JPH0155439B2 - - Google Patents

Info

Publication number
JPH0155439B2
JPH0155439B2 JP55161367A JP16136780A JPH0155439B2 JP H0155439 B2 JPH0155439 B2 JP H0155439B2 JP 55161367 A JP55161367 A JP 55161367A JP 16136780 A JP16136780 A JP 16136780A JP H0155439 B2 JPH0155439 B2 JP H0155439B2
Authority
JP
Japan
Prior art keywords
rod
neutron absorption
neutron
rods
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55161367A
Other languages
Japanese (ja)
Other versions
JPS5786086A (en
Inventor
Kyoshi Ueda
Koichi Sakurada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP55161367A priority Critical patent/JPS5786086A/en
Publication of JPS5786086A publication Critical patent/JPS5786086A/en
Publication of JPH0155439B2 publication Critical patent/JPH0155439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉の運転を制御する原子炉用制御
棒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a control rod for a nuclear reactor that controls the operation of a nuclear reactor.

(従来の技術) 原子炉の制御棒はボロンカーバイド(B4C)粉
末を理論密度の約70%(比重約1.76g/cm3)の密
度で被覆管としての金属管に振動充填して製作さ
れた中性子吸収棒を用いて構成される。この制御
棒を原子炉炉心に装荷して使用するとB4C中のボ
ロン−10(B−10)が中性子の照射を受け、いわ
ゆる(n、α)反応によりヘリウム(He)ガス
を発生し、金属管内の圧力を上昇させるので、制
御棒の機械的寿命は比較的短かい。
(Prior technology) Nuclear reactor control rods are manufactured by vibrating boron carbide (B 4 C) powder packed into a metal tube as a cladding tube at a density of approximately 70% of the theoretical density (specific gravity approximately 1.76 g/cm 3 ). It is constructed using a neutron absorption rod. When this control rod is loaded into the reactor core and used, boron-10 (B-10) in B 4 C is irradiated with neutrons, generating helium (He) gas through a so-called (n, α) reaction. Because of the increased pressure within the metal tube, the mechanical life of the control rods is relatively short.

また、中性子を吸収してB−10が減損すると、
B4Cの中性子吸収断面積が中性子の照射量に対し
て直線的に減少し、その結果、中性子束レベルが
上昇するので、B−10の減損割合はB−10の残存
量が低下するに連れて加速度的に増大し、制御棒
の反応度価値も加速度的に低下し核的寿命も短く
なる。制御棒の寿命はこの機械的と核的寿命のう
ち短い方で決定されるが、何れにしても比較的短
いので、交換に際して処理を必要とする放射性廃
棄物を大量に発生させる欠点がある。
Also, when B-10 is depleted by absorbing neutrons,
Since the neutron absorption cross section of B 4 C decreases linearly with the neutron irradiation dose, and as a result, the neutron flux level increases, the depletion rate of B-10 decreases as the remaining amount of B-10 decreases. The reactivity value of the control rods also decreases at an accelerating rate, and the nuclear lifetime also shortens. The lifespan of a control rod is determined by the shorter of the mechanical and nuclear lifetimes, and since both are relatively short, they have the disadvantage of generating large amounts of radioactive waste that must be disposed of when replaced.

本発明者等は前述した従来の制御棒の問題点に
臨み、ヘリウムガスを発生せず、また中性子を吸
収して生成された核種が中性子吸収断面積の大き
くなる核的寿命の長い核種により中性子吸収棒を
形形成した制御棒を開発した。
The present inventors faced the problems of the conventional control rods mentioned above, and they did not generate helium gas, and the nuclide produced by absorbing neutrons has a large neutron absorption cross section and has a long nuclear lifetime. A control rod shaped like an absorption rod was developed.

前記の吸収棒は、酸化ユーロピウム粉末と酸化
ハフニウム粉末との混合粉末を金属管の一部また
は全長にわたつて充填して成るものである。
The above-mentioned absorption rod is made by filling a part or the entire length of a metal tube with a mixed powder of europium oxide powder and hafnium oxide powder.

(発明が解決しようとする課題) ところが、制御棒の中性子吸収棒に使用される
ユーロピウムは希土類であり高価な材料であるた
め、コスト上難点があつた。また、酸化ハフニウ
ム粉末のみでは反応度価値が低く、制御棒用の中
性子吸収材としては不充分である。
(Problem to be Solved by the Invention) However, europium used in the neutron absorption rod of the control rod is a rare earth element and is an expensive material, which poses a cost problem. Further, hafnium oxide powder alone has low reactivity value and is insufficient as a neutron absorbing material for control rods.

これに対し、ハフニウムのソリツドメタル(被
覆管を用いないむき出し状態のメタル)により中
性子吸収棒を形成すれば、価格上の問題もなく反
応度的にも充分なものとなるが、ハフニウムは硬
く、密度が大きいので前記の中性子吸収棒を使用
した制御棒には次のような問題を生じる。
On the other hand, if the neutron absorption rod is made of hafnium solid metal (exposed metal without cladding), there will be no cost problems and the reactivity will be sufficient, but hafnium is hard and has a high density. Since the neutron absorption rod is large, the following problems arise in control rods using the above-mentioned neutron absorption rods.

すなわち、ハフニウムのソリツドメタルからな
る複数本の吸収棒をブレード内に収容した場合、
制御棒の剛性がかなり高くなり、4体1組の燃料
集合体間の十字状空隙に挿入するに際し、制御棒
と燃料集合体とが接触すると、燃料集合体を突上
げるおそれがある。そのため原子炉のスクラム時
の制御棒挿入速度を下げることが必要となり、原
子炉の緊急停止が難しくなる。
In other words, when multiple absorption rods made of solid hafnium metal are housed in the blade,
The rigidity of the control rods becomes considerably high, and when the control rods and the fuel assemblies come into contact with each other when inserted into a cross-shaped gap between a set of four fuel assemblies, there is a risk of the fuel assemblies being pushed up. Therefore, it is necessary to reduce the control rod insertion speed during reactor scram, which makes emergency shutdown of the reactor difficult.

さらに、ハフニウムは密度が大であるため、制
御棒が重くなり制御棒駆動機構を強化する必要が
ある。
Furthermore, hafnium has a high density, making the control rods heavier and requiring a stronger control rod drive mechanism.

本発明は上記の事情に基づきなされたもので、
ハフニウムのソリツドメタルから成る中性子吸収
棒を使用し、反応度を低下させずに軽量化し、制
御棒の剛性を小さくした原子炉用制御棒を提供す
ることを目的とする。
The present invention was made based on the above circumstances, and
The object of the present invention is to provide a control rod for a nuclear reactor that uses a neutron absorption rod made of solid hafnium metal, is lightweight without reducing reactivity, and has reduced rigidity.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る原子炉用制御棒は、上述した課題
を解決するためにタイロツドにシースを結合させ
て横断面十字状のブレードを形成し、上記ブレー
ドのシース内に複数の中性子吸収棒を列状に配列
させた原子炉用制御棒において、前記中性子吸収
棒は中性子吸収能力を有するハフニウムのソリツ
ドメタルで形成し、このソリツドメタルは外表面
の凹凸成形や中空構造とすることにより、表面積
の大きな細長い棒状構造としたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the control rod for a nuclear reactor according to the present invention has a sheath connected to a tie rod to form a blade having a cross-shaped cross section, and a blade inside the sheath of the blade. In a control rod for a nuclear reactor, in which a plurality of neutron absorption rods are arranged in a row, the neutron absorption rods are formed of a hafnium solid metal having a neutron absorption ability, and the solid metal has an uneven outer surface or a hollow structure. This results in an elongated rod-like structure with a large surface area.

(作用) この原子炉用制御棒は、ハフニウムによる中性
子吸収が主に共鳴吸収であることに着目し、中性
子吸収棒を中性子吸収能力を有するハフニウムの
ソリツドメタル(被覆管を用いないむき出し状態
のメタル)で形成し、このソリツドメタルは外表
面の凹凸成形や中空構造とすることにより、表面
積の大きな細長い棒状構造としたので、中性子吸
収棒の表面積を増大させて共鳴中性子吸収を増加
させることができ、反応度を下げないで軽量化を
図り得るとともに、制御棒の剛性を低下させるこ
とができるので、制御棒の軸方向に直交する方向
の剛性を下げて原子炉炉心部への出し入れをスム
ーズに行なうことができる。
(Function) This reactor control rod focuses on the fact that neutron absorption by hafnium is mainly resonance absorption, and the neutron absorption rod is made of hafnium solid metal (exposed metal without cladding) that has neutron absorption ability. This solid metal is formed into an elongated rod-like structure with a large surface area by uneven molding on the outer surface and a hollow structure, so it is possible to increase the surface area of the neutron absorption rod and increase resonance neutron absorption, which increases the reaction rate. It is possible to reduce the weight without reducing the strength of the control rod, and also to reduce the rigidity of the control rod, so the rigidity in the direction perpendicular to the axial direction of the control rod can be lowered to smoothly move it in and out of the reactor core. Can be done.

(実施例) 以下、本発明に係る原子炉用制御棒の一実施例
について添付図面を参照して説明する。
(Example) Hereinafter, an example of a control rod for a nuclear reactor according to the present invention will be described with reference to the accompanying drawings.

第1図および第2図は本発明に係る原子炉用制
御棒を示し、この原子炉用制御棒は細長いU字状
断面のシース1内に、細長い中性子吸収棒2が列
状に収納されている。上記シース1は十字状のタ
イロツド3に結合されて横断面十字状のブレード
を形成している。シース1内に収納される中性子
吸収棒は管状をなすハフニウムのソリツドメタル
で形成される。ここに、ソリツドメタルとは被覆
材で覆うことのないむき出し状態のメタルをい
う。
FIGS. 1 and 2 show a nuclear reactor control rod according to the present invention, in which elongated neutron absorption rods 2 are housed in a row in a sheath 1 with an elongated U-shaped cross section. There is. The sheath 1 is connected to a cruciform tie rod 3 to form a blade having a cruciform cross section. The neutron absorption rod housed within the sheath 1 is formed of a tubular solid hafnium metal. Here, solid metal refers to exposed metal that is not covered with a covering material.

この原子炉用制御棒においては、ハフニウムよ
り成る中性子吸収棒は中空とされているため中実
構造のハウニウム製中性子吸収棒より軸に直角方
向の剛性が小さく、しかも重量が小である。した
がつて、制御棒ブレードの軸に直角方向の剛性は
小さく、制御棒の燃料集合体間隙への挿入に際
し、ブレードが燃料集合体に当接したとしても、
ブレードは変形して逃げることができるので、燃
料集合体を突上げるおそれはない。そのため、原
子炉緊急停止時の制御棒挿入速度を低くする必要
はない。また、制御棒全体が軽量化されるため、
既存の制御棒駆動装置を使用することができる。
In this nuclear reactor control rod, the neutron absorbing rod made of hafnium is hollow, so it has less rigidity in the direction perpendicular to the axis than a solid neutron absorbing rod made of hafnium, and is also lighter in weight. Therefore, the rigidity of the control rod blade in the direction perpendicular to the axis is small, and even if the blade contacts the fuel assembly when the control rod is inserted into the gap between the fuel assemblies,
Since the blade can deform and escape, there is no danger of it pushing up the fuel assembly. Therefore, there is no need to lower the control rod insertion speed during emergency reactor shutdown. In addition, since the entire control rod is lighter,
Existing control rod drives can be used.

なお、ハウニウムの中性子吸収は共鳴吸収であ
るから、ハウニウム製中性子吸収棒の中性子吸収
能力は、中性子吸収棒の表面積によつて定まる。
したがつて、前記実施例の如く中性子吸収棒を中
空体としその剛性、重量を減じるようにしても、
表面積が同じであれば中空の中性子吸収棒と同一
の吸収能力を得ることができる。中性子吸収棒を
ハフニウムのソリツドメタルで形成し、中空棒状
構造とすることにより、中実棒状構造に較べ棒外
径が同じ場合、表面積(外面および内面の表面
積)を大くすることができる。
Note that since the neutron absorption of haunium is resonance absorption, the neutron absorption capacity of the neutron absorption rod made of haunium is determined by the surface area of the neutron absorption rod.
Therefore, even if the neutron absorption rod is made into a hollow body as in the above embodiment to reduce its rigidity and weight,
If the surface area is the same, the same absorption capacity as a hollow neutron absorption rod can be obtained. By forming the neutron absorption rod from solid hafnium metal and having a hollow rod-like structure, the surface area (surface area of the outer surface and inner surface) can be increased compared to a solid rod-like structure when the outside diameter of the rod is the same.

中性子吸収棒に用いられるハフニウム(Hf)
は共鳴中性子吸収物質であるので、中空棒状構造
に形成すると、表面積の大きなものが得られる。
ハフニウムは化学的に極めて安定な金属元素であ
る。ハフニウムにはHf−176、Hf−177、Hf−
178、Hf−179、Hf−180など多くの同位体が存
在し、各同位体はいずれも中性子をよく吸収する
が、相対的には共鳴エネルギの中性子を吸収する
割合が非常に高い。特に、Hf−177、Hf−178は
中性子吸収効果が著しく、例えばHf−176は中性
子を吸収してHf−177となり、さらに順次中性子
を吸収してHf−178からHf−179を経てHf−180
となるので、1つのHf原子核は複数個の中性子
を吸収でき、長期間にわたつて中性子を吸収し続
けるので長寿命型の中性子吸収物質である(日刊
工業新聞社発行、「原子炉材料ハンドブツク」第
415頁〜第420頁参照。)。
Hafnium (Hf) used in neutron absorption rods
Since it is a resonant neutron absorbing material, if it is formed into a hollow rod-like structure, a large surface area can be obtained.
Hafnium is a chemically extremely stable metallic element. Hafnium includes Hf−176, Hf−177, Hf−
There are many isotopes such as 178, Hf-179, and Hf-180, and each isotope absorbs neutrons well, but the proportion of absorbing neutrons at resonance energy is relatively high. In particular, Hf-177 and Hf-178 have a remarkable neutron absorption effect; for example, Hf-176 absorbs neutrons and becomes Hf-177, and then sequentially absorbs neutrons, changing from Hf-178 to Hf-179 to Hf-180.
Therefore, one Hf nucleus can absorb multiple neutrons and continues to absorb neutrons over a long period of time, making it a long-lived neutron absorbing material (Nikkan Kogyo Shimbun, ``Reactor Materials Handbook'') No.
See pages 415-420. ).

なお、本発明は上記実施例のみに限定されな
い。
Note that the present invention is not limited to the above embodiments.

中空棒状(管状)中性子吸収棒に代えて、第3
図A〜Lに示した各種断面のハフニウムのソリツ
ドメタルを中性子吸収棒に使用することができ
る。すなわち、第3図AはX字状断面の中性子吸
収棒、同図BはY字状断面の中性子吸収棒、同図
CはH字状断面の中性子吸収棒、同図DはT字状
断面の中性子吸収棒、同図EはL字状断面の中性
子吸収棒、同図Fは6個の放射状突出部を有する
いわゆる星型断面の中性子吸収棒、同図GはC字
状断面の中性子吸収棒、同図Hはコ字状の一脚端
部からコ字状の中央片に平行に突出部を設けた断
面の中性子吸収棒、同図I,J,K,Lはそれぞ
れ円形断面、楕円形断面、三角形断面、四角形断
面の管(中空棒材)内に水またはB4C等を充填し
て成る中性子吸収棒を示す。
Instead of a hollow rod-shaped (tubular) neutron absorption rod, a third
Hafnium solid metal with various cross sections shown in Figures A to L can be used for the neutron absorbing rod. That is, Figure 3A shows a neutron absorption rod with an X-shaped cross section, Figure B shows a neutron absorption rod with a Y-shaped cross section, Figure C shows a neutron absorption rod with an H-shaped cross section, and Figure D shows a T-shaped cross section. Neutron absorption rods: E in the same figure is a neutron absorption rod with an L-shaped cross section, F in the same figure is a neutron absorption rod with a so-called star-shaped cross section with six radial protrusions, and G in the same figure is a neutron absorbing rod with a C-shaped cross section. H in the figure is a neutron absorbing rod with a protrusion parallel to the U-shaped central piece from the U-shaped end; I, J, K, and L in the same figure are circular cross-sections and ellipsoids, respectively. This shows a neutron absorption rod made by filling water, B 4 C, etc. into a tube (hollow rod) with a shaped, triangular, or square cross section.

なお、この原子炉用制御棒は第1図に示すよう
にシース1に複数の冷却材流出入孔4が設けられ
ているので、シース1内はこの流出入孔4から流
出入される冷却材で満される。このため、第3図
I,J,K,Lに示した中性子吸収棒の側壁に透
孔を設けておけば、冷却材がそこから侵入して内
部に水が充填されることとなる。
As shown in FIG. 1, this reactor control rod has a plurality of coolant inflow and outflow holes 4 provided in the sheath 1, so that the coolant flows in and out of the sheath 1 through the inflow and outflow holes 4. filled with For this reason, if through holes are provided in the side walls of the neutron absorption rods shown in FIGS. 3I, J, K, and L, the coolant will enter through the holes and the inside will be filled with water.

第3図A〜Lに示す中性子吸収棒はいずれもハ
フニウムのソリツドメタルで形成し、このソリツ
ドメタルの外表面を凹凸成形したり、中空棒構造
に成形することにより、表面積をを大きくするよ
うにしたものである。
The neutron absorption rods shown in Figures 3A to 3L are all made of hafnium solid metal, and the surface area is increased by molding the outer surface of this solid metal into irregularities or by forming it into a hollow rod structure. It is.

上記のいずれの中性子吸収棒によつても前記し
た第1図、第2図の実施例と同様の作用効果が得
られる。
Any of the above-mentioned neutron absorption rods can provide the same effects as the embodiments shown in FIGS. 1 and 2 described above.

第4図A,B,C,Dは制御棒内での中性子吸
収棒の配列例を示す。同図Aはシース1の端部に
第3図BのY字状断面の中性子吸収棒を配置し他
の中性子吸収棒は第3図AのX字状断面の中性子
吸収棒としたもの、同図Bはシース1内に第3図
CのH字状断面の中性子吸収棒をその両側脚がブ
レード面に垂直になるよう配列したもの、同図C
はシース1の端部に第3図Eに示すL字状断面の
中性子吸収棒を配置し他は第3図DのT字状断面
の中性子吸収棒としてそれらを正立、倒立交互配
置としたもの、第4図Dはシース内に第3図Jの
楕円断面のものをその表径がブレード幅方向とな
る如く配列したものである。
Figures 4A, B, C, and D show examples of the arrangement of neutron absorption rods within the control rod. Figure A shows a neutron absorbing rod with a Y-shaped cross section shown in Figure 3 B placed at the end of the sheath 1, and the other neutron absorbing rods are neutron absorbing rods with an X-shaped cross section shown in Figure 3 A; Figure B shows the neutron absorbing rods in the H-shaped cross section shown in Figure 3C arranged in the sheath 1 so that the legs on both sides are perpendicular to the blade surface.
In this case, a neutron absorption rod with an L-shaped cross section as shown in Fig. 3E is arranged at the end of the sheath 1, and in the other case, a neutron absorption rod with a T-shaped cross section shown in Fig. 3D is arranged in an upright and inverted arrangement alternately. In Fig. 4D, the elliptical cross-sections shown in Fig. 3J are arranged in the sheath so that their surface diameters are in the blade width direction.

なお、中性子吸収棒の断面形状は第3図および
第4図に示すものに限定されない。中性子吸収棒
は、表面積の大きな棒状構造であれば、例示以外
のものでもよい。
Note that the cross-sectional shape of the neutron absorption rod is not limited to that shown in FIGS. 3 and 4. The neutron absorption rod may be of any type other than those illustrated as long as it has a rod-like structure with a large surface area.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明に係る原子炉用制御
棒においては、中性子吸収棒を中性子吸収能力を
有するハフニウムのソリツドメタルで形成し、こ
のソリツドメタルは外表面の凹凸成形や中空構造
とすることにより、表面積の大きな細長い棒状構
造としたので、中性子吸収棒の表面積を増大させ
て共鳴中性子吸収を増加させることができ、反応
度を下げないで軽量化を図り得るとともに、制御
棒の剛性を低下させることができので、制御棒の
軸方向に直交する方向の剛性を下げて原子炉炉心
部への出し入れをスムーズに行なうことができる
等の効果を奏する。
As described above, in the nuclear reactor control rod according to the present invention, the neutron absorption rod is formed of hafnium solid metal having neutron absorption ability, and this solid metal has an uneven outer surface and a hollow structure. Since it has a long and thin rod-like structure with a large surface area, the surface area of the neutron absorption rod can be increased and resonance neutron absorption can be increased, and the weight can be reduced without reducing the reactivity, and the rigidity of the control rod can be reduced. As a result, the rigidity of the control rods in the direction orthogonal to the axial direction can be lowered and the control rods can be moved smoothly into and out of the reactor core.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の斜視図、第2図はそ
の―線における断面図、第3図A〜Lは変形
例要部の断面図、第4図A〜Dは中性子吸収棒の
配列例の断面図である。 1……シース、2……中性子吸収棒、3……タ
イロツド。
Fig. 1 is a perspective view of an embodiment of the present invention, Fig. 2 is a sectional view taken along the line - Fig. 3, A to L are sectional views of main parts of a modified example, and Fig. 4 A to D are sectional views of a neutron absorption rod. It is a sectional view of an example of arrangement. 1... Sheath, 2... Neutron absorption rod, 3... Tie rod.

Claims (1)

【特許請求の範囲】[Claims] 1 タイロツドにシースを結合させて横断面十字
状のブレードを形成し、上記ブレードのシース内
に複数の中性子吸収棒を列状に配列させた原子炉
用制御棒において、前記中性子吸収棒は中性子吸
収能力を有するハフニウムのソリツドメタルで形
成し、このソリツドメタルは外表面の凹凸成形や
中空構造とすることにより、表面積の大きな細長
い棒状構造としたことを特徴とする原子炉用制御
棒。
1. A control rod for a nuclear reactor in which a sheath is coupled to a tie rod to form a blade having a cross-shaped cross section, and a plurality of neutron absorption rods are arranged in a row within the sheath of the blade, wherein the neutron absorption rod is a neutron absorption rod. A control rod for a nuclear reactor, characterized in that it is made of solid metal of hafnium, which has a high capacity, and that the solid metal has an elongated rod-like structure with a large surface area by having an uneven outer surface and a hollow structure.
JP55161367A 1980-11-18 1980-11-18 Nuclear reactor control rod Granted JPS5786086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55161367A JPS5786086A (en) 1980-11-18 1980-11-18 Nuclear reactor control rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55161367A JPS5786086A (en) 1980-11-18 1980-11-18 Nuclear reactor control rod

Publications (2)

Publication Number Publication Date
JPS5786086A JPS5786086A (en) 1982-05-28
JPH0155439B2 true JPH0155439B2 (en) 1989-11-24

Family

ID=15733732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55161367A Granted JPS5786086A (en) 1980-11-18 1980-11-18 Nuclear reactor control rod

Country Status (1)

Country Link
JP (1) JPS5786086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719912A (en) * 1996-03-14 1998-02-17 General Electric Company Control rod for a nuclear reactor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938687A (en) * 1982-08-27 1984-03-02 株式会社東芝 Control rod
JPS5971193U (en) * 1982-11-05 1984-05-15 株式会社東芝 Control rod for nuclear reactor
JPS59192992A (en) * 1983-04-15 1984-11-01 株式会社日立製作所 Control rod of reactor
US4882123A (en) * 1988-03-01 1989-11-21 General Electric Company Hafnium control rod for nuclear reactors
FI890998A (en) * 1988-04-14 1989-10-15 Gen Electric REGLERSTAV MED LAONG DRIFTTID FOER EN KAERNREAKTOR.
JPH0820537B2 (en) * 1989-01-31 1996-03-04 原子燃料工業株式会社 Control rod for pressurized water reactor
US8787517B2 (en) * 2006-01-05 2014-07-22 General Electric Company Absorber tube for BWR control rods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719912A (en) * 1996-03-14 1998-02-17 General Electric Company Control rod for a nuclear reactor

Also Published As

Publication number Publication date
JPS5786086A (en) 1982-05-28

Similar Documents

Publication Publication Date Title
JPS6259789B2 (en)
JPH0155439B2 (en)
JPS6224755B2 (en)
JPH0134358B2 (en)
EP0337736B1 (en) Nuclear reactor control rod having an extended service life
JPH036493A (en) Reactor control rod
JPH0220077B2 (en)
JPH0134359B2 (en)
JPS5855886A (en) Control rod of reactor
JPH0115839B2 (en)
JPH021278B2 (en)
JPS63752B2 (en)
JPH10288688A (en) Control rod for reactor
JPH026037B2 (en)
JP2878813B2 (en) Reactor control rod
JP2001311794A (en) Fuel assembly storage device
JPH0458193A (en) Neutron absorbing element for reactor control rod
JPH0117559B2 (en)
JP3056803B2 (en) Reactor control rod
JPS62289792A (en) Control rod for nuclear reactor
JPH0134357B2 (en)
JPS5855887A (en) Control rod of reactor
JPH022557B2 (en)
JPH01287499A (en) Control rod for nuclear reactor
JPH01203994A (en) Control rod for nuclear reactor