JPH0154284B2 - - Google Patents

Info

Publication number
JPH0154284B2
JPH0154284B2 JP59169763A JP16976384A JPH0154284B2 JP H0154284 B2 JPH0154284 B2 JP H0154284B2 JP 59169763 A JP59169763 A JP 59169763A JP 16976384 A JP16976384 A JP 16976384A JP H0154284 B2 JPH0154284 B2 JP H0154284B2
Authority
JP
Japan
Prior art keywords
silicon carbide
temperature
talc
sic
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59169763A
Other languages
Japanese (ja)
Other versions
JPS6148414A (en
Inventor
Katsuyoshi Shimokawa
Toshima Sekiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59169763A priority Critical patent/JPS6148414A/en
Publication of JPS6148414A publication Critical patent/JPS6148414A/en
Publication of JPH0154284B2 publication Critical patent/JPH0154284B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭化けい素の製造に関する。炭化けい
素SiCは、その結晶構造から立方晶系のβ―SiC
と六方晶系のα―SiCに大別される。β―SiCは
1種類であるが、α―SiCは多くの多形が知られ
ており、現在100種類以上あるといわれている。
また各多形は同一温度領域内で共存することが多
く、従つて炭化けい素の性質は一般にこれら多形
の集合晶の性質である。そのおもな性質は次のよ
うである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of silicon carbide. Silicon carbide SiC is a cubic β-SiC due to its crystal structure.
and hexagonal α-SiC. Although there is only one type of β-SiC, many polymorphic forms of α-SiC are known, and it is said that there are currently more than 100 types.
Further, each polymorph often coexists within the same temperature range, and therefore the properties of silicon carbide are generally those of aggregate crystals of these polymorphs. Its main properties are as follows.

(1) 化学的性質−酸、アルカリに安定な化合物で
ある。
(1) Chemical properties: A compound that is stable to acids and alkalis.

(2) 分解温度−熱的安定性が強い。(2) Decomposition temperature - strong thermal stability.

(3) 酸化−空気中で、約850℃付近から酸化し、
クリストバライト(SiO2)になる。
(3) Oxidation: Oxidizes in air from around 850℃,
It becomes cristobalite (SiO 2 ).

(4) 電気的性質−純粋な結晶は常温で絶縁体であ
るが、微量不純物の種類と量によつて性質は大
きく影響され、半導体となる。
(4) Electrical properties - A pure crystal is an insulator at room temperature, but its properties are greatly affected by the type and amount of trace impurities, and it becomes a semiconductor.

(5) 硬度−新モース硬度でダイヤモンドを15、ア
ルミナを12としたとき、炭化けい素は13で、極
めて硬い。
(5) Hardness - When diamond is 15 and alumina is 12 on the new Mohs hardness scale, silicon carbide is extremely hard, with a rating of 13.

炭化けい素はこれらの性質を利用して超精密と
が超硬質合金の仕上げとして用いられる研磨材と
か、高温構造材料、電子材料などに用いられてい
る。
Utilizing these properties, silicon carbide is used in ultra-precision abrasives used as finishes for ultra-hard alloys, high-temperature structural materials, electronic materials, etc.

前述の炭化けい素は、アチソン法と呼ばれて
いる黒鉛粒、けい石、コークスなどを原料にし、
2000℃以上に加熱してα―SiCを製造する方法。
シリカとカーボンを不活性雰囲気中で2000℃以
下でβ―SiCを合成する方法。シリコンとカー
ボンを1400℃以下で直接反応させβ―SiCを合成
する方法などがあり、これらはいずれも工業的製
造法として行われている。またこの他に気相反応
法、ガス蒸発法、有機けい素ポリマーの熱分解法
などがすでに知られている。
The aforementioned silicon carbide is produced using graphite grains, silica, coke, etc. using the Acheson method as raw materials.
A method of producing α-SiC by heating to over 2000℃.
A method of synthesizing β-SiC using silica and carbon at temperatures below 2000℃ in an inert atmosphere. There are methods to synthesize β-SiC by directly reacting silicon and carbon at temperatures below 1400°C, and all of these methods are used as industrial manufacturing methods. In addition, other methods such as a gas phase reaction method, a gas evaporation method, and a method for thermally decomposing organic silicon polymers are already known.

本発明は炭化けい素組成のうちけい素成分に代
替する原料として滑石(タルク)を用いて炭化け
い素を製造する方法である。
The present invention is a method for producing silicon carbide using talc as a raw material to replace the silicon component in the silicon carbide composition.

滑石の化学組成は3MgO・4SiO2・H2Oであり、
このうちのシリカ分が炭化けい素を合成するのに
関与する成分となるものであり、この他に結晶水
とマグネシウム成分を含んでいる。結晶水は高温
で合成される間に逸散する。またマグネシウム成
分は磁性ボードと反応し、焼結固着するか気体と
なつて製品から除かれる。
The chemical composition of talc is 3MgO・4SiO 2・H 2 O,
Of these, the silica component is a component involved in synthesizing silicon carbide, and it also contains crystal water and magnesium components. Water of crystallization escapes during synthesis at high temperatures. In addition, the magnesium component reacts with the magnetic board and is either sintered and fixed or turned into a gas and removed from the product.

本発明においては滑石の使用が必要で、滑石と
同じフイ口ケイ酸塩に属するカオリナイトやフア
イヤライトを用いても所望の炭化けい素を得るこ
とができない。
The present invention requires the use of talc, and the desired silicon carbide cannot be obtained even if kaolinite or phialite, which belong to the same silicates as talc, are used.

本発明の合成炭化けい素の製造方法は高温電気
焼成炉の中で行われるが、あらかじめ木炭チヤー
と滑石を所定の組成に調整した試料を磁性ボード
に入れ、炉内の雰囲気を完全にアルゴンか窒素ガ
スで置換した状態で行われる。そして所定の温度
まで加熱し、1時間その状態を保持した後、室温
まで徐冷した後、反応物を外気に取り出し製品と
なる。
The method for producing synthetic silicon carbide of the present invention is carried out in a high-temperature electric firing furnace. A sample of charcoal charcoal and talc adjusted to a predetermined composition is placed in a magnetic board, and the atmosphere inside the furnace is completely changed to argon. It is carried out under nitrogen gas substitution. After heating to a predetermined temperature and maintaining that state for one hour, the reactant is slowly cooled to room temperature and then taken out to the outside air to form a product.

本発明の製造方法で非酸素雰囲気にする気体は
アルゴンか窒素ガスのいずれでもよいが、窒素ガ
ス雰囲気で製造する場合は炭化けい素の他に窒化
けい素が生成する。このため炭化けい素を純度よ
く製造するにはアルゴンガスで行うのがよく、こ
のガスを封じ込めた中、あるいは流通した中で合
成するとよいことがわかつた。つぎに、炭化けい
素を製造するための木炭チヤーと滑石の組成割合
は理論的な値として木炭1.5に対し、滑石1の割
合が最適と考えられる。しかし適当な温度条件下
であれば広い範囲で炭化けい素の製造が可能であ
る。とともに、好ましくはチヤーと滑石の組成比
は1:2から2:1の範囲がよいことがわかつ
た。
In the manufacturing method of the present invention, the gas used to create the non-oxygen atmosphere may be either argon or nitrogen gas, but when manufacturing in a nitrogen gas atmosphere, silicon nitride is produced in addition to silicon carbide. For this reason, it was found that in order to produce silicon carbide with high purity, it is best to use argon gas, and it is best to synthesize it while this gas is confined or in circulation. Next, as a theoretical value for the composition ratio of charcoal char and talc for producing silicon carbide, a ratio of 1.5 parts charcoal to 1 part talc is considered to be optimal. However, silicon carbide can be produced in a wide range of conditions under appropriate temperature conditions. In addition, it has been found that the composition ratio of char and talc is preferably in the range of 1:2 to 2:1.

また、焼成温度は1200℃付近から炭化けい素の
生成が認められ、温度が高くなるほどその生成は
良くなり、好ましくは1500℃以上で焼成するのが
良いことがわかつた。
Furthermore, the formation of silicon carbide was observed at a firing temperature of around 1200°C, and the higher the temperature, the better the formation, and it was found that firing at a temperature of 1500°C or higher is preferable.

また1300℃から1400℃においてウイスカおよび
針状結晶の生成が確認された。
Furthermore, the formation of whiskers and needle-like crystals was confirmed between 1300℃ and 1400℃.

以下の実施例によつて本発明方法による炭化け
い素の製造を具体的に説明する。なお供した滑石
は鉱山から採堀した鉱石であり、これは滑石の他
にマグネサイトを少量と、固溶した形で存在する
鉄(Fe2O3で約5%)を含んでいる。この鉄成分
は、合成した炭化けい素と共存し、不純物鉱物
(鉄−けい素−炭素(Fe、Si、C)系鉱物)とし
て存在する。
The production of silicon carbide by the method of the present invention will be specifically explained with reference to the following examples. The talc provided was ore excavated from a mine, and in addition to talc, it contains a small amount of magnesite and iron (approximately 5% Fe 2 O 3 ) present in solid solution form. This iron component coexists with the synthesized silicon carbide and exists as an impurity mineral (iron-silicon-carbon (Fe, Si, C) mineral).

実施例 1 滑石と木炭チヤーとの混合比を1:1に調合し
た試料を磁性ボードに入れる。この混合物を抵抗
式電気炉に入れ1550℃で合成した。この時の非酸
素雰囲気に使用した気体はアルゴンガスであり、
その流量は毎分50ml程度である。また昇温は毎分
28℃で行い、1550℃に達した後、1時間その状態
を保持した。その後、電気炉への通電を停止し、
室温まで放冷した。生成した合成試料をX線回折
分析に供した。
Example 1 A sample prepared by mixing talc and charcoal at a mixing ratio of 1:1 was placed on a magnetic board. This mixture was put into a resistance electric furnace and synthesized at 1550°C. The gas used for the non-oxygen atmosphere at this time was argon gas,
Its flow rate is about 50ml per minute. Also, the temperature rises every minute.
The temperature was 28°C, and after reaching 1550°C, the temperature was maintained for 1 hour. After that, the power to the electric furnace is stopped,
It was allowed to cool to room temperature. The resulting synthetic sample was subjected to X-ray diffraction analysis.

X線回折図を第1図に示す。生成した鉱物は炭
化けい素(β―SiC)であることが確認できる。
この場合のβ―SiCの生成量は約97%以上であつ
た。なお、図から他の小さなピークが認められる
が、これは鉄−けい素−炭素(Fe、Si、C)よ
りなる鉱物と考えられる、滑石鉱石中の鉄との反
応物である。
The X-ray diffraction diagram is shown in FIG. It can be confirmed that the mineral produced is silicon carbide (β-SiC).
In this case, the amount of β-SiC produced was about 97% or more. It should be noted that another small peak can be seen in the figure, but this is a reaction product with iron in talc ore, which is considered to be a mineral consisting of iron-silicon-carbon (Fe, Si, C).

実施例 2 滑石と木炭チヤーとの混合比を1:1に調合し
た試料を磁性ボードに取り、これを抵抗式電気炉
に入れ、1500℃で合成した。この時の非酸素雰囲
気は窒素ガスで調整し、その流量は約毎分50mlで
ある。また炉の昇温は毎分37.5℃で行い、1500℃
に達した後、1時間その状態を保持した。その後
室温まで除冷した。
Example 2 A sample prepared by mixing talc and charcoal at a mixing ratio of 1:1 was placed on a magnetic board, placed in a resistance electric furnace, and synthesized at 1500°C. At this time, the non-oxygen atmosphere was adjusted with nitrogen gas, and the flow rate was approximately 50 ml per minute. In addition, the temperature of the furnace is raised at 37.5℃ per minute, and the temperature rises to 1500℃.
After reaching the temperature, the condition was maintained for 1 hour. Thereafter, it was slowly cooled to room temperature.

生成した合成物のX線回折図を第2図に示し
た。主成分はβ―SiCであるが、この他α型およ
びβ型の窒化けい素、ならびに(Fe、Si、C)
系の鉱物が確認される。
The X-ray diffraction pattern of the produced compound is shown in FIG. The main component is β-SiC, but also α-type and β-type silicon nitride, and (Fe, Si, C)
system minerals are confirmed.

実施例 3 滑石と木炭チヤーとの混合比を1:2に調合し
た試料を磁性ボードに取り、これを抵抗式電気炉
に入れ、1500℃で合成した。この時の非酸素雰囲
気はアルゴンガスで調整した。この時のガスの流
量および炉の温度調節は実施例2と同じにして行
つた。この場合に生成した合成物のX線回折図を
第3図に示した。
Example 3 A sample prepared by mixing talc and charcoal at a mixing ratio of 1:2 was placed on a magnetic board, placed in a resistance electric furnace, and synthesized at 1500°C. The non-oxygen atmosphere at this time was adjusted with argon gas. The gas flow rate and furnace temperature adjustment at this time were the same as in Example 2. The X-ray diffraction pattern of the compound produced in this case is shown in FIG.

β―SiCの生成がおもであり、この他は(Fe、
Si、C)系鉱物と、炭化けい素系であるが、炭素
量の多い中間鉱物が確認される。
The main production is β-SiC, and the others are (Fe,
Si, C) based minerals and intermediate minerals that are silicon carbide based but have a high carbon content are confirmed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は合成して得られた反
応物のX線回折図を示した。横軸は回折角度2θを
表わし、縦軸は各鉱物の回折強度を表わしてい
る。回折強度が強く(ピークが高く)、鈍いほど
一般的に結晶性がよく、量的にも多いことを示し
ている。各図の中のピーク上にSiC,SiN1,
SiN2,FSC,SCと記したが、これらはそれぞ
れ次の鉱物を表わしている。 SiC:β型炭化けい素、SiN1:α型窒化ケイ
素、SiN2:β型窒化けい素、FSC:鉄−ケイ素
−炭素系鉱物、SC:炭化けい素の中間鉱物
(SixCy)。
Figures 1, 2, and 3 show X-ray diffraction patterns of the synthesized reactants. The horizontal axis represents the diffraction angle 2θ, and the vertical axis represents the diffraction intensity of each mineral. The stronger the diffraction intensity (higher the peak) and the duller the peak, the better the crystallinity and the larger the quantity. SiC, SiN1,
Written as SiN2, FSC, and SC, these represent the following minerals, respectively. SiC: β-type silicon carbide, SiN1: α-type silicon nitride, SiN2: β-type silicon nitride, FSC: iron-silicon-carbon mineral, SC: intermediate mineral of silicon carbide (SixCy).

Claims (1)

【特許請求の範囲】[Claims] 1 滑石と木炭チヤーを非酸素雰囲気下において
1200℃以上の温度で反応させることを特徴とする
炭化けい素の製造法。
1. Putting talc and charcoal charcoal in a non-oxygen atmosphere
A method for producing silicon carbide characterized by reaction at a temperature of 1200°C or higher.
JP59169763A 1984-08-13 1984-08-13 Preparation of silicon carbide Granted JPS6148414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59169763A JPS6148414A (en) 1984-08-13 1984-08-13 Preparation of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59169763A JPS6148414A (en) 1984-08-13 1984-08-13 Preparation of silicon carbide

Publications (2)

Publication Number Publication Date
JPS6148414A JPS6148414A (en) 1986-03-10
JPH0154284B2 true JPH0154284B2 (en) 1989-11-17

Family

ID=15892398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59169763A Granted JPS6148414A (en) 1984-08-13 1984-08-13 Preparation of silicon carbide

Country Status (1)

Country Link
JP (1) JPS6148414A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140710A (en) * 1979-04-16 1980-11-04 Nippon Tungsten Co Ltd Manufacture of silicon carbide fine powder
JPS55140711A (en) * 1979-04-16 1980-11-04 Nippon Tungsten Co Ltd Manufacture of silicon carbide powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140710A (en) * 1979-04-16 1980-11-04 Nippon Tungsten Co Ltd Manufacture of silicon carbide fine powder
JPS55140711A (en) * 1979-04-16 1980-11-04 Nippon Tungsten Co Ltd Manufacture of silicon carbide powder

Also Published As

Publication number Publication date
JPS6148414A (en) 1986-03-10

Similar Documents

Publication Publication Date Title
KR890002543B1 (en) Method for preparation of hexagonal boron nitride powder
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
US4619905A (en) Process for the synthesis of silicon nitride
US4346068A (en) Process for preparing high-purity α-type silicon nitride
US4141740A (en) Solid solution and process for producing a solid solution
JPS61256905A (en) Fine hexagonal boron nitride power having high purity and its preparation
JPS6111886B2 (en)
JPH0154284B2 (en)
JPS6351965B2 (en)
US8449854B2 (en) Method for preparation of new superhard B-C-N material and material made therefrom
KR100386510B1 (en) Method for Preparing Aluminum Nitride Powder by Self-propagating High-temperature Synthesis
KR20040075325A (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same
JPH0535084B2 (en)
Peng et al. Growth of 5H-type silicon carbide whisker
JPH0137325B2 (en)
JPH06298515A (en) Alpha-silicon carbide and its production
JPH01203205A (en) Production of boron nitride powder
JPH0512300B2 (en)
JPH0151443B2 (en)
KR19990045454A (en) Method for producing cubic boron nitride
Ault Raw materials for refractories: SiC and Si3N4
JP2633620B2 (en) Method for producing silicon carbide whiskers
JPH062568B2 (en) Method for producing high-purity silicon carbide powder
JPH0454609B2 (en)
JPH066485B2 (en) Method for producing silicon carbide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term