JPH0153359B2 - - Google Patents

Info

Publication number
JPH0153359B2
JPH0153359B2 JP902383A JP902383A JPH0153359B2 JP H0153359 B2 JPH0153359 B2 JP H0153359B2 JP 902383 A JP902383 A JP 902383A JP 902383 A JP902383 A JP 902383A JP H0153359 B2 JPH0153359 B2 JP H0153359B2
Authority
JP
Japan
Prior art keywords
plating
chrome plating
layer
chrome
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP902383A
Other languages
Japanese (ja)
Other versions
JPS59136489A (en
Inventor
Tomohiro Minegishi
Matsufumi Takatani
Keiichi Terajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futsuka Kuroomu Kk
Original Assignee
Futsuka Kuroomu Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futsuka Kuroomu Kk filed Critical Futsuka Kuroomu Kk
Priority to JP902383A priority Critical patent/JPS59136489A/en
Publication of JPS59136489A publication Critical patent/JPS59136489A/en
Publication of JPH0153359B2 publication Critical patent/JPH0153359B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はクロムめつき法に係り、主として鉄、
アルミニウムの如き腐食し易く、且つ軟質の金属
の表面に、特開昭58−157986号公報にて提案した
クロムめつき浴により下地クロムめつきを施した
後硬質クロムめつきを施すことによつて、耐食
性、耐摩耗性に優れためつき層を容易に得られる
様にすることで前記金属の使用範囲の拡大を可能
にしたクロムめつき法に関するものである。
[Detailed Description of the Invention] The present invention relates to a chromium plating method, mainly for iron,
By applying a base chrome plating to the surface of a soft metal such as aluminum that is easily corroded using a chromium plating bath proposed in JP-A-58-157986, and then applying a hard chrome plating. This invention relates to a chromium plating method that makes it possible to expand the scope of use of the metal by easily obtaining a tacky layer with excellent corrosion resistance and abrasion resistance.

鉄鋼、アルミニウム合金等は腐食し易く、又、
比較的軟質であるがために、その使用範囲が非常
に限定されているのが現状である。
Steel, aluminum alloys, etc. are prone to corrosion, and
Currently, because it is relatively soft, its range of use is extremely limited.

そこで、従来からこれらの金属の表面に各種め
つき、或いは耐食性を有する被覆層を形成する表
面処理を施しているが、中でもめつきについては
他方面にわたつて使用され、例えば、鉄鋼等の耐
食性には、銅めつき、ニツケルめつき、及びクロ
ムめつきの順にめつきを施す工程がとられ、又、
アルミニウム合金の場合には、その表面を亜鉛置
換した後銅めつき、ニツケルめつき、クロムめつ
きの順でめつき加工が施されている。
Therefore, various types of plating or surface treatments to form a coating layer with corrosion resistance have been applied to the surfaces of these metals, but plating is used on the other side, for example, to improve the corrosion resistance of steel, etc. The process of plating is performed in the order of copper plating, nickel plating, and chrome plating, and
In the case of aluminum alloys, the surface is replaced with zinc and then plated in the following order: copper plating, nickel plating, and chrome plating.

しかし、最後に行なうクロムめつきによるめつ
き厚は数μmが限界であるため、耐摩耗性の良好
なめつき面を得るためには充分なめつき厚とは言
えない。すなわち、めつき厚が薄いと耐摩耗性を
有するクロムめつき層が直に摩耗したり、或いは
剥れ落ちてしまうのである。そして、そのめつき
層の厚さを薄くしか施せない要因としては、下地
金属と電着によつて形成された硬質クロムめつき
層との内部応力の差が大きく、クロムめつき層の
厚さを厚くすると下地金属から剥離してしまう現
象が大きなものとして挙げられる。そのため、鉄
鋼上への硬質クロムめつき加工のうち数10μm以
上のめつき厚を必要とする場合には、何等下地め
つき処理を施さず鉄鋼上に直接硬質クロムめつき
を施して実施されているが、鉄鋼上に直接硬質ク
ロムめつきを施した場合には、めつき厚が厚くな
るとクラツクが多数発生するため、硬質で耐摩耗
性は期待されるものの、クラツクという素地への
貫通孔が発生しているためクラツクの部分から素
地が腐食してしまい耐食性は期待することができ
ず、実際には、防錆油等を塗布して素地の腐食を
防いでいるのが現状である。しかも、長時間の稼
動或いは露出によつても錆等が発生し、例えば機
械等の摺動面に硬質クロムめつきを施した場合等
にはその錆によつて生成された酸化鉄が摺動部分
の硬質クロムめつき面を破壊し、それがために硬
質クロムめつきの耐摩耗性を有する性質を低下さ
せるもので、それ故に、硬質クロムめつきにおけ
る耐食性についての改善は工業的に極めて重要な
課題となつていた。
However, the plating thickness of the final chrome plating is limited to several micrometers, which cannot be said to be sufficient to obtain a plated surface with good wear resistance. In other words, if the plating thickness is too thin, the wear-resistant chrome plating layer will wear out directly or peel off. The reason why the thickness of the chrome plating layer can only be made thin is that there is a large difference in internal stress between the base metal and the hard chrome plating layer formed by electrodeposition. A major problem that can be mentioned is that when the thickness is increased, it peels off from the underlying metal. Therefore, when hard chrome plating on steel requires a plating thickness of several tens of micrometers or more, hard chrome plating is performed directly on the steel without any base plating treatment. However, when hard chrome plating is applied directly to steel, many cracks occur as the plating thickens, so although it is expected to be hard and wear resistant, the cracks are the holes that penetrate into the substrate. As a result, the base material corrodes starting from the cracks, and corrosion resistance cannot be expected.In reality, corrosion of the base material is prevented by applying anti-rust oil or the like. In addition, rust can also occur due to long-term operation or exposure. For example, when hard chrome plating is applied to the sliding surfaces of machinery, iron oxide generated by the rust can cause the sliding surface to deteriorate. It destroys the hard chrome plated surface of the part, thereby reducing the wear-resistant properties of the hard chrome plating.Therefore, improving the corrosion resistance of hard chrome plating is of great industrial importance. This had become an issue.

そこで、この改善策のひとつとして鉄鋼の表面
に第1層下地としてNi−P合金の無電解めつき
を施した後硬質クロムめつき加工を行なう多層め
つき加工が提案されているが、Ni−P合金の電
着速度が数μm/hourと極めて遅いこと、第2
層として施す硬質クロムめつきの第1層下地への
密着を良好にするためには、該下地であるNi−
P合金のめつき層と硬質クロムめつき層とのめつ
き厚の比を2:1以下にしなければならないの
で、硬質クロムめつき層のめつき厚は自と限界を
有すること、更に、これらの第1層、第2層を繰
返し行なつて多層のめつき加工を施す場合に、第
2層である硬質クロムめつきへのNi−P合金の
めつきの密着性が低いため容易に剥離するので多
層化が容易でないという欠点がありほとんど実用
に供されていない。
Therefore, as one of the measures to improve this problem, a multilayer plating process has been proposed in which Ni-P alloy is electrolessly plated as a first base layer on the steel surface, and then hard chrome plating is performed. The second reason is that the electrodeposition rate of P alloy is extremely slow at several μm/hour.
In order to improve the adhesion of the hard chrome plating applied as a layer to the first layer base, it is necessary to
Since the ratio of the plating thickness between the P alloy plating layer and the hard chromium plating layer must be 2:1 or less, the plating thickness of the hard chromium plating layer has its own limits; When performing multilayer plating by repeating the first and second layers, the Ni-P alloy plating has poor adhesion to the second layer of hard chrome plating, so it easily peels off. Therefore, it has the disadvantage that multi-layering is not easy, so it is hardly put into practical use.

又、クロムめつきの多層めつきの一つの方法と
して、第1層下地を、クラツクの皆無な状態のク
ロムめつき、すなわち、クラツクフリークロムめ
つきを施して形成し、第2層を硬質クロムめつき
を施すことにより形成することで行なう多層めつ
き方が検討されているが、従来の技術では安定し
ているクラツクフリーのめつき状態を得るめつき
浴が得難く、得られたとしても、その電解条件が
極めて狭いこと、電着直後はクラツクフリーであ
るが時間の経過と共にクラツクが発生してしまう
ので実用上には問題点が多かつた。
In addition, as one method of multilayer chrome plating, the first layer is formed by applying chrome plating without any cracks, that is, crack-free chrome plating, and the second layer is formed by applying a hard chrome plating. A multi-layer plating method is being considered, which involves forming a plating layer by applying a plating layer, but with conventional techniques it is difficult to obtain a plating bath that provides a stable, crack-free plating state, and even if it could be obtained, There were many problems in practical use because the electrolytic conditions were extremely narrow and although cracks were free immediately after electrodeposition, cracks would occur over time.

本発明は、上述した点に鑑み、前述提案にかか
るクロムめつきを施せるようにしたクラツクフリ
ーのめつき状態が得られるめつき浴を得ることが
できたので、この手段を基に、従来から知られて
いる硬質クロムめつきを複合させて多層めつきを
施し、耐食性、耐摩耗性に優れた硬質クロムめつ
き層を得られるようにしたものである。
In view of the above-mentioned points, the present invention has made it possible to obtain a plating bath capable of providing a crack-free plating state that allows the chrome plating according to the above-mentioned proposal. This is a multi-layer plating that combines the hard chrome plating that has been used in the past to create a hard chrome plating layer with excellent corrosion resistance and wear resistance.

以下、本発明に係るクロムめつき法の詳細につ
いて説明すると次の通りである。
The details of the chrome plating method according to the present invention will be explained below.

発明者はクラツクフリーのクロムめつきを施す
べく各種めつき法及びそれに伴うめつき浴につい
て検討、開発等を行なつた結果、クラツクフリー
のクロムめつきを施すためのめつき方法として、
特開昭58−157986号公報にて提案しためつき方法
が最適であるとの知見を得た。
The inventor studied and developed various plating methods and associated plating baths in order to apply crack-free chrome plating, and as a result, the inventor has developed a plating method for applying crack-free chrome plating.
It has been found that the throttling method proposed in Japanese Patent Application Laid-open No. 157986/1986 is optimal.

すなわち、そのめつき方法は、クロムめつき方
法において、リチウム、ナトリウム、カリウム、
マグネシウム、カルシウム、ストロンチウム、バ
リウム、鉄族の金属、クロムのうちのいずれか一
つとハロゲン元素における塩素又はヨウ素との化
合物、或いは、塩酸、或いは、臭化水素水、或い
は、ヨウ化水素水の中の一つ又は複数にてなる添
加剤を、無水クロム酸が溶解されている水溶液中
に添加し、前記添加剤が電離した際の陰イオン
と、無水クロム酸が溶解して電離した際のクロム
酸イオン(CrO3 6-)とのイオン濃度比が1対17
〜55の範囲となるように調合しためつき浴を用
い、ハロゲン元素又はハロゲン化物に対して反応
し難いフエライト電極或いはグラフアイト電極の
導電材にて形成された陽極材を使用してクロムめ
つきを行う方法であり、例えば、鉄鋼板の表面に
無水クロム酸に塩酸を添加して、その陰イオンと
CrO3 6-とのイオン濃度重量比を1対40程度に設
定し、電解条件として電流密度20A/dm2、電流
効率60%(6価クロム算出)の条件下で下地クロ
ムめつきを行なうものである。その結果、0.9μ
m/minの電着速度でクロムめつき層が得られ、
従来行なわれていたところの、サージエント浴の
みにて鉄鋼表面に直接クロムめつきを施す方法と
比べると、従来の方法の電着速度が0.3μm/min
であるのに対して極めて早い速度でクロムめつき
加工が行なわれるものであると共に、クラツクが
なく、更に、めつき厚を20μmとした場合に、塩
水噴霧による耐食性試験を10サイクル行なつても
発錆は全く認められなく、その耐食性は極めて優
れているものである。一方、クロムめつきの硬度
を測定した所、高速電着であるがため、HV500
〜700の範囲にとどまり、従来のサージエント浴
等によるクロムめつきと比較して若干柔かく、硬
質クロムめつきとして要求されているHV850以
上に比べるとクロムめつきの単一層のめつきとし
てはやや軟質域に所属するが、それ故に柔軟性の
優れたものである。しかも、めつき完了後時間が
経過しても何等クラツクの発生が全く認められ
ず、その点も含め、これが耐食性に非常に優れて
いる要因であると考えられる。
That is, in the chrome plating method, lithium, sodium, potassium,
A compound of any one of magnesium, calcium, strontium, barium, an iron group metal, or chromium and a halogen element such as chlorine or iodine, or in hydrochloric acid, hydrogen bromide water, or hydrogen iodide water. An additive consisting of one or more of the following is added to an aqueous solution in which chromic anhydride is dissolved, and the anion when the additive is ionized and the chromium when the chromic anhydride is dissolved and ionized. Ion concentration ratio with acid ion (CrO 3 6- ) is 1:17
Chromium plating using a plating bath formulated to have a pH within the range of ~55 and using an anode material made of a conductive material such as a ferrite electrode or graphite electrode that does not easily react with halogen elements or halides. For example, by adding hydrochloric acid to chromic anhydride on the surface of a steel plate, the anions and
The ion concentration weight ratio with CrO 3 6- is set at approximately 1:40, and the base chromium plating is performed under electrolytic conditions of a current density of 20 A/dm 2 and a current efficiency of 60% (hexavalent chromium calculation). It is. As a result, 0.9μ
A chrome plated layer can be obtained at an electrodeposition speed of m/min.
Compared to the conventional method of applying chrome plating directly to the steel surface using only a sergeant bath, the electrodeposition rate of the conventional method is 0.3 μm/min.
In contrast, chrome plating is performed at an extremely fast speed, and there is no cracking.Furthermore, when the plating thickness is 20μm, the corrosion resistance test using salt water spray is carried out for 10 cycles. No rust was observed, and the corrosion resistance was extremely excellent. On the other hand, when we measured the hardness of chrome plating, it was found that it was HV500 due to high-speed electrodeposition.
~700, which is slightly softer than chrome plating using conventional sergeant baths, etc., and slightly softer for a single layer of chrome plating compared to HV850 or higher, which is required for hard chrome plating. However, it is highly flexible. In addition, no cracks were observed even after the completion of plating, and this is considered to be the reason for the excellent corrosion resistance.

そして、前述した下地クロムめつきを第1層と
し、その後にサージエント浴にて硬質クロムめつ
きを施すものである。その場合に、種々検討を試
みたところ各めつき層間が密着良好になるために
は、電着クロムの厚さ及びめつき厚とが極めて重
要な要因となることが判明し、各種試験検討を行
なつた結果、鉄鋼上に多層のめつきを施す場合に
は、第1層の下地クロムめつきの硬さがHV500
〜600、第2層目として硬質クロムめつきの硬さ
をHV950〜1000としたとき、第1層目と第2層
目とのめつき厚の比は3:1以下とすることが適
当であると判明し、これ以上では密着が不良とな
ることが解つた。又、第1層を硬質、第2層を軟
質とする性質を要求する場合には、そのめつき厚
の比を1:5以内にすれば密着良好なめつき加工
が可能であるとの知見を得た。すなわち、下地ク
ロムめつきの上に、サージエント型のクロムめつ
き浴によつて硬質クロムめつきを施す際には、下
地クロムめつきのめつき厚に対して硬質クロムめ
つきのめつき厚を、各々のめつきの硬さによつて
適宜比率を設定して施すものである。
Then, the above-mentioned base chrome plating is used as the first layer, and then hard chrome plating is applied in a sergeant bath. In this case, after various studies were attempted, it was found that the thickness of the electrodeposited chromium and the plating thickness are extremely important factors in achieving good adhesion between each plated layer, and various tests were conducted. As a result, when applying multi-layer plating on steel, the hardness of the first layer of base chrome plating is HV500.
~600, when the hardness of the hard chrome plating for the second layer is HV950~1000, it is appropriate that the ratio of the plating thickness between the first layer and the second layer is 3:1 or less. It was found that the adhesion would be poor if the amount was more than this. In addition, it has been found that when the first layer is required to be hard and the second layer is soft, plating with good adhesion can be achieved by keeping the ratio of the plating thickness within 1:5. Obtained. In other words, when applying hard chrome plating on top of the base chrome plating using a sergeant type chrome plating bath, the plating thickness of the hard chrome plating should be adjusted to the plating thickness of the base chrome plating. The ratio is set appropriately depending on the hardness of the plating.

しかして、前記硬質クロムめつきの上には、前
述した各めつきの繰返し、或いは、その他の電流
効率の優れためつき法によりクロムめつきを施し
て多層のクロムめつき層を形成するものである。
その結果、両めつきの最大特長を併せ持ち、欠点
を補完した耐食性、耐摩耗性に優れた多層のクロ
ムめつき層を容易に得ることができた。
Then, on the hard chromium plating, chromium plating is applied by repeating the above-mentioned plating or other plating methods with excellent current efficiency to form a multilayer chromium plating layer.
As a result, it was possible to easily obtain a multi-layer chrome-plated layer with excellent corrosion resistance and abrasion resistance, which combined the greatest features of both types of plating and compensated for their shortcomings.

以下に、本発明に係るクロムめつき法の具体的
な実施例を示す。
Specific examples of the chrome plating method according to the present invention are shown below.

実施例 1 被めつき材を100mm×100mm×板厚1mmの鉄鋼板
とし、第1層の下地クロムめつきとして、そのめ
つき浴をCrO3(無水クロム酸)800g/(1
の水溶液中に800gの割合で添加し溶解させたこ
との意であり、以下g/と記されている場合は
全て前記した意とする)、添加剤として、例えば、
塩化カリウム(KCl)を19g/投入してそれに
よつて電離したCrO3 6-(クロム酸イオン)とCl-
(塩素イオン)とで構成し、電解条件40℃、
20A/dm2とし、30μm厚のクロムめつきを施し
たところ、HV550の硬さのクロムめつきが得ら
れた。
Example 1 The material to be plated was a steel plate of 100 mm x 100 mm x 1 mm thickness, and the plating bath was 800 g of CrO 3 (chromic anhydride)/(1
This means that it was added and dissolved in an aqueous solution of 800 g (hereinafter, when it is written as g/, it means the above), as an additive, for example,
CrO 3 6- (chromate ion) and Cl - were ionized by adding 19g/potassium chloride (KCl).
(chlorine ion), electrolytic conditions are 40℃,
When 30 μm thick chrome plating was applied at 20 A/dm 2 , chrome plating with a hardness of HV550 was obtained.

尚、その他の条件としては、前述したように、
ハロゲン元素又はハロゲン化物に対して反応し難
いフエライト電極或いはグラフアイト電極の導電
材にて形成された陽極材を使用し、電流効率60%
(6価クロム算出)の条件下で行なうものである。
In addition, as mentioned above, other conditions are as follows.
Current efficiency is 60% by using an anode material made of conductive material such as ferrite electrode or graphite electrode that does not easily react with halogen elements or halides.
(calculation of hexavalent chromium).

そして、該クロムめつきのめつき面を顕微鏡倍
率100倍の視野で観察したところ、緻密で全くク
ラツクを認めることができなかつた。
When the plated surface of the chrome plating was observed under a microscope with a magnification of 100 times, it was found to be dense and no cracks could be observed.

次に、第2層目としてサージエント型のめつき
浴をCrO3250g/、H2SO42.5g/、電解条
件45℃、20A/dm2、としてめつき厚10μmの硬
質めつきを施し総厚さ40mmの多層クロムめつきを
行つた。これより得られた表面部クロムめつきの
硬さはHV950であり、その表面状態を前記同様
に倍率100倍の顕微鏡視野で観察したところ光沢
は有するものの大きなクラツクが多数認められた
が下地クロム層にはクラツクの進展は認められな
かつた。
Next, as the second layer, hard plating with a plating thickness of 10 μm was applied using a sergeant type plating bath with 250 g of CrO 3 /2.5 g of H 2 SO 4 / electrolytic conditions of 45°C and 20 A/dm 2 . Multi-layer chrome plating with a thickness of 40 mm was performed. The hardness of the surface chrome plating obtained from this was HV950, and when the surface condition was observed under a microscope with a magnification of 100 times as described above, although it was glossy, many large cracks were observed. No progress was observed in cracks.

そして、上述した用に2層のクロムめつき加工
を施した鉄鋼板と、従来のサージエント浴により
直接めつき厚40μmのクロムめつき加工を施した
鉄鋼板とを用いて5%NaCl水溶液を使用した塩
水噴霧により耐食試験を行なつた。その結果、サ
ージエント浴により直接クロムめつきを施したも
のは、塩水噴霧2サイクルで数個所に斑点状発錆
が認められ、3サイクルの塩水噴霧を行なつたと
ころ更に激しい発錆がめつき面全体に認められ
た。それに比して2層のクロムめつき加工を施し
たものは、塩水噴霧を10サイクル繰返して行なつ
ても何等発錆は認められなかつた。この時点で、
従来のクロムめつき加工の耐食試験の限界である
塩水噴霧10サイクルを終了したので一応試験は停
止したが、参考のために発錆するまで耐食試験を
行なつたが、20サイクルの塩水噴霧によつても何
等発錆は認められていないかつた。
Then, using a 5% NaCl aqueous solution, we used a steel plate that had been subjected to two layers of chrome plating as described above, and a steel plate that had been directly chromium plated with a plating thickness of 40 μm using a conventional sergeant bath. Corrosion resistance tests were conducted using salt water spray. As a result, on the parts that were directly chromium plated using a sergeant bath, spotty rust was observed in several places after two cycles of salt water spraying, and even more severe rusting occurred on the entire plated surface after three cycles of salt water spraying. was recognized. In contrast, the two-layer chrome plated product showed no rust even after 10 cycles of salt spray. at this point
The test was temporarily stopped because 10 cycles of salt water spray, which is the limit of the conventional corrosion resistance test for chrome plating, was completed, but for reference purposes, the corrosion resistance test was carried out until rust appeared, but the test was not completed after 20 cycles of salt spray. Even after twisting, no rust was observed.

次に、前述した2層のクロムめつき加工を施し
た鉄鋼板と、サージエント浴により直接クロムめ
つき加工を施した鉄鋼板とを用いて耐摩耗性試験
を行なつた。すなわち、潤滑油NiconicRO32(日
本高潤株式会社製)を使用し、軸受性能試験機
(神鋼造機株式会社製)によつて試験荷重32.5Kg、
摩擦速度1.43m/sec、摩擦距離8Km、相手材料
の材質SS41の条件で行なつたところ両方のクロ
ムめつき面ともほぼ同程度の結果を示した。
Next, a wear resistance test was conducted using the above-mentioned two-layer chromium-plated steel plate and a steel plate that was directly chromium-plated using a sergeant bath. That is, using lubricant NiconicRO32 (manufactured by Nippon Kojun Co., Ltd.), a test load of 32.5 kg was applied using a bearing performance tester (manufactured by Shinko Zoki Co., Ltd.).
When the test was carried out under the conditions of a friction speed of 1.43 m/sec, a friction distance of 8 km, and a mating material of SS41, the results were almost the same for both chrome-plated surfaces.

尚、塩化カリウムの代りに、リチウム、ナトリ
ウム、マグネシウム、カルシウム、ストロンチウ
ム、バリウム、鉄族の金属、クロムのうちのいず
れか一つとハロゲン元素における塩素又はヨウ素
との化合物、或いは、塩酸、或いは、臭化水素
水、或いは、ヨウ化水素水の中の一つ又は複数に
てなる添加剤を投入してこれによつて電離した
Cl-、或いはI-或いはBr-と、CrO3が溶解して電
離した際のCrO3 6-とのイオン濃度比が1対17〜
55の範囲となるように調合しためつき浴を用いて
も、前記条件と同様の条件で行つたところ両方の
クロムめつき面ともほぼ前述と同程度の結果を示
した。
In addition, instead of potassium chloride, a compound of lithium, sodium, magnesium, calcium, strontium, barium, an iron group metal, or chromium and a halogen element such as chlorine or iodine, hydrochloric acid, or odor An additive consisting of one or more of hydrogen hydride water or hydrogen iodide water is added and ionized by this.
The ion concentration ratio of Cl - , I - or Br - and CrO 3 6- when CrO 3 is dissolved and ionized is 1:17~
Even when using a tanning bath formulated to have a concentration in the range of 55, when the test was carried out under the same conditions as above, both chromium-plated surfaces showed almost the same results as above.

実施例 2 被めつき材としてアルミニウム1100材を用い活
性化を図つた後、亜鉛置換浴NaOH50g/、
ZnO5g/、ロツシエル塩(酒石酸カリウムナ
トリウム)50g/、FeCl32g/、NaNO31
g/に浸漬して亜鉛置換処理後、実施例1と同
様に2層のクロムめつき加工及びサージエント浴
により直接クロムめつき加工を施したそれぞれの
試験材料を製作した。
Example 2 After activation using aluminum 1100 material as the plating material, zinc substitution bath NaOH 50g/,
ZnO 5g/, Rothsiel salt (potassium sodium tartrate) 50g/, FeCl 3 2g/, NaNO 3 1
Each test material was manufactured by immersing it in 100 g/g/ and zinc displacement treatment, followed by two-layer chromium plating and direct chromium plating in a sergeant bath in the same manner as in Example 1.

そして、これらの2つの試験材料を用いて5%
NaCl水溶液による塩水噴霧耐食試験を行なつた。
その結果、直接クロムめつき加工を施した試験材
料は1回の塩水噴霧で表面に無数のふくれが発生
し、一部には白錆も認められ、アルミニウム素地
からめつき層が剥離していることが確認された。
これに対して、2層のクロムめつき加工を施した
試験材料は、5サイクルの塩水噴霧で一部にふく
れが発生したにとどまり、白錆に至つては何等認
められず、更に、5サイクルの塩水噴霧を行なつ
たが白錆の現象は認められなかつた。
and 5% using these two test materials
A salt spray corrosion resistance test using an aqueous NaCl solution was conducted.
As a result, the test material that had been directly chromed plated had numerous blisters on its surface after one salt spray, white rust was also observed in some parts, and the plating layer had peeled off from the aluminum base. was confirmed.
On the other hand, the test material with two layers of chrome plating only showed some blistering after 5 cycles of salt water spraying, and no white rust was observed. Although salt water spraying was carried out, no white rust phenomenon was observed.

一方、耐摩耗性も実施例1と同様の条件で行な
つたところ、直接クロムめつきを施した試験材料
は、摩擦距離2Kmでアルミニウム素地から剥離し
た部分が認められ試験不能となつた。これに対し
て、2層のクロムめつき加工を施した試験材料
は、8Kmの摩擦距離にあつても何等剥離は認めら
れず摩耗程度も実施例1における2層のクロムめ
つき加工を施したものと同程度であつた。
On the other hand, abrasion resistance was also tested under the same conditions as in Example 1, and the test material, which was directly chromium plated, was found to have peeled off from the aluminum base at a friction distance of 2 km, making the test impossible. In contrast, the test material with two layers of chrome plating did not show any peeling even at a friction distance of 8 km, and the degree of wear was similar to that of Example 1. It was about the same level.

実施例 3 被めつき材として鉄鋼板(100mm×100mm×板厚
2mm)を用い、メツキ厚500μmを目標にクロム
めつき加工試験を行なつた。尚、本試験に用いた
電解浴及びその電解条件は実施例1と同様であ
る。
Example 3 Using a steel plate (100 mm x 100 mm x plate thickness 2 mm) as a plating material, a chrome plating processing test was conducted with the aim of achieving a plating thickness of 500 μm. The electrolytic bath and electrolytic conditions used in this test were the same as in Example 1.

その結果、2層のクロムめつき加工によるめつ
き加工時間は、第1層の下地めつき厚を450μm
にめつき加工した後、第2層をサージエント浴に
よりめつき厚50μmにめつき加工したもので、第
1層は約8時間30分、第2層は約2時間30分で合
計11時間を費やしている。そして、この時の第1
層におけるめつき厚分布は中心部が440μm、角
部が460μmであつた。一方、サージエント浴に
よつて直接クロムめつき加工を施した場合には、
500μm厚にするためには計算上28時間を要する
との値が算出されたので、電解時間を29時間とし
てクロムめつきを施した。その結果、厚さ分布を
測定したところ、中心部は250μmで角部が700μ
mであり、めつきの付きが悪い部分である中心部
においてめつき厚が薄くなる、いわゆるエツジ効
果の極めて大きい現象が認められた。
As a result, the plating time for two-layer chrome plating is 450 μm when the base plating thickness of the first layer is 450 μm.
After plating, the second layer was plated in a sergeant bath to a plating thickness of 50 μm.The first layer took about 8 hours and 30 minutes, and the second layer took about 2 hours and 30 minutes, for a total of 11 hours. spending. And at this time, the first
The plating thickness distribution in the layer was 440 μm at the center and 460 μm at the corners. On the other hand, when chrome plating is performed directly using a sergeant bath,
Since it was calculated that it would take 28 hours to achieve a thickness of 500 μm, chrome plating was performed with the electrolysis time set to 29 hours. As a result, when we measured the thickness distribution, the center part was 250μm and the corners were 700μm.
m, and an extremely large so-called edge effect phenomenon was observed in which the plating thickness became thinner in the center where the plating was poor.

又、前述の実施例1と同様の電解浴及び電解条
件でクロムめつきを行ない、第1層の下地クロム
めつき厚を100μm、第2層の硬質クロムめつき
厚を20μmとし、これを5回繰返して600μmのめ
つき厚のクロムめつき加工を行なつた結果、要し
た時間は合計14時間30分でであり、電着速度を算
出すると約0.7μm/minとなるもので、単に素材
に直接クロムめつき加工を施す場合の約0.3μm/
minと比べると約2.5倍の速さで電着し、しかも、
クロムめつき厚の分布も中心部において580μm
とエツジ効果が非常に少ない良好なめつき面を得
ることができた。
Further, chromium plating was carried out using the same electrolytic bath and electrolytic conditions as in Example 1, and the thickness of the base chrome plating of the first layer was 100 μm, and the thickness of the hard chrome plating of the second layer was 5 μm. As a result of repeating the chrome plating process with a plating thickness of 600 μm, the total time required was 14 hours and 30 minutes, and the electrodeposition rate was calculated to be approximately 0.7 μm/min. Approximately 0.3μm/ when applying chrome plating directly to
Electrodeposition is approximately 2.5 times faster than min, and
The distribution of chrome plating thickness is also 580μm in the center.
A good plated surface with very little edge effect could be obtained.

以上説明したように、本発明は特開昭58−
157986号公報にて提案しためつき浴により高速ク
ロムめつき加工を施し、その上から従来のクロム
めつき加工を施すことにより、高速、且つ耐摩耗
性、耐食性に優れためつき面を得ることができ、
更にその上にこれらのめつきの繰返し、或いは電
流効率の優れためつき法によつてクロムめつきを
施すことによりめつき厚を厚くした場合のいわゆ
るエツジ効果を少なくすることができる等の優れ
た効果を奏するめつき法である。
As explained above, the present invention
By performing high-speed chrome plating using the matting bath proposed in Publication No. 157986, and then applying conventional chrome plating on top of that, it is possible to obtain a high-speed, highly wear-resistant and corrosion-resistant matting surface. I can,
Furthermore, by repeating these plating processes or by applying chrome plating using a plating method with excellent current efficiency, there are excellent effects such as the ability to reduce the so-called edge effect when the plating thickness is increased. This is a matting method that plays a role.

Claims (1)

【特許請求の範囲】[Claims] 1 クロムめつき方法において、リチウム、ナト
リウム、カリウム、マグネシウム、カルシウム、
ストロンチウム、バリウム、鉄族の金属、クロム
のうちのいずれか一つとハロゲン元素における塩
素又はヨウ素との化合物、或いは、塩酸、或い
は、臭化水素水、或いは、ヨウ化水素水の中の一
つ又は複数にてなる添加剤を、無水クロム酸が溶
解されている水溶液中に添加し、前記添加剤が電
離した際の陰イオンと、無水クロム酸が溶解して
電離した際のクロム酸イオン(CrO3 6-)とのイ
オン濃度比が1対17〜55の範囲となるように調合
しためつき浴を用い、ハロゲン元素又はハロゲン
化物に対して反応し難いフエライト電極或いはグ
ラフアイト電極の導電材にて形成された陽極材を
使用して、鉄、アルミニウムの如き腐食し易く、
且つ軟質の金属の表面に下地クロムめつきを施
し、その後サージエント型のクロムめつき浴によ
つて、下地クロムめつきのめつき厚に対して適宜
比率のめつき厚で硬質クロムめつきを施すか、更
にその上に、これらのめつきを繰返してクロムめ
つきを施し多層のクロムめつき層を形成すること
を特徴としたクロムめつき法。
1 In the chromium plating method, lithium, sodium, potassium, magnesium, calcium,
A compound of any one of strontium, barium, iron group metals, chromium and chlorine or iodine as a halogen element, or one of hydrochloric acid, hydrogen bromide water, or hydrogen iodide water A plurality of additives are added to an aqueous solution in which chromic anhydride is dissolved, and the anion when the additive is ionized and the chromate ion (CrO) when the chromic anhydride is dissolved and ionized. 3 6- ) Using a tempering bath prepared so that the ion concentration ratio is in the range of 1:17 to 55, it is used as a conductive material for ferrite electrodes or graphite electrodes that do not easily react with halogen elements or halides. The anode material is made of materials that are easily corroded, such as iron and aluminum.
In addition, a base chrome plating is applied to the surface of the soft metal, and then hard chrome plating is applied using a sergeant type chrome plating bath with a plating thickness that is an appropriate ratio to the plating thickness of the base chrome plating. A chrome plating method characterized by further applying chrome plating by repeating these plating processes to form a multilayer chrome plating layer.
JP902383A 1983-01-22 1983-01-22 Chromium plating method Granted JPS59136489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP902383A JPS59136489A (en) 1983-01-22 1983-01-22 Chromium plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP902383A JPS59136489A (en) 1983-01-22 1983-01-22 Chromium plating method

Publications (2)

Publication Number Publication Date
JPS59136489A JPS59136489A (en) 1984-08-06
JPH0153359B2 true JPH0153359B2 (en) 1989-11-14

Family

ID=11709055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP902383A Granted JPS59136489A (en) 1983-01-22 1983-01-22 Chromium plating method

Country Status (1)

Country Link
JP (1) JPS59136489A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330950A (en) * 1997-06-02 1998-12-15 Nippon Parkerizing Co Ltd Modified double replacement-type plated metal material and its production
JP2006180831A (en) * 2004-12-28 2006-07-13 Shimano Inc Line guide mechanism of spinning reel
JP2016001558A (en) * 2014-06-12 2016-01-07 株式会社オートネットワーク技術研究所 Terminal for connector
CN104328463A (en) * 2014-10-23 2015-02-04 苏州莱特复合材料有限公司 Chromium-plating method for iron-based powder metallurgical material

Also Published As

Publication number Publication date
JPS59136489A (en) 1984-08-06

Similar Documents

Publication Publication Date Title
JPS6136078B2 (en)
JP3715743B2 (en) Manufacturing method of Mg alloy member
US1615585A (en) Process of producing corrosion-resisting coatings on iron and steel and product
JP2017511844A (en) Passivation of microdiscontinuous chromium deposited from trivalent electrolyte
US3247082A (en) Electrodeposition of a corrosion resistant coating
JPH0153359B2 (en)
JPH03138389A (en) Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
JP4332319B2 (en) Method of coating a workpiece with bearing metal and workpiece processed by this method
JPH04350193A (en) Undustrial chrome plating method
JPS63105990A (en) Multilayered nickel alloy plating and its formation
JPS63137193A (en) Stainless steel contact material for electronic parts and its production
US3567599A (en) Electrochemical treatment of ferrous metal
JPH03223472A (en) Surface treating liquid and surface treatment for galvanized steel sheet
Protsenko et al. The corrosion-protective traits of electroplated multilayer zinc-iron-chromium deposits
Strafford et al. Electroless nickel coatings: Their application, evaluation & production techniques
Bahrololoom et al. Microstructure, morphology and corrosion resistance of electrodeposited zinc-cobalt compositionally modulated alloy multilayer coatings
JPS61143596A (en) Formation of wear resistant film
Gamburg et al. Technologies for the electrodeposition of metals and alloys: electrolytes and processes
JPH07232501A (en) Aluminum alloy member and aluminum wheel
US1835637A (en) Chromium plated article
JPH06240490A (en) Corrosion resistant chromium plating
JPH02502295A (en) High performance electrodeposited chrome layer
JPS5817838B2 (en) Corrosion resistant plating method
JPH05179481A (en) Production of zinc-cobalt plated steel material having high corrosion resistance
JPH0635674B2 (en) Manufacturing method of Zn-Ni plated steel plate for outer surface of automobile body