0%, the balance JIS G 4303
SUS 304L powder was mixed with C 0.10% so that the final composition was a martensitic precipitation hardening composition.
Below, Si 1.2% or less, Mn 0.4% or less, Cr 14-17
%, Ni 3.5 to 7.5%, Cu 1.5 to 5.0%, and the balance Fe. 2. Precipitation hardening stainless steel powder with excellent compressibility as claimed in claim 1, wherein the blended powders are reduced or diffusion bonded at 800° to 1200°C in a vacuum atmosphere. 3 SUS 410L powder 20-60 according to JIS G 4303
%, electrolytic copper powder 1.5-5.0%, the balance is JIS G
SUS 316L powder produced by 4303 was treated with C so that the final composition became a martensitic precipitation hardening composition.
0.10% or less, Si 1.2% or less, Mn 0.4% or less, Cr
14-17%, Ni 3.5-7.5%, Mo 0.5-1.6%, Cu
Precipitation hardening stainless steel powder with excellent compressibility, characterized by being blended to consist of 1.5 to 5.0% Fe with the balance being Fe. 4. Precipitation hardening stainless steel powder with excellent compressibility according to claim 3, wherein the blended powders are reduced or diffusion bonded at 800° to 1200°C in a vacuum atmosphere.
JP59148626A 1984-07-19 1984-07-19 Deposition hardening type stainless steel powder having excellent compressibility and sintered body thereof Granted JPS6130601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59148626A JPS6130601A (en) 1984-07-19 1984-07-19 Deposition hardening type stainless steel powder having excellent compressibility and sintered body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59148626A JPS6130601A (en) 1984-07-19 1984-07-19 Deposition hardening type stainless steel powder having excellent compressibility and sintered body thereof

Publications (2)

Publication Number Publication Date
JPS6130601A JPS6130601A (en) 1986-02-12
JPH0158241B2 true JPH0158241B2 (en) 1989-12-11

Family

ID=15456989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59148626A Granted JPS6130601A (en) 1984-07-19 1984-07-19 Deposition hardening type stainless steel powder having excellent compressibility and sintered body thereof

Country Status (1)

Country Link
JP (1) JPS6130601A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257606A (en) * 1988-08-20 1990-02-27 Kawasaki Steel Corp Stainless steel fine powder and sintering material
JPH04259351A (en) * 1991-02-14 1992-09-14 Nissan Motor Co Ltd Manufacture of wear resistant ferrous sintered alloy
JP5446237B2 (en) * 2008-12-11 2014-03-19 株式会社ダイヤメット Manufacturing method of sintered stainless steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429285A (en) * 1977-08-08 1979-03-05 Kanagawa Prefecture Method of etching material for craftwork

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429285A (en) * 1977-08-08 1979-03-05 Kanagawa Prefecture Method of etching material for craftwork

Also Published As

Publication number Publication date
JPS6130601A (en) 1986-02-12

Similar Documents

Publication Publication Date Title
JPS63223142A (en) Fe based sintered alloy for valve seat of internal combustion engine
CA2143015C (en) Alloy steel powders, sintered bodies and method
JP3853362B2 (en) Manganese-containing material with high tensile strength
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JPH0158241B2 (en)
EP0274542B1 (en) Alloy steel powder for powder metallurgy
JP3765633B2 (en) High density sintered alloy material and manufacturing method thereof
EP0226625A1 (en) Sintered alloys based on high-speed steels
JP2704064B2 (en) Iron-based powder for sintering and method for producing the same
JPH0158242B2 (en)
JPH05507967A (en) Iron-based powder, parts manufactured with it, and method for manufacturing this part
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS58130249A (en) Manufacture of high-strength sintered parts
JPH0114985B2 (en)
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JPS61117202A (en) Low alloy iron powder for sintering
JPS61183444A (en) High strength sintered alloy and its manufacture
JPH101756A (en) Ferrous sintered sliding member and its production
JP3314596B2 (en) Iron-based sintered alloy with excellent fatigue strength
Maslyuk et al. Tools for Improving PM: Structure and Properties of Powder Structural Steels Alloyed with Manganese
JPH0277553A (en) Production of sintered material
JPH0874008A (en) Fe-base sintered alloy excellent in toughness
JPS61139602A (en) Manufacture of low-alloy iron powder
Kravic et al. The Effect of Heat-Treatment and Copper Content on the Mechanical Properties of Some Nickel Alloy Steels Sintered at 1320° C
JPH0459361B2 (en)