JPH0155380B2 - - Google Patents

Info

Publication number
JPH0155380B2
JPH0155380B2 JP58246045A JP24604583A JPH0155380B2 JP H0155380 B2 JPH0155380 B2 JP H0155380B2 JP 58246045 A JP58246045 A JP 58246045A JP 24604583 A JP24604583 A JP 24604583A JP H0155380 B2 JPH0155380 B2 JP H0155380B2
Authority
JP
Japan
Prior art keywords
far
polyborosiloxane
infrared
emissivity
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58246045A
Other languages
Japanese (ja)
Other versions
JPS60134126A (en
Inventor
Akio Fukuda
Masao Maki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58246045A priority Critical patent/JPS60134126A/en
Publication of JPS60134126A publication Critical patent/JPS60134126A/en
Publication of JPH0155380B2 publication Critical patent/JPH0155380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/24Radiant bodies or panels for radiation heaters

Description

【発明の詳細な説明】 産業上の利用分野 本発明は輻射暖房を目的とした暖房器具に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heating appliance for radiant heating.

従来例の構成とその問題点 従来の輻射暖房器用の輻射体は、金属の赤熱体
やあるいは金属赤熱体の近辺に設けられたガラス
あるいは、セラミツクスがあつた。
Conventional configurations and their problems Conventional radiant elements for radiant heaters include a metallic glowing body, or glass or ceramics provided near the metallic glowing body.

中でも金属については赤外線輻射率が低く輻射
体として不適である。又、ガラスでは5μm以下
の波長に対して透過性が高く、輻射率が低かつ
た。又、ガラスの輻射特性改善のためにセラミツ
クコーテイングが施されてはいるが、ヒートシヨ
ツクにより容易に剥離しやすい。これは、セラミ
ツクコーテイングが厚膜になつてしまい、ガラス
との熱膨張が合わない事が原因の一つでもある。
Among these, metals have low infrared emissivity and are unsuitable as radiators. Furthermore, glass has high transmittance for wavelengths of 5 μm or less and low emissivity. Further, although ceramic coating is applied to improve the radiation characteristics of glass, it is easily peeled off by heat shock. One of the reasons for this is that the ceramic coating is thick and its thermal expansion does not match that of the glass.

発明の目的 本発明は、このような金属、あるいはガラスの
輻射特性の改善と、耐ヒートシヨツク性など塗膜
物性の優れたコーテイング方式の赤外線輻射体を
提供することを目的としている。
OBJECTS OF THE INVENTION The object of the present invention is to improve the radiation characteristics of such metals or glasses, and to provide a coating-type infrared radiator with excellent coating film properties such as heat shock resistance.

発明の構成 この目的を達成するために本発明は、透明な基
板あるいは金属基板上に、ポリボロシロキサン樹
脂とZr、Ti、Si、Fe、Cu、Mn、Niのうち一種
以上の酸化物とLa、Ce、Pr、Ndのうち一種以上
の酸化物の加熱硬化体より成る被膜を形成するも
のである。
Structure of the Invention In order to achieve this object, the present invention provides a polyborosiloxane resin and an oxide of one or more of Zr, Ti, Si, Fe, Cu, Mn, and Ni on a transparent substrate or a metal substrate. , Ce, Pr, and Nd.

実施例の説明 以下、本発明の実施例について説明する。遠赤
外線輻射材はポリボロシロキサン樹脂(有機ポリ
ボロシロキサン)に、Zr、Ti、Si、Fe、Cu、
Mn、Ni等の金属酸化物を少くとも一種以上か又
はこれと、La、Ce、Pr、Nd等の希土類元素酸化
物を一種以上分散混合したものの加熱硬化体であ
る。有機ポリボロシロキサンは300℃で殆どの溶
剤が蒸発してしまい、残部はSi、B、Oから成る
主鎖とこれに側鎖として結合するフエニル基から
成る。さらに加熱し600℃になるとフエニル基が
分解してしまい、多孔質のSi、B、Oから成るポ
リボロシロキサンだけが残る。第1図に熱天秤に
よる重量変化を示した。このような特長をもつ有
機ポリボロジロキサンに充填材を分散混合させ、
基板に塗布し加熱硬化すれば、いろいろの機能性
膜を得ることが可能である。この有機ポリボロシ
ロキサンに、金属酸化物や希土類元素酸化物を添
加し加熱硬化すれば、遠赤外線輻射材が得られ
る。金属酸化物としては特にZr、Fe、Cu、Mn
の酸化物、希土類元素酸化物としては特にCeが
適している。これらの酸化物の粒子径は0.1〜2μ
mが望ましい。第2図にステンレス基板上にこの
遠赤外線輻射材の被覆を形成したときの500℃に
おける波長−輻射率の特性を示した。第2図にお
いて1が標準黒体、2が有機ポリボロシロキサン
にFe、Cu、Mnの酸化物を添加した場合3が有機
ポリボロシロキサンにZr、Ceの酸化物を添加し
た場合、4がステンタスだけの場合の特性であ
る。これから4のステンレスは全体的に輻射率が
低いことが明らかである。又、2の場合には、測
定した波長全域に渡つて比較的高率でフラツトな
輻射率を示し、3の場合には約7μmを境にして
輻射率が大きく変化し、波長に対し輻射率が選択
性をもつことがわかる。いずれにしてもステンレ
スに比べ2,3共に遠赤外線の輻射率は高いとい
うことが明らかである。この特性は輻射材の膜厚
が5〜50μmであれば殆ど変化しないことも確め
られた。このことは、使用環境、目的により薄膜
か比較的厚い膜にするかの選択も自由であること
を示すものである。この輻射材の塗膜としての性
能は、耐熱、耐熱衝撃、耐酸、耐アルカリ性に優
れており、熱衝撃は金属上で800℃から水中への
急冷にも耐える。以上の輻射材を透明な基板上に
被覆し遠赤外線輻射体とするのであるが本実施例
では、ガスストーブの円筒形の耐熱ガラスの表面
に塗布した。第3図にそれの断面図を示す。第4
図は第3図の輻射体を実機に装備したときの燃焼
部分の一部断面図である。輻射材の膜厚を約5μ
mにすると透明感があり、ガス燃焼中はほのかな
赤色を示す。燃焼中ガラスの温度は約500℃にな
るが、ガラス表面からは、第2図に見られるよう
に遠赤外線が高率で輻射されるためにエネルギー
的にも高効率でしかも、快適な暖房を行うことが
できる。
Description of Examples Examples of the present invention will be described below. Far-infrared radiating materials include polyborosiloxane resin (organic polyborosiloxane), Zr, Ti, Si, Fe, Cu,
It is a heat-cured product made by dispersing and mixing at least one metal oxide such as Mn, Ni, etc., or one or more metal oxides such as La, Ce, Pr, Nd, etc. Most of the solvent in organic polyborosiloxane evaporates at 300°C, and the remainder consists of a main chain consisting of Si, B, and O, and a phenyl group bonded to this main chain as a side chain. When heated further to 600°C, the phenyl group decomposes, leaving only porous polyborosiloxane composed of Si, B, and O. Figure 1 shows the weight change due to the thermobalance. By dispersing and mixing fillers into organic polyborosiloxane with these characteristics,
By applying it to a substrate and curing it by heating, it is possible to obtain various functional films. A far-infrared radiating material can be obtained by adding a metal oxide or a rare earth element oxide to this organic polyborosiloxane and curing it by heating. Metal oxides include Zr, Fe, Cu, and Mn in particular.
Ce is particularly suitable as the rare earth element oxide. The particle size of these oxides is 0.1-2μ
m is desirable. Figure 2 shows the wavelength-emissivity characteristics at 500°C when a coating of this far-infrared radiating material was formed on a stainless steel substrate. In Figure 2, 1 is a standard black body, 2 is an organic polyborosiloxane with oxides of Fe, Cu, and Mn added, 3 is an organic polyborosiloxane with oxides of Zr and Ce added, and 4 is a stencil. This is a characteristic when only It is clear from this that stainless steel No. 4 has a low emissivity overall. In addition, in case 2, the emissivity is relatively high and flat over the entire measured wavelength range, and in case 3, the emissivity changes greatly after about 7 μm, and the emissivity changes with respect to the wavelength. It can be seen that has selectivity. In any case, it is clear that both 2 and 3 have a higher emissivity of far infrared rays than stainless steel. It was also confirmed that this characteristic hardly changes if the film thickness of the radiant material is 5 to 50 μm. This shows that it is possible to freely choose between a thin film and a relatively thick film depending on the usage environment and purpose. The performance of this radiant material as a coating film is excellent in heat resistance, thermal shock resistance, acid resistance, and alkali resistance, and it can withstand thermal shock from 800℃ on metal to rapid cooling into water. The above-mentioned radiant material is coated on a transparent substrate to form a far-infrared radiator, and in this example, it was coated on the surface of a cylindrical heat-resistant glass of a gas stove. FIG. 3 shows a cross-sectional view of it. Fourth
The figure is a partial cross-sectional view of the combustion part when the radiator of FIG. 3 is installed in an actual machine. The film thickness of the radiant material is approximately 5μ.
When set to m, it becomes transparent and exhibits a faint red color during gas combustion. The temperature of the glass during combustion reaches approximately 500°C, but as shown in Figure 2, far-infrared rays are radiated from the glass surface at a high rate, making it highly efficient in terms of energy and providing comfortable heating. It can be carried out.

又、前記輻射材に着色剤としてTi、Zn、Co、
Niの元素から成る緑色の顔料を添加し、同様に
耐熱ガラスの表面に塗布した。これにより通常は
ストーブの輻射部分が緑色になるが、着色は任意
に変更が可能であり、視覚的にも種々の色を有し
た遠赤外線輻射体を形成することができる。この
時も薄膜を形成することで、燃焼中はほのかな赤
色を呈する。
In addition, Ti, Zn, Co,
A green pigment consisting of the element Ni was added and similarly applied to the surface of heat-resistant glass. As a result, the radiating part of the stove usually turns green, but the coloring can be changed as desired, and it is possible to form far-infrared radiators that visually have various colors. At this time as well, a thin film is formed, giving it a faint red color during combustion.

遠赤外線は暖房だけでなく調理、健康器具等の
様々な分野で最近特にその効果の大なることが認
められており、暖房においては、紫外線に見られ
るような人体への害がないこと、体の深いところ
まで吸収され、芯まで温まるなどのことがいわれ
ている。
Far-infrared rays have recently been recognized as particularly effective in various fields such as heating, cooking, and health appliances. It is said that it is absorbed deep into the body, warming you to the core.

発明の効果 以上説明したように本発明は、ポリボロシロキ
サン樹脂と種々の酸化物の組合せにより、5μm
程度の膜厚でも輻射特性に優れており、さらに輻
射特性に、いろいろな波長依存性をもたすことが
可能で、これにより適用部が広がる。また、薄膜
であるためにヒートシヨツク性に特に優れた輻射
体が得られる。
Effects of the Invention As explained above, the present invention uses a combination of polyborosiloxane resin and various oxides.
It has excellent radiation characteristics even with a moderate film thickness, and it is also possible to provide various wavelength dependencies to the radiation characteristics, which expands the range of applications. Furthermore, since it is a thin film, a radiator with particularly excellent heat shock properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は有機ポリボロシロキサンの熱天秤によ
る温度−重量変化の特性図、第2図は遠赤外線輻
射材の輻射率の特性図、第3図は本発明の一実施
例の遠赤外線輻射材の断面図、第4図はストーブ
による燃焼部の一部断面図である。 5……遠赤外線輻射材、6……耐熱ガラス、7
……金網バーナ、8……ガス導入管。
Fig. 1 is a characteristic diagram of temperature-weight change of organic polyborosiloxane measured on a thermobalance, Fig. 2 is a characteristic diagram of emissivity of a far-infrared radiating material, and Fig. 3 is a characteristic diagram of a far-infrared radiating material of an embodiment of the present invention. FIG. 4 is a partial sectional view of the combustion section of the stove. 5...Far-infrared radiating material, 6...Heat-resistant glass, 7
...Wire mesh burner, 8...Gas introduction pipe.

Claims (1)

【特許請求の範囲】 1 赤外線輻射面である透明な基板又は金属基板
上にポリボロシロキサン樹脂とZr、Ti、Si、Fe、
Cu、Mn、Niのうち一種以上の酸化物と、La、
Ce、Pr、Ndのうち一種以上の酸化物との混合物
の加熱硬化体より成る被膜を形成した遠赤外線輻
射体。 2 前記混合物に着色剤としてTi、Ba、Ni、
Co、Zn、Fe、Alのうち一種以上の酸化物から成
る顔料を添加した特許請求の範囲第1項記載の遠
赤外線輻射体。
[Claims] 1 Polyborosiloxane resin and Zr, Ti, Si, Fe,
An oxide of one or more of Cu, Mn, and Ni, and La,
A far-infrared radiator formed with a coating made of a heat-cured mixture of oxides of one or more of Ce, Pr, and Nd. 2 Adding Ti, Ba, Ni,
The far-infrared radiator according to claim 1, wherein a pigment made of an oxide of one or more of Co, Zn, Fe, and Al is added.
JP58246045A 1983-12-23 1983-12-23 Far infrared ray radiant material Granted JPS60134126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58246045A JPS60134126A (en) 1983-12-23 1983-12-23 Far infrared ray radiant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58246045A JPS60134126A (en) 1983-12-23 1983-12-23 Far infrared ray radiant material

Publications (2)

Publication Number Publication Date
JPS60134126A JPS60134126A (en) 1985-07-17
JPH0155380B2 true JPH0155380B2 (en) 1989-11-24

Family

ID=17142639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58246045A Granted JPS60134126A (en) 1983-12-23 1983-12-23 Far infrared ray radiant material

Country Status (1)

Country Link
JP (1) JPS60134126A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331216U (en) * 1989-07-28 1991-03-27
EP0426529A1 (en) * 1989-10-31 1991-05-08 Elf Atochem S.A. Ceramic coating, method of producing said coatings and the coated substrate produced
JPH07115914B2 (en) * 1992-08-31 1995-12-13 株式会社福谷 Far infrared radiation material
JP2003062093A (en) * 2001-08-23 2003-03-04 Koichi Imai Powder far-infrared radiator and its manufacturing method
DE10309561B4 (en) * 2003-03-04 2006-01-05 Heraeus Noblelight Gmbh Electric heating element for an infrared radiator, infrared radiator and its use
FR2873791B1 (en) * 2004-07-30 2006-11-03 Eurokera GLASS MATERIAL PLATE FOR DEVICE TYPE INSERT OF CHIMNEY OR STOVE.
US7313909B2 (en) 2004-10-25 2008-01-01 General Electric Company High-emissivity infrared coating applications for use in HIRSS applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169416U (en) * 1982-05-07 1983-11-11 木村 豊 Far-infrared ray generator for stove combustion tube
JPS6077910U (en) * 1983-11-02 1985-05-31 トヨクニ株式会社 heating equipment

Also Published As

Publication number Publication date
JPS60134126A (en) 1985-07-17

Similar Documents

Publication Publication Date Title
JP2624291B2 (en) Far infrared heater
US4426570A (en) Infrared radiative body and a method for making the same
JPH0155380B2 (en)
TW202012552A (en) High emissivity coating composition and substrate coated therewith
JPS61179881A (en) Infrared radiator with metallic base material and its production
JPS60155267A (en) Infrared radiating coating composition
JPS5856236B2 (en) Manufacturing method of far-infrared radiating element
JPH0351975B2 (en)
JPS5934233B2 (en) far infrared radiation device
JPS5836821B2 (en) far infrared radiation device
KR900001730B1 (en) Composition of ceramic-coating materials
JPH0684270B2 (en) Infrared radiation coating
JPS61275377A (en) Reversible heat-sensitive material
JPS6088082A (en) Infrared ray radiating film
JPH0363192B2 (en)
JPS61149740A (en) Radiator
JPS6019114B2 (en) infrared radiation heater
JPH0321501B2 (en)
JPH02133717A (en) Far infrared radiation plate with thermal insulation property and manufacture thereof
JPS59226491A (en) Infrared ray radiator
JPS61147484A (en) Radiating body
JPS60251322A (en) Radiant body
JPS60154488A (en) Far infrared ray radiator
JPS5826794B2 (en) far infrared radiation device
JPS6196688A (en) Infrared ray radiating body