JPH0158202B2 - - Google Patents

Info

Publication number
JPH0158202B2
JPH0158202B2 JP5864579A JP5864579A JPH0158202B2 JP H0158202 B2 JPH0158202 B2 JP H0158202B2 JP 5864579 A JP5864579 A JP 5864579A JP 5864579 A JP5864579 A JP 5864579A JP H0158202 B2 JPH0158202 B2 JP H0158202B2
Authority
JP
Japan
Prior art keywords
polymerization
solvent
zeolite
hexane
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5864579A
Other languages
Japanese (ja)
Other versions
JPS55151003A (en
Inventor
Yozo Yamamoto
Hidekuni Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP5864579A priority Critical patent/JPS55151003A/en
Publication of JPS55151003A publication Critical patent/JPS55151003A/en
Publication of JPH0158202B2 publication Critical patent/JPH0158202B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、オレフむン重合溶媒の粟補方法に関
する。さらに詳しくは、オレフむン重合に悪圱響
を及がす䞍玔物を重合溶媒から陀去するに奜適な
方法に関する。 觊媒および溶媒の存圚䞋にオレフむン重合する
方法は数倚く知られおいる。重合液からオレフむ
ン重合䜓を分離し、あるいは觊媒を分解しお回収
される溶媒は、再び重合に䜿甚されるこずが倚
い。ずころがこのような䞀床重合に䜿甚した溶媒
を甚いおオレフむン重合を行぀おも、期埅通りの
重合掻性が埗られないこずがある。これは重合時
における副生成物、觊媒分解生成物、觊媒分解に
䜿甚される詊剀、䟋えばアルコヌル、カルボン
酞、キレヌト化合物など、あるいは重合時や埌凊
理時における溶媒の酞化や熱劣化などによる生成
物など皮々の䞍玔物が含たれおくるためず想定さ
れる。このような䞍玔物は、氎掗、蒞留、脱氎な
ど皮々の粟補手段を組み合わせるこずによりある
皋床陀去が可胜であり、したが぀お粟補の皋床に
応じ、溶媒の再䜿甚を行぀おも重合掻性の著しい
䜎䞋は防止できる。しかしその皋床は充分ではな
く、繰り返し䜿甚するにしたが぀お、぀いには重
合掻性が満足し埗ない氎準にたで䜎䞋しおくる。 近幎重合觊媒の高掻性化技術の進歩が著しい
が、このような高掻性觊媒は非垞に少量の䜿甚で
すむずいう倧きな特長を有しおいる反面、少量䜿
甚ずいうこずに関連しおずりわけ溶媒䞭の䞍玔物
の圱響が倧きくでやすく、前蚘した溶媒再䜿甚に
おける䞍利益を被り易い。䞍玔物の圱響による重
合掻性の䜎䞋は、高掻性觊媒の利点を損ない、觊
媒消費量の増倧を招くのみならず、重合䜓の組成
や分子量等の倉動をも惹き起こし、ひいおは補品
の品質管理を困難にするのである。したが぀お埓
来のような粟補方法で完党に陀去するこずができ
なか぀た埮量の重合阻害䞍玔物を、より䞀局陀去
するこずが望たれた。そこで本発明者等は、この
ような課題を解決すべく鋭意怜蚎を行぀た結果、
オレフむン重合溶媒の粟補に非垞に有効な方法を
芋い出すに至぀た。すなわち本発明によれば、炭
化氎玠からなるオレフむン重合溶媒を、遷移金属
むオンでむオン亀換したれオラむトで凊理するこ
ずを特城ずする溶媒の粟補方法が提䟛される。 溶媒䞭の脱氎を目的ずしお、あるいは溶媒䞭の
アルキルハラむドを陀去する目的でれオラむトを
䜿甚するこずはすでに知られおいる䟋えば特開
昭51−20791号など。しかしながらこのような通
垞のれオラむト凊理による粟補方法によ぀おも、
オレフむン重合の掻性䜎䞋防止効果は充分でない
のに察し、れオラむトの金属むオンを遷移金属む
オンで眮換するこずによ぀お粟補効果に顕著な改
善が認められる。 本発明においおは、遷移金属むオンでむオン亀
換したれオラむトが溶媒凊理剀ずしお甚いられ
る。むオン亀換に䟛せられるれオラむトずしお
は、䟋えば、モレキナラヌシヌブ
などの商品名で知られるれオ
ラむト、型れオラむトなどの合成れオラむト、
ホりフツ石、シダバサむト、モルデナむト等の倩
然れオラむトなどを䟋瀺するこずができる。これ
られオラむトに察しおむオン亀換すべき遷移金属
むオンずしおは、チタン、バナゞりム、クロム、
マンガン、鉄、コバルト、ニツケル、銅、亜鉛、
むツトリりム、ゞルコニりム、ニオブ、モリブデ
ン、ルテニりム、ロゞりム、パラゞりム、銀、カ
ドミりム、ランタン、セリりム、ネオゞりム、プ
ロメチりム、サマリりム、コヌロピりム、タンタ
ル、タングステン、レニりム、オスミりム、むリ
ゞりム、癜金、金、氎銀、アクチニりム、トリり
ム、りラニりムなどの各むオンを䟋瀺するこずが
できる。これらの䞭では、ずくに呚期衚の第呚
期又は第族に属する元玠又は垌土類元玠のむオ
ンずりわけ呚期衚第呚期の元玠又は垌土類元玠
のむオンが奜たしい。 れオラむトの金属むオン、䞻ずしおアルカリ金
属むオンをこれら遷移金属むオンで眮換する方法
はすでに知られおおり、埓来教瀺の方法によ぀お
行うこずができる。䟋えば、氎掗や焌成などの前
凊理を斜したれオラむト又は前凊理を斜さないれ
オラむトを、遷移金属むオンを有する化合物の氎
溶液に浞挬しお加熱する。該氎溶液を取り替えお
䜕回か同様の操䜜を繰り返した埌、蒞留氎で掗浄
し、也燥、焌成すればよい。遷移金属むオンによ
る亀換率は任意であるが、通垞10ないし100、
ずくに20ないし100皋床が奜たしい。 遷移金属むオンでむオン亀換されたれオラむト
で粟補される溶媒は、炭化氎玠からなるオレフむ
ン重合溶媒である。このようなオレフむン重合溶
媒ずしおは、䟋えばブタン、ペンタン、ヘキサ
ン、ヘブタン、オクタン、デカン、ドデカン、灯
油のような脂肪族炭化氎玠、シクロペタン、メチ
ルシクロペタン、シクロヘキサン、メチルシクロ
ヘキサンなどの脂肪族炭化氎玠、ベンれン、トル
゚ン、キシレンのような芳銙族炭化氎玠などを䜿
甚するこずができる。たたオレフむン重合に䞀床
又は繰り返し䜿甚されたものを、オレフむン重合
に再䜿甚する堎合に凊理するずずくに効果的であ
る。オレフむン重合は䟋えばチヌグラヌ型觊媒、
フむリツプス型觊媒などを甚いお行われたもので
ある。より具䜓的にはチタン化合物、䟋えば䞉塩
化チタン、四塩化チタン、マグネシりム化合物に
担持されたチタン化合物などバナゞりム化合
物、䟋えば四塩化バナゞりム、オキシシ塩化バナ
ゞりム、バナゞりムアルコキシハラむドなどの
ような遷移金属化合物ず有機アルミニりム化合
物、䟋えばトリアルキルアルミニりム、アルキル
アルミニりハラむドなどを甚いおオレフむンの重
合に甚いる溶媒、あるいは該觊媒を甚いおオレフ
むンの重合に甚いた溶媒に適甚するこずができ
る。重合に䜿甚した溶媒に適甚する堎合、重合液
にアルコヌル等の觊媒分解剀を加えたり、たた氎
蒞気蒞留、氎掗、アルカリ掗浄、脱氎、蒞留など
の任意の操䜜を斜しお回収される溶媒に適甚する
こずができる。このようなオレフむン重合の䟋ず
しおぱチレン、プロピレン、―ブテン、―
ペンテン、―ヘキセン、―オクテン、―デ
セン、―メチル――ペンテンなどの重合又は
共重合、これらオレフむンずポリ゚ン、䟋えばブ
タゞ゚ン、む゜プレン、ピペリレン、―ヘ
キサゞ゚ン、―゚チリデン――ノルボネン、
―ビニル――ノルボルネン、ゞシクロペンタ
ゞ゚ンなどずの共重合などを䟋瀺するこずができ
る。 本発明においおは前述したような重合溶媒か
ら、オレフむン重合に悪圱響を及がす䞍玔物を陀
去する為に利甚できるばかりでなく、前述したよ
うな炭化氎玠、その他の炭化氎玠油䞭に含たれる
―SO3H、―COOH、―OH、―NH2、―SH、―
CHO、―、―COOR、――、――、
ハロゲン、䞍飜和結合等の官胜基を有する特定の
化合物を陀去する目的にも利甚するこずができ
る。 遷移金属むオンでむオン亀換したれオラむトで
溶媒を凊理するには、単に䞡者を接觊させればよ
い。該れオラむトは粉末状、フレヌク状、粒状な
ど皮々の圢態で䜿甚するこずができる。䟋えば回
分匏により溶媒䞭に該れオラむトを懞濁させ接觊
させる方法、該れオラむトを充填した充填局に溶
媒を連続的に通過させる連続凊理法などを採甚す
るこずができる。溶媒ず該れオラむトずの接觊枩
床は任意であるが、通垞は−50ないし150℃皋床
であるこずが奜たしい。たた接觊時間は担持した
金属の皮類、量、れオラむトの収甚量、溶媒䞭の
䞍玔物の皮類、量などによ぀おも異なるが、䟋え
ばれオラむト100を甚いお溶媒を凊理する
堎合、䞀般には0.1秒ないし時間皋床の接觊時
間で充分である。 繰り返し䜿甚しお該れオラむトの性胜が䜎䞋し
お来たずきは、窒玠ガス等の䞍掻性ガス雰囲気䞋
あるいは空気䞭で200ないし600℃皋床の枩床で加
熱焌成するこずにより容易に再生するこずができ
るので再䜿甚可胜である。 次に実斜䟋により説明する。 実斜䟋   重合及び埌凊理 撹拌翌を備えた15のステンレス補重合噚を
甚いお連続的にEPDMの重合反応を行぀た。
すなわち重合噚䞊郚から重合溶媒ずしおヘキサ
ンを毎時の速床で連続的に䟛絊する。䞀方
重合噚䞋郚から重合噚䞭の重合液が垞にに
なるように連続的に重合液を抜き出す。觊媒ず
しおバナゞりムオキシトリクロリドを重合噚䞭
の濃床が0.3mmolずなるように゚チルアル
ミニりムセスキクロリドを重合噚䞭の濃床が
2.4mmolずなるようにそれぞれ重合噚䞊郚
から重合噚䞭に連続的に䟛絊した。又重合噚䞊
郚から゚チレン、プロピレン、氎玠の混合ガス
゚チレン34モル、プロピレン56モル、氎
玠10モルを毎時500Nの速床で、ゞシク
ロペンタゞ゚ンを重合噚䞭の濃床が4.3
ずなるように䟛絊する。共重合反応は重合噚倖
郚にずり぀けられたゞダケツトに枩氎を埪環さ
せるこずにより35℃で行぀た。抜き出した重合
液は埌凊理系に送り連続的に凊理しEPDMを
埗た。すなわち脱モノマヌ塔で重合液䞭の未反
応のモノマヌガスを陀去した埌重合液に察
しメタノヌルを加え觊媒を倱掻させた。次にこ
の重合液をスチヌムストリツピング凊理し重合
液圓り52の割合でEPDMを埗た。すな
わちバナゞりム觊媒ミリモル圓りの重合䜓収
量は173であ぀た。又、重合䜓の物性ぱチ
レン含量70.2モル、沃玠䟡8.6、ムヌニヌ粘
床ML 100℃46であ぀た。  溶媒の回収 スチヌムストリツピングで重合䜓ず分離され
た溶媒は連続的に溶媒回収工皋に送り回収し
た。すなわち静眮ドラムで氎局ず油局に分離し
油局郚を連続的に抜き出し、蒞留塔で䜎沞点成
分ず高沞点成分を陀去しヘキサン留分を埗た。  回収ヘキサンでの重合 前蚘の操䜜により回収したヘキサンをモノキ
ナヌシヌブ4Aで脱氎した埌再䜿甚するず重合
掻性が䜎䞋した。すなわち埪環䜿甚開始時ず同
䞀の重合条件における重合収量はバナゞりム
ミリモル圓り83であり、゚チレン含量79.1モ
ル、沃玠䟡17.1、ムヌニヌ粘床103であ぀た。  溶媒粟補甚れオラむトの合成 ナニオンカヌバむド瀟補型れオラむト
SK―40のナトリりムむオンを第鉄むオン
で亀換し溶媒粟補甚れオラむトを合成した。す
なわち窒玠眮換した蒞留氎に塩化第鉄を溶解
させ20の塩化第鉄氎溶液を調補した。 窒玠雰囲気䞋、SK―40100に塩化第鉄氎
溶液の割で加え60℃で時間反応を行぀
た。 塩化第鉄氎溶液を新しいものに倉え同様の
操䜜を曎に回くり返した。 最埌に窒玠眮換した蒞留氎でれオラむトを掗
浄し窒玠雰囲気䞋500℃で時間焌成した。 鉄の亀換率はナトリりム基準で70.0であ぀
た。  溶媒の粟補 回収したヘキサン50に察し䞊蚘の溶媒粟補
甚れオラむトを100の割合で加え窒玠雰囲気
䞋日浞挬した。  粟補ヘキサンでの重合 䞊蚘の粟補ヘキサンを溶媒ずしお甚い前蚘条
件でEPDMの重合を行぀た。 重合䜓収量はバナゞりムミリモル圓り177
又重合䜓の物性ぱチレン含量70.5モル、
沃玠䟡8.5、ムヌニヌ粘床44であり重合掻性及
び重合䜓の物性ずも埪環䜿甚前のヘキサンず同
等であ぀た。 これはヘキサンが完党に粟補されたこずを瀺
しおいる。 実斜䟋 〜 実斜䟋においお型れオラむトを甚いる代り
に5A、10X、13X型れオラむトを甚いる以倖は同
様の操䜜をくり返した。 結果を衚に瀺す。
The present invention relates to a method for purifying an olefin polymerization solvent. More specifically, the present invention relates to a method suitable for removing impurities that adversely affect olefin polymerization from a polymerization solvent. Many methods are known for polymerizing olefins in the presence of catalysts and solvents. The solvent recovered by separating the olefin polymer from the polymerization solution or decomposing the catalyst is often used again in the polymerization. However, even when olefin polymerization is performed using such a solvent that has been used once for polymerization, the expected polymerization activity may not be obtained. These include by-products during polymerization, catalyst decomposition products, reagents used for catalyst decomposition, such as alcohols, carboxylic acids, chelate compounds, etc., and products resulting from oxidation and thermal deterioration of solvents during polymerization and post-treatment. This is assumed to be due to the inclusion of various impurities. These impurities can be removed to some extent by combining various purification methods such as washing with water, distillation, and dehydration. Therefore, depending on the degree of purification, even if the solvent is reused, there will be no significant decrease in polymerization activity. It can be prevented. However, this level is not sufficient, and with repeated use, the polymerization activity eventually decreases to an unsatisfactory level. In recent years, there has been remarkable progress in high activation technology for polymerization catalysts, but while these highly active catalysts have the great advantage of being able to be used in very small quantities, they are particularly susceptible to The influence of impurities is likely to be large, and the above-mentioned disadvantages in solvent reuse are likely to occur. A decrease in polymerization activity due to the influence of impurities not only impairs the advantages of highly active catalysts and increases catalyst consumption, but also causes changes in the composition and molecular weight of the polymer, making it difficult to control product quality. It is to make it. Therefore, it has been desired to further remove trace amounts of polymerization-inhibiting impurities that could not be completely removed by conventional purification methods. Therefore, the inventors of the present invention conducted intensive studies to solve such problems, and found that
We have discovered a very effective method for purifying olefin polymerization solvents. That is, according to the present invention, there is provided a method for purifying a solvent, which comprises treating an olefin polymerization solvent consisting of a hydrocarbon with a zeolite ion-exchanged with transition metal ions. It is already known to use zeolites for the purpose of dehydration in solvents or for the purpose of removing alkyl halides in solvents (for example, JP-A-51-20791). However, even with this conventional purification method using zeolite treatment,
Although the effect of preventing a decrease in the activity of olefin polymerization is not sufficient, a significant improvement in the purification effect is observed by replacing the metal ions of zeolite with transition metal ions. In the present invention, zeolite ion-exchanged with transition metal ions is used as a solvent treatment agent. Zeolites used for ion exchange include, for example, molecular sieves 3A, 4A, and 5.
Zeolite known by trade names such as A, 10X, 13X, etc., synthetic zeolite such as Y-type zeolite,
Examples include natural zeolites such as borosite, siabasite, and mordenite. The transition metal ions to be ion-exchanged with these zeolites include titanium, vanadium, chromium,
Manganese, iron, cobalt, nickel, copper, zinc,
Yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, lanthanum, cerium, neodymium, promethium, samarium, coropium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, actinium, thorium, Examples include ions such as uranium. Among these, ions of elements or rare earth elements belonging to the fourth period or group 8 of the periodic table are particularly preferred, particularly ions of elements of the fourth period of the periodic table or rare earth elements. Methods for replacing metal ions, mainly alkali metal ions, in zeolites with these transition metal ions are already known and can be carried out by conventionally taught methods. For example, zeolite that has been pretreated such as washing with water or calcined, or zeolite that has not been pretreated is immersed in an aqueous solution of a compound containing transition metal ions and heated. After replacing the aqueous solution and repeating the same operation several times, the product may be washed with distilled water, dried, and fired. The exchange rate with transition metal ions is arbitrary, but usually 10 to 100%,
In particular, about 20 to 100% is preferable. The solvent purified with zeolite ion-exchanged with transition metal ions is an olefin polymerization solvent consisting of hydrocarbons. Such olefin polymerization solvents include, for example, aliphatic hydrocarbons such as butane, pentane, hexane, hebutane, octane, decane, dodecane, and kerosene; aliphatic hydrocarbons such as cyclopetane, methylcyclopetane, cyclohexane, and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene, etc. can be used. Furthermore, it is particularly effective to treat materials that have been used once or repeatedly in olefin polymerization when they are to be reused in olefin polymerization. Olefin polymerization is carried out using, for example, Ziegler-type catalysts.
This was done using a Phillips-type catalyst. More specifically, transition metal compounds such as titanium compounds, such as titanium trichloride, titanium tetrachloride, titanium compounds supported on magnesium compounds, etc.; vanadium compounds, such as vanadium tetrachloride, vanadium oxychloride, vanadium alkoxyhalides, etc. It can be applied to a solvent used in the polymerization of an olefin using an organic aluminum compound such as a trialkylaluminium, an alkylaluminium halide, etc., or a solvent used in the polymerization of an olefin using the catalyst. When applied to the solvent used in polymerization, it is applied to the solvent recovered by adding a catalytic decomposition agent such as alcohol to the polymerization solution, or by performing arbitrary operations such as steam distillation, water washing, alkaline washing, dehydration, distillation, etc. be able to. Examples of such olefin polymerization include ethylene, propylene, 1-butene, 1-
Polymerization or copolymerization of pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, etc., and polyenes with these olefins, such as butadiene, isoprene, piperylene, 1,4-hexadiene, 5-ethylidene. 2-Norbonene,
Examples include copolymerization with 5-vinyl-2-norbornene, dicyclopentadiene, and the like. In the present invention, it can be used not only to remove impurities that adversely affect olefin polymerization from the above-mentioned polymerization solvent, but also to remove -SO 3 H contained in the above-mentioned hydrocarbons and other hydrocarbon oils. , ―COOH, ―OH, ―NH 2 , ―SH, ―
CHO, -C=O, -COOR, -S-, -O-,
It can also be used for the purpose of removing specific compounds having functional groups such as halogens and unsaturated bonds. To treat a solvent with a zeolite ion-exchanged with transition metal ions, it is sufficient to simply bring the two into contact. The zeolite can be used in various forms such as powder, flakes, and granules. For example, a method of suspending and contacting the zeolite in a solvent in a batch manner, a continuous treatment method of continuously passing a solvent through a packed bed filled with the zeolite, etc. can be employed. The contact temperature between the solvent and the zeolite is arbitrary, but it is usually preferably about -50 to 150°C. The contact time also varies depending on the type and amount of supported metal, the yield of zeolite, the type and amount of impurities in the solvent, etc., but for example, when treating solvent 1 with 100 g of zeolite, it is generally 0.1 seconds. A contact time of about 5 to 5 hours is sufficient. If the performance of the zeolite deteriorates after repeated use, it can be easily regenerated by heating and firing it at a temperature of about 200 to 600°C in an atmosphere of an inert gas such as nitrogen gas or in the air. So it is reusable. Next, an example will be explained. Example 1 1 Polymerization and Post-Treatment EPDM polymerization reaction was carried out continuously using 15 stainless steel polymerization vessels equipped with stirring blades.
That is, hexane is continuously supplied as a polymerization solvent from the top of the polymerization vessel at a rate of 5 per hour. On the other hand, the polymerization liquid is continuously drawn out from the lower part of the polymerization vessel so that the polymerization liquid in the polymerization vessel is always 5%. The concentration of vanadium oxytrichloride as a catalyst in the polymerization vessel was 0.3 mmol/, and the concentration of ethylaluminum sesquichloride in the polymerization vessel was 0.3 mmol/.
Each was continuously fed into the polymerization vessel from the top of the vessel at a concentration of 2.4 mmol/each. In addition, a mixed gas of ethylene, propylene, and hydrogen (34 mol% ethylene, 56 mol% propylene, 10 mol% hydrogen) was supplied from the top of the polymerization vessel at a rate of 500 N/hour, and dicyclopentadiene was added to the polymerization vessel at a concentration of 4.3 g/hour.
Supply so that The copolymerization reaction was carried out at 35°C by circulating hot water through a jacket attached to the outside of the polymerization vessel. The extracted polymerization liquid was sent to a post-treatment system and continuously treated to obtain EPDM. That is, after removing unreacted monomer gas from the polymerization solution in a demonomer tower, methanol was added to the polymerization solution 1 to deactivate the catalyst. Next, this polymerization solution was subjected to a steam stripping treatment to obtain EPDM at a rate of 52 g per polymerization solution. That is, the polymer yield per 1 mmol of vanadium catalyst was 173 g. The physical properties of the polymer were as follows: ethylene content: 70.2 mol%, iodine number: 8.6, Mooney viscosity (ML1+4, 100°C): 46. 2 Recovery of Solvent The solvent separated from the polymer by steam stripping was continuously sent to a solvent recovery step and recovered. That is, the mixture was separated into an aqueous layer and an oil layer in a stationary drum, the oil layer was continuously extracted, and a hexane fraction was obtained by removing low-boiling components and high-boiling components in a distillation column. 3 Polymerization using recovered hexane When the hexane recovered by the above operation was dehydrated with Monocube Sieve 4A and then reused, the polymerization activity decreased. In other words, the polymerization yield under the same polymerization conditions as at the start of recycled use is 1 vanadium.
The amount was 83 g per mmol, the ethylene content was 79.1 mol%, the iodine number was 17.1, and the Mooney viscosity was 103. 4 Synthesis of zeolite for solvent purification A zeolite for solvent purification was synthesized by exchanging the sodium ions of Union Carbide Y-type zeolite (SK-40) with ferrous ions. That is, ferrous chloride was dissolved in nitrogen-substituted distilled water to prepare a 20% ferrous chloride aqueous solution. Under a nitrogen atmosphere, 1 part ferrous chloride aqueous solution was added to 100 g of SK-40, and the reaction was carried out at 60°C for 3 hours. The ferrous chloride aqueous solution was replaced with a new one and the same operation was repeated two more times. Finally, the zeolite was washed with nitrogen-substituted distilled water and calcined at 500°C for 3 hours in a nitrogen atmosphere. The exchange rate of iron was 70.0% on a sodium basis. 5 Purification of Solvent 100 g of the above zeolite for solvent purification was added to 50 g of recovered hexane and immersed in a nitrogen atmosphere for one day. 6 Polymerization with Purified Hexane EPDM was polymerized under the conditions described above using the purified hexane described above as a solvent. Polymer yield is 177/mmol vanadium
The physical properties of the g-polymer are as follows: ethylene content: 70.5 mol%;
The iodine value was 8.5 and the Mooney viscosity was 44, and both the polymerization activity and the physical properties of the polymer were equivalent to those of hexane before recycling. This indicates that the hexane was completely purified. Examples 2 to 4 The same operations as in Example 1 were repeated except that 5A, 10X, and 13X type zeolites were used instead of Y type zeolite. The results are shown in Table 1.

【衚】 比范䟋 〜 ここでは本発明ず比范する為鉄むオンで亀換す
る前のれオラむトは溶媒粟補に有効でないこずを
瀺す。 実斜䟋においお鉄むオンで亀換したれオラむ
トを甚いる代りに鉄むオン亀換する前のれオラむ
トSK―40、5A、10X、13Xを甚いる以倖は
同様の操䜜を行぀た。 結果を衚に瀺す。
[Table] Comparative Examples 1 to 4 Here, for comparison with the present invention, it is shown that zeolite before exchange with iron ions is not effective for solvent purification. The same operation as in Example 1 was performed except that instead of using zeolite exchanged with iron ions, zeolites (SK-40, 5A, 10X, 13X) before iron ion exchange were used. The results are shown in Table 2.

【衚】 実斜䟋 〜 実斜䟋においおFeCl2を甚いる代りに各皮の
還移金属化合物を甚いる以倖は同様の操䜜をくり
返した。 結果を衚に瀺す。
[Table] Examples 5 to 9 The same operations as in Example 1 were repeated except that various reduction metal compounds were used instead of FeCl 2 . The results are shown in Table 3.

【衚】【table】

【衚】 実斜䟋 19 実斜䟋においお溶媒粟補甚れオラむトずしお
鉄を担持した型れオラむトを甚いる代りにセシ
りムずランタンを担持したナニオンカヌバむド瀟
補型れオラむトSK―500を甚いる以倖は同
様の操䜜をくり返した。 重合䜓収量は159mmolV、重合䜓の゚チレ
ン含量73.9モル、沃玠䟡9.5、ムヌニヌ粘床54
であ぀た。 実斜䟋 20 ここではポリプロピレンの重合溶媒の粟補の䟋
に぀いお瀺す。  觊媒調補 20の無氎塩化マグネシりム、4.6mlの安息
銙酞゚チル及び3.0mlのメチルポリシロキサン
粘床20c.s.25℃を窒玠雰囲気䞋、盎埄15mm
のステンレスSUS―32補ボヌル2.8Kgを収
容した内容積800ml、内盎埄100mmのステンレス
SUS―32補ボヌルミル円筒に装入し衝撃の
加速床7.8Gで100時間接觊させる。埗られた固
䜓凊理物10を四塩化チタン100ml䞭に懞濁さ
せ、80℃で時間撹拌䞋に接觊埌、固䜓成分を
過により採取し、掗液䞭に遊離の四塩化チタ
ンが怜出されなくなるたでヘキサンで掗浄埌、
也燥し、チタン含有固䜓成分(a)を埗た。  重合及び埌凊理 撹拌翌を備えた15のステンレス補重合噚を
甚いお連続的にポリプロピレンのスラリヌ重合
を行぀た。 すなわち重合噚䞊郚から重合溶媒ずしおヘキ
サンを毎時の速床で連続的に重合液が垞に
になるように連続的に重合液を抜き出す。
觊媒ずしお前蚘耇合䜓(a)を重合噚䞭のチタン濃
床が1.0mmolずなるように又觊媒第成分
ずしお―トルむル酞メチルを重合噚䞭の濃床
が0.33mmolずなるようにそれぞれ重合噚
䞭郚から重合噚䞭に連続的に䟛絊した。 又、重合噚䞊郚からプロピレンを毎時3.1Kg、
氎玠を毎時8.3Nの速床で䟛絊した。 反応は重合噚倖郚にずり付けられたゞダケツ
トに枩氎を埪環させるこずにより70℃で行぀
た。抜き出した重合液は埌凊理系に送り連続的
に以䞋の凊理を行い重合䜓を採取した。 すなわち重合液䞭のモノマヌ塔で陀去した埌
デカンタヌによりスラリヌず溶媒ずに分離し
た。 ヘキサン圓り310の割合で重合䜓を埗
た。すなわちチタン觊媒ミリモル圓りの重合
䜓収量は15500であ぀た。又JISK―6760に準
じお230℃で枬定したメルトむンデツクスMI
230℃ は10.2であ぀た。  溶媒の回収 スラリヌず分離した母液を蒞留塔に䟛絊し䜎
沞点成分ず高沞点成分を陀去しヘキサン留分を
回収した。  回収ヘキサンでの重合 前蚘の操䜜により回収したヘキサンをモレキ
ナラヌシヌブ4Aで脱氎し再䜿甚するず重合掻
性が䜎䞋した。 すなわち䜿甚開始時ず同䞀の重合条件では重
合䜓収量は5000ミリモルチタンであ぀た。  溶媒の粟補 実斜䟋ず同様にしお溶媒粟補甚れオラむト
を甚いおヘキサンを粟補した。  粟補ヘキサンでの重合 䞊蚘の粟補ヘキサンを溶媒ずしお前蚘の条件
でポリプロピレンの重合を行぀た。 重合䜓収量は15300ミリモルチタンであ
぀た。又、MI230℃ は10.5であり、重合掻性及
びメルトむンデツクスずも埪環䜿甚前のヘキサ
ンず同等であ぀た。 これはヘキサンが完党に粟補されたこずを瀺
しおいる。 実斜䟋 21 ここではチヌグラヌ系觊媒を甚いたポリ゚チレ
ンの重合溶媒の粟補の䟋に぀いお瀺す。  觊媒の調補 窒玠雰囲気䞋で垂販の無氎塩化マグネシりム
モルを脱氎粟補したヘキサンに懞濁させ
撹拌しながら゚タノヌル12モルを時間かけお
滎䞋埌70℃で時間反応を行぀た。 これに5.85モルのゞ゚チルアルミニりムクロ
リドを宀枩で滎䞋し時間撹拌した。 続いお四塩化チタンモルを滎䞋し時間宀
枩で反応を行぀た。 反応終了埌生成した固䜓郚をくり返しヘキサ
ンで掗浄しチタン含有固䜓成分(b)を埗た。  重合及び埌凊理 実斜䟋20においお觊媒ずしお耇合䜓(a)、トリ
゚チルアルミニりム、―トルむル酞メチルを
モノマヌずしおプロピレンを甚いる代りに觊媒
ずしお䞊蚘耇合䜓(b)を重合噚䞭のチタン濃床が
0.02ミリモルずなるようにトリ゚チルアル
ミニりムを重合噚䞭の濃床が1.0ミリモル
ずなるように又モノマヌずしお゚チレンを毎時
1.5Kg氎玠を毎時18Nの速床で䟛絊する以倖
は同様の操䜜を行぀た。 結果を衚に瀺す。
[Table] Example 19 Same procedure as in Example 1 except that instead of using iron-supported Y-type zeolite as the zeolite for solvent purification, Union Carbide's Y-type zeolite (SK-500) supporting cesium and lanthanum was used. The operation was repeated. The polymer yield was 159 g/mmolV, the ethylene content of the polymer was 73.9 mol%, the iodine number was 9.5, and the Mooney viscosity was 54.
It was hot. Example 20 Here, an example of purification of a polypropylene polymerization solvent will be shown. 1 Catalyst preparation 20 g of anhydrous magnesium chloride, 4.6 ml of ethyl benzoate and 3.0 ml of methylpolysiloxane (viscosity 20 c.s. (25°C) were mixed in a nitrogen atmosphere with a diameter of 15 mm.
The balls were placed in a stainless steel (SUS-32) ball mill cylinder with an internal volume of 800 ml and an inner diameter of 100 mm containing 2.8 kg of stainless steel (SUS-32) balls and left in contact for 100 hours at an impact acceleration of 7.8 G. 10 g of the obtained solid treated product was suspended in 100 ml of titanium tetrachloride, and after contact at 80°C for 2 hours with stirring, the solid component was collected by filtration, and free titanium tetrachloride was no longer detected in the washing liquid. After washing with hexane until
It was dried to obtain a titanium-containing solid component (a). 2 Polymerization and Post-Treatment Slurry polymerization of polypropylene was carried out continuously using 15 stainless steel polymerization vessels equipped with stirring blades. That is, hexane as a polymerization solvent is continuously drawn out from the top of the polymerization vessel at a rate of 5 ml/hour so that the polymerization liquid is always 5 ml/hour.
The composite (a) as a catalyst was polymerized so that the concentration of titanium in the polymerization vessel was 1.0 mmol/, and the third component of the catalyst was methyl P-toluate so that the concentration in the polymerization vessel was 0.33 mmol/. It was continuously fed into the polymerization vessel from the middle of the vessel. In addition, 3.1 kg of propylene is supplied per hour from the top of the polymerization vessel.
Hydrogen was supplied at a rate of 8.3N per hour. The reaction was carried out at 70°C by circulating hot water through a jacket attached to the outside of the polymerization vessel. The extracted polymer solution was sent to a post-treatment system and continuously subjected to the following treatment to collect a polymer. That is, the monomer in the polymerization solution was removed in a tower and then separated into a slurry and a solvent in a decanter. A polymer was obtained at a ratio of 310 g per hexane. That is, the polymer yield per 1 mmol of titanium catalyst was 15,500 g. In addition, the melt index (MI
230℃) was 10.2. 3 Recovery of solvent The mother liquor separated from the slurry was supplied to a distillation column, low boiling point components and high boiling point components were removed, and a hexane fraction was recovered. 4 Polymerization using recovered hexane When the hexane recovered by the above operation was dehydrated with Molecular Sieve 4A and reused, the polymerization activity decreased. That is, under the same polymerization conditions as at the beginning of use, the polymer yield was 5000 g/mmol titanium. 5 Purification of Solvent Hexane was purified in the same manner as in Example 1 using zeolite for solvent purification. 6 Polymerization with Purified Hexane Polypropylene was polymerized under the conditions described above using the purified hexane described above as a solvent. Polymer yield was 15,300 g/mmol titanium. Moreover, MI230°C was 10.5, and both the polymerization activity and melt index were equivalent to that of hexane before recycling. This indicates that the hexane was completely purified. Example 21 Here, an example of purification of a polyethylene polymerization solvent using a Ziegler catalyst will be described. 1 Preparation of Catalyst 2 moles of commercially available anhydrous magnesium chloride were suspended in dehydrated and purified hexane 4 under a nitrogen atmosphere, and 12 moles of ethanol was added dropwise over 2 hours with stirring, followed by reaction at 70°C for 1 hour. To this was added dropwise 5.85 mol of diethylaluminum chloride at room temperature, and the mixture was stirred for 2 hours. Subsequently, 3 mol of titanium tetrachloride was added dropwise, and the reaction was carried out at room temperature for 2 hours. After the reaction was completed, the solid portion produced was washed repeatedly with hexane to obtain a titanium-containing solid component (b). 2 Polymerization and post-treatment In Example 20, instead of using the composite (a), triethylaluminum, and methyl P-toluate as the catalyst and propylene as the monomer, the above composite (b) was used as the catalyst, and the titanium concentration in the polymerization vessel was increased.
The concentration of triethylaluminum in the polymerization vessel was 1.0 mmol/0.02 mmol/
Also, ethylene as a monomer is added per hour so that
A similar operation was performed except that 1.5Kg hydrogen was supplied at a rate of 18N/hour. The results are shown in Table 4.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  炭玠氎玠からなるオレフむン重合溶媒を、遷
移金属むオンでむオン亀換したれオラむト䞋で凊
理するこずを特城ずする溶媒の粟補方法。  オレフむン重合溶媒が、遷移金属化合物觊媒
を甚いるオレフむン重合に䜿甚した重合溶媒であ
る特蚱請求の範囲第項蚘茉の方法。
[Scope of Claims] 1. A method for purifying a solvent, which comprises treating an olefin polymerization solvent consisting of carbon and hydrogen under zeolite ion-exchanged with transition metal ions. 2. The method according to claim 1, wherein the olefin polymerization solvent is a polymerization solvent used in olefin polymerization using a transition metal compound catalyst.
JP5864579A 1979-05-15 1979-05-15 Purification of solvent Granted JPS55151003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5864579A JPS55151003A (en) 1979-05-15 1979-05-15 Purification of solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5864579A JPS55151003A (en) 1979-05-15 1979-05-15 Purification of solvent

Publications (2)

Publication Number Publication Date
JPS55151003A JPS55151003A (en) 1980-11-25
JPH0158202B2 true JPH0158202B2 (en) 1989-12-11

Family

ID=13090313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5864579A Granted JPS55151003A (en) 1979-05-15 1979-05-15 Purification of solvent

Country Status (1)

Country Link
JP (1) JPS55151003A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671253B2 (en) * 1995-07-03 2005-07-13 昭和電工株匏䌚瀟 Method for producing polyolefin

Also Published As

Publication number Publication date
JPS55151003A (en) 1980-11-25

Similar Documents

Publication Publication Date Title
EP1070694B1 (en) Process for the alkylation of isoparaffins with olefins
CA1140163A (en) Recovery of l,3-butadiene
GB2144146A (en) Process for the recovery of butene-1
US6271428B1 (en) Process for the purification of a diolefin hydrocarbon stream
KR100643513B1 (en) Solvent hydrogenation and reuse method in polyolefin polymerization
JPH0216735B2 (en)
KR20170095231A (en) Process for the preparation of cis-2,2,4,4-tetramethylcyclobutane-1,3-diol
EP1778399B1 (en) Improved cocatalyst for the production of linear alpha-olefins
JPH0323566B2 (en)
US3398131A (en) Homopolymerization of ethylene for the production of solid and liquid polymers
US3037008A (en) Polymerization process
JPH0158202B2 (en)
JP2613648B2 (en) Method for Isomerizing Butene-1 to Butene-2 in Isobutylene
JPS6126561B2 (en)
JPH0456012B2 (en)
US3086066A (en) Separation of acetylenic impurities from olefins by selective polymerization
JPS639496B2 (en)
CN106046255B (en) The production system and method for coumarone indene resin
KR101478398B1 (en) Catalyst for selective hydrogenation of acetylene compounds in 1,3-butadiene, method for producing the same and method of using the same
SU446127A3 (en) A method of processing asphalt-containing hydrocarbon raw materials
US3173904A (en) Preparation of solid olefin polymers
US2379410A (en) Catalytic production of hydrogenated polymers
US3111547A (en) Manufacture of isoprene
SU943245A1 (en) Process for producing polyethylene
JPS63314209A (en) Method for purification of solvent for use in polymerization of olefin