JPH0153718B2 - - Google Patents

Info

Publication number
JPH0153718B2
JPH0153718B2 JP56193944A JP19394481A JPH0153718B2 JP H0153718 B2 JPH0153718 B2 JP H0153718B2 JP 56193944 A JP56193944 A JP 56193944A JP 19394481 A JP19394481 A JP 19394481A JP H0153718 B2 JPH0153718 B2 JP H0153718B2
Authority
JP
Japan
Prior art keywords
highly unsaturated
unsaturated hydrocarbons
hydrocarbons
reaction
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56193944A
Other languages
Japanese (ja)
Other versions
JPS5896683A (en
Inventor
Masashi Araki
Yasuhiko Too
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP56193944A priority Critical patent/JPS5896683A/en
Publication of JPS5896683A publication Critical patent/JPS5896683A/en
Publication of JPH0153718B2 publication Critical patent/JPH0153718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はジエン類、アセチレン類のモノエン類
への選択的水素添加法に関するものである。さら
に詳しくは分子内に2以上の二重結合および/ま
たは1以上の三重結合を有する不飽和炭化水素
(以下、高度に不飽和な炭化水素と称す)を含む
炭素数4以上の不飽和炭化水素混合物を触媒の存
在下に水素と接触させて二重結合の異性化を伴わ
ずに高度に不飽和な炭化水素のみを対応する低不
飽和度の炭化水素に転化する方法に関するもので
ある。 高度に不飽和な炭化水素を含む炭素数4以上の
不飽和炭化水素混合物と水素を水素化触媒の存在
下に反応させて高度に不飽和な炭化水素を対応す
る低不飽和度の炭化水素に選択的に水素添加する
方法は一般に公知であり、たとえばブタジエン、
メチルアレン等のジエン類、ジメチルアセチレ
ン、エチルアセチレン、ビニルアセチレン等のア
セチレン類および1―ブテン、2―ブテン、イソ
ブテン等のモノオレフイン類を含有する炭素数4
の不飽和炭化水素混合物を水素とともにパラジウ
ム、白金、ニツケルなどの水素化触媒の存在下に
反応させてジエン類、アセチレン類のみを選択的
に水添する方法は工業的にも採用されている。 しかしながら、これら公知の選択的水素添加方
法においては、2以上の二重結合および1以上の
三重結合など高度に不飽和な結合への選択的水素
添加と同時に二重結合の分子内移動が容易に起こ
り、反応生成物の組成が大きく変つてしまう欠点
があつた。たとえばブタジエン類、ブチン類を含
む炭素数4の不飽和炭化水素の選択的水添反応を
行なつた場合、ブタジエン類、ブチン類からブテ
ンへの選択的水素添加と同時に1―ブテンから2
―ブテンへの異性化が容易に進み、このため反応
生成物中の1―ブテン濃度が大きく減少してしま
う。 1―ブテンはポリオレフイン製造用モノマーと
して重要であり、炭素数4の炭化水素混合物中の
1―ブテンの有効利用をはかる上からも異性化を
伴わないで高度に不飽和な炭化水素のみを選択的
に水添できる方法の出現が強く望まれていた。 本発明者らは、このようなオレフイン類の異性
化を伴わない高度に不飽和な炭化水素の選択的水
添方法について鋭意研究を行ない本発明に到達し
たものである。 すなわち、高度に不飽和な炭化水素を含む炭素
数4以上の低不飽和度の炭化水素をパラジウム触
媒の存在下に水素と接触させて前記の高度に不飽
和な炭化水素を選択的に水素添加する方法におい
て、高度に不飽和な炭化水素を含む炭素数4以上
の低不飽和度の炭化水素混合物に対して0.005〜
5重量%の低級アルコールの存在下に水添反応を
行なうことにより、オレフイン類の異性化をほと
んど伴なうことなく高度に不飽和な炭化水素の選
択的水添反応のみが進行することを見出したもの
である。 本発明方法に用いられる低級アルコールとして
は炭素数1ないし4のアルコールが用いられる。 これらのアルコールとしてメタノール、エタノ
ール、n―プロパノール、n―ブタノール、t―
ブタノール等があるが、好ましくはメタノールが
用いられる。低級アルコールは原料炭化水素混合
物に対して0.005〜5重量%存在させることが必
要であり、好ましくは0.01〜1重量%存在させる
低級アルコールを原料炭化水素混合物に対して
0.005重量%未満存在させても低級アルコールの
添加効果はほとんどなく、また5重量%を超えて
存在させると却つて高度に不飽和な炭化水素の水
添反応が阻害される。オレフイン類の異性化を伴
わずに高度に不飽和な炭化水素を選択的に水添す
る方法として大量のCOガスを含んだH2ガスを用
いて選択的水添反応を行なう方法(特公昭46−
30808号)一段目に気液混相で水添し、二段目は
液相で水添する方法(特公昭52−16082号)ある
いは特殊な触媒を用いる方法(特公昭50−28922
号、ドイツ特許2108276号)等が提案されている。 しかしながら、これらの方法はそれぞれ高価な
COガスを用いる必要があるとか、特殊な触媒を
用いる必要があるとか、またプロセスが煩雑にな
るとかの欠点を有していた。 本発明方法は安価な低級アルコールを少量存在
させるだけでオレフイン類の異性化を伴なうこと
なく高度に不飽和な炭化水素の選択的水素添加反
応のみが進行する方法を提供するものであり、そ
の工業的意義は大きい。 本発明方法に用いられる高度に不飽和な炭化水
素を含む炭素数4以上の低不飽和度の炭化水素混
合物としては、ナフサ等のスチームクラツキング
によつて得られるいわゆるC4留分と呼ばれるブ
タジエン、ブテン、ブタン等からなるC4炭化水
素混合物、そしてこのC4留分からブタジエンの
大部分を抽出によつて取り除いたいわゆるスペン
トBB留分と呼ばれるC4炭化水素混合物、このス
ペントBB留分からさらにイソブチレンを取り除
いた1―ブテンおよび2―ブテンを主成分とする
C4炭化水素混合物、それにイソプレン等のC5
化水素類を主成分とする炭化水素混合物などが挙
げられる。これらの炭化水素混合物中に含まれる
高度に不飽和な炭化水素としてはプロパジエン、
メチルアセチレン、1,2―ブタジエン、1,3
―ブタジエン、エチルアセチレン、ビニル―アセ
チレン、1,3―ペンタジエン等がある。 本発明方法には、水添触媒としてパラジウム触
媒が用いられる。パラジウム触媒としてはパラジ
ウムブラツク、パラジウム担持カーボン、パラジ
ウム担持アルミナ等があるが、通常アルミナ等の
担体にパラジウムを0.02〜2重量%担持した触媒
が用いられる。 本発明方法における反応形態は特に限定される
ものではなく、液相、気相あるいはトリクル相の
ような気液混相のいずれもの方法で行なつてもよ
い。また反応条件としては、通常反応温度は−20
〜150℃、反応圧力は常圧〜50気圧の条件下で行
なわれる。 以下に実施例を用いて本発明方法の説明を行な
うが、本発明の範囲はこれらによつて制限を受け
るものではない。 実施例 1 0.1重量%のパラジウムをアルミナに担持した
触媒100mlを内径20mmの垂直に配置した反応管内
に充填し、温度60℃、圧力4気圧の条件下で第1
表の原料欄に記載した組成を持つ炭化水素混合物
に対して0.2重量%のメタノールを添加したもの
を原料として500g/hrの供給速度で反応器に導
入し、また水素ガスを8(N.T.P.換算)/hr
の供給速度で反応器に導入し、選択的水素添加反
応を行なつた。得られた炭化水素生成物の組成は
第1表の生成物欄に示すとおりであつた。
The present invention relates to a method for selectively hydrogenating dienes and acetylenes to monoenes. More specifically, unsaturated hydrocarbons having 4 or more carbon atoms, including unsaturated hydrocarbons having 2 or more double bonds and/or 1 or more triple bonds in the molecule (hereinafter referred to as highly unsaturated hydrocarbons) The present invention relates to a method of contacting a mixture with hydrogen in the presence of a catalyst to convert only highly unsaturated hydrocarbons into corresponding hydrocarbons with a lower degree of unsaturation without isomerization of double bonds. A mixture of unsaturated hydrocarbons with a carbon number of 4 or more, including highly unsaturated hydrocarbons, is reacted with hydrogen in the presence of a hydrogenation catalyst to convert the highly unsaturated hydrocarbons into corresponding hydrocarbons with a low degree of unsaturation. Methods of selective hydrogenation are generally known, such as butadiene,
Carbon number 4 containing dienes such as methylalene, acetylenes such as dimethylacetylene, ethylacetylene, vinylacetylene, and monoolefins such as 1-butene, 2-butene, isobutene, etc.
A method of selectively hydrogenating only dienes and acetylenes by reacting a mixture of unsaturated hydrocarbons with hydrogen in the presence of a hydrogenation catalyst such as palladium, platinum, or nickel has also been adopted industrially. However, in these known selective hydrogenation methods, it is difficult to selectively hydrogenate highly unsaturated bonds, such as two or more double bonds and one or more triple bonds, while at the same time easily moving the double bond into the molecule. This has the disadvantage that the composition of the reaction product changes significantly. For example, when performing a selective hydrogenation reaction of unsaturated hydrocarbons with 4 carbon atoms including butadienes and butynes, the selective hydrogenation reaction from butadienes and butynes to butenes is simultaneously performed.
-Isomerization to butene easily proceeds, resulting in a large decrease in the 1-butene concentration in the reaction product. 1-Butene is important as a monomer for producing polyolefins, and in order to effectively utilize 1-butene in a mixture of hydrocarbons with 4 carbon atoms, highly unsaturated hydrocarbons can be selectively extracted without isomerization. There was a strong desire for a method that could hydrogenate The present inventors have conducted intensive research on a method for selective hydrogenation of highly unsaturated hydrocarbons that does not involve isomerization of such olefins, and have arrived at the present invention. That is, a hydrocarbon with a low degree of unsaturation having 4 or more carbon atoms, including a highly unsaturated hydrocarbon, is brought into contact with hydrogen in the presence of a palladium catalyst to selectively hydrogenate the highly unsaturated hydrocarbon. In the method of
We have discovered that by carrying out the hydrogenation reaction in the presence of 5% by weight of lower alcohols, only the selective hydrogenation reaction of highly unsaturated hydrocarbons proceeds with almost no isomerization of olefins. It is something that The lower alcohol used in the method of the present invention is an alcohol having 1 to 4 carbon atoms. These alcohols include methanol, ethanol, n-propanol, n-butanol, t-
Although there are butanol and the like, methanol is preferably used. The lower alcohol needs to be present in an amount of 0.005 to 5% by weight based on the raw material hydrocarbon mixture, preferably 0.01 to 1% by weight based on the raw material hydrocarbon mixture.
Even if it is present in an amount less than 0.005% by weight, there is almost no effect of adding the lower alcohol, and if it is present in an amount exceeding 5% by weight, the hydrogenation reaction of highly unsaturated hydrocarbons is inhibited. As a method for selectively hydrogenating highly unsaturated hydrocarbons without isomerizing olefins, a method of selective hydrogenation using H2 gas containing a large amount of CO gas (Japanese Patent Publication No. 46) −
30808) A method in which hydrogenation is carried out in a gas-liquid mixed phase in the first stage and a liquid phase in the second stage (Japanese Patent Publication No. 52-16082) or a method using a special catalyst (Japanese Patent Publication No. 50-28922)
German Patent No. 2108276), etc. have been proposed. However, each of these methods is expensive
It has disadvantages such as the need to use CO gas, the need to use a special catalyst, and the complicated process. The method of the present invention provides a method in which only the selective hydrogenation reaction of highly unsaturated hydrocarbons proceeds without isomerization of olefins by only the presence of a small amount of inexpensive lower alcohol, Its industrial significance is great. The hydrocarbon mixture containing highly unsaturated hydrocarbons and having a carbon number of 4 or more and having a low degree of unsaturation used in the method of the present invention is the so-called C 4 fraction obtained by steam cracking of naphtha etc. A C 4 hydrocarbon mixture consisting of butadiene, butene, butane, etc., and a C 4 hydrocarbon mixture called a so-called spent BB fraction obtained by removing most of the butadiene from this C 4 fraction by extraction. Main ingredients are 1-butene and 2-butene from which isobutylene has been removed.
Examples include C 4 hydrocarbon mixtures and hydrocarbon mixtures containing C 5 hydrocarbons such as isoprene as a main component. The highly unsaturated hydrocarbons contained in these hydrocarbon mixtures include propadiene,
Methylacetylene, 1,2-butadiene, 1,3
-Butadiene, ethyl acetylene, vinyl acetylene, 1,3-pentadiene, etc. In the method of the present invention, a palladium catalyst is used as a hydrogenation catalyst. Palladium catalysts include palladium black, palladium-supported carbon, palladium-supported alumina, etc., but catalysts in which 0.02 to 2% by weight of palladium is supported on a carrier such as alumina are usually used. The reaction form in the method of the present invention is not particularly limited, and may be carried out in any of a liquid phase, a gas phase, or a gas-liquid mixed phase such as a trickle phase. In addition, as for reaction conditions, the reaction temperature is usually -20
The reaction is carried out at a temperature of ~150°C and a reaction pressure of normal pressure to 50 atm. The method of the present invention will be explained below using Examples, but the scope of the present invention is not limited by these. Example 1 100ml of a catalyst in which 0.1% by weight of palladium was supported on alumina was packed into a vertically arranged reaction tube with an inner diameter of 20mm, and a
A hydrocarbon mixture having the composition described in the raw material column of the table with 0.2% by weight of methanol added was introduced into the reactor as a raw material at a feed rate of 500 g/hr, and hydrogen gas was added to the reactor at a feed rate of 8 (NTP equivalent). /hr
was introduced into the reactor at a feed rate of 2, to carry out a selective hydrogenation reaction. The composition of the obtained hydrocarbon product was as shown in the product column of Table 1.

【表】 このようにブタジエン、プロパジエン、ビニル
アセチレンのような高度に不飽和な炭化水素はほ
とんど水添され、かつ1―ブテンの異性化率(転
化率)は3%程度であつた。 比較例 1 メタノールを添加しないこと以外は実施例1に
記載したのと同じ方法、同じ反応条件下で水添反
応を行ない下記の結果を得た。 生成物中のブタジエン濃度……128ppm 1―ブテン転化率……10.2% 実施例2,3、比較例2 炭化水素混合物に対してメタノールを第2表に
示す割合で添加したものを原料として反応を行な
つた。なお、他の反応条件については実施例1に
記載したのと同じ方法で行なつた。また用いた炭
化水素混合物も実施例1で用いたものと同じであ
つた。 結果は表2に示すとおりであつた。
[Table] As can be seen, most of the highly unsaturated hydrocarbons such as butadiene, propadiene, and vinyl acetylene were hydrogenated, and the isomerization rate (conversion rate) of 1-butene was about 3%. Comparative Example 1 A hydrogenation reaction was carried out in the same manner and under the same reaction conditions as described in Example 1, except that methanol was not added, and the following results were obtained. Butadiene concentration in the product...128 ppm 1-butene conversion rate...10.2% Examples 2 and 3, Comparative Example 2 A reaction was carried out using a hydrocarbon mixture to which methanol was added in the ratio shown in Table 2 as a raw material. I did it. The other reaction conditions were the same as those described in Example 1. The hydrocarbon mixture used was also the same as that used in Example 1. The results were as shown in Table 2.

【表】 実施例 4,5 メタノールのかわりにエタノール、n―プロパ
ノールを炭化水素混合物に対してそれぞれ0.1重
量%添加したものを原料として反応を行なつた。
なお、他の反応条件については実施例1に記載し
たのと同じ方法で行なつた。 結果は第3表に示すとおりであつた。
[Table] Examples 4 and 5 A reaction was carried out using a hydrocarbon mixture containing 0.1% by weight of each of ethanol and n-propanol instead of methanol as raw materials.
The other reaction conditions were the same as those described in Example 1. The results were as shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 高度に不飽和な炭化水素を含む炭素数4以上
の低不飽和度の炭化水素をパラジウム触媒の存在
下に水素と接触させ、前記の高度に不飽和な炭化
水素を選択的に水素添加する方法において、高度
に不飽和な炭化水素を含む炭素数4以上の低不飽
和度の炭化水素に対して0.005〜5重量%の低級
アルコールを存在させることを特徴とする炭化水
素類の選択的水素添加方法。 2 低級アルコールがメタノールであることを特
徴とする特許請求の範囲第1項記載の炭化水素類
の選択的水素添加方法。
[Claims] 1. Hydrocarbons with a low degree of unsaturation having 4 or more carbon atoms, including highly unsaturated hydrocarbons, are brought into contact with hydrogen in the presence of a palladium catalyst, and the highly unsaturated hydrocarbons are A method of selective hydrogenation, characterized in that 0.005 to 5% by weight of a lower alcohol is present in a hydrocarbon with a low degree of unsaturation having 4 or more carbon atoms, including a highly unsaturated hydrocarbon. A method for selectively hydrogenating hydrogens. 2. The method for selectively hydrogenating hydrocarbons according to claim 1, wherein the lower alcohol is methanol.
JP56193944A 1981-12-01 1981-12-01 Selective hydrogenation of hydrocarbon Granted JPS5896683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56193944A JPS5896683A (en) 1981-12-01 1981-12-01 Selective hydrogenation of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56193944A JPS5896683A (en) 1981-12-01 1981-12-01 Selective hydrogenation of hydrocarbon

Publications (2)

Publication Number Publication Date
JPS5896683A JPS5896683A (en) 1983-06-08
JPH0153718B2 true JPH0153718B2 (en) 1989-11-15

Family

ID=16316341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56193944A Granted JPS5896683A (en) 1981-12-01 1981-12-01 Selective hydrogenation of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS5896683A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696709B2 (en) * 1987-10-23 1994-11-30 日本石油株式会社 Method for selective hydrogenation of hydrocarbons

Also Published As

Publication number Publication date
JPS5896683A (en) 1983-06-08

Similar Documents

Publication Publication Date Title
JPH0253479B2 (en)
KR850001778B1 (en) Process for the selective hydrogenation of poly-unsaturated hydrocarbons in hydrocarbon mixtures
US4132745A (en) Process for isomerizing 1-butene to 2-butene
Molnár et al. Hydrogenation of carbon–carbon multiple bonds: chemo-, regio-and stereo-selectivity
US3485887A (en) Process for the treatment by hydrogenation of c4-hydrocarbons containing butadiene and n-but-1-ene
US3770619A (en) Process for hydrocarbon purification by selective hydrogenation
McGown et al. Hydrogenation of acetylene in excess ethylene on an alumina-supported palladium catalyst at atmospheric pressure in a spinning basket reactor
PL192732B1 (en) Method of selectively hydrogenating highly unsaturated compounds in a stream of hydrocarbons
US3662015A (en) Method of preventing double bond migration of mono-olefinic hydrocarbons in selective hydrogenation
US3098882A (en) Selective hydrogenation procedure and catalyst therefor
JP5774100B2 (en) Process for the selective hydrogenation of polyunsaturated hydrocarbons in olefin-containing hydrocarbon mixtures
GB1424288A (en) Elective hydrogenation process
US4230897A (en) Process for selectively hydrogenating a hydrocarbon cut containing at least one diolefinic hydrocarbon and at least one acetylenic hydrocarbon using a palladium catalyst with crystallites of at least 50 angstroms
Koeppel et al. Selective hydrogenation of C4-alkynes over a copper on silica catalyst
US3634536A (en) Selective hydrogenation of alkynes
US3804916A (en) Selective hydrogenation of alkynes or 1,3-conjugated dienes
WO1993021137A1 (en) Process for the selective hydrogenation and isomerization of hydrocarbons
JPS6325566B2 (en)
JPH0153718B2 (en)
US4036904A (en) Isomerization of allenes in a hydrocarbon stream using magnesium oxide catalyst
JPH0150278B2 (en)
JPS639496B2 (en)
JPH0227390B2 (en)
JPS6146035B2 (en)
CA1142506A (en) Hydrogenation catalyst