JPH0151664B2 - - Google Patents

Info

Publication number
JPH0151664B2
JPH0151664B2 JP56023174A JP2317481A JPH0151664B2 JP H0151664 B2 JPH0151664 B2 JP H0151664B2 JP 56023174 A JP56023174 A JP 56023174A JP 2317481 A JP2317481 A JP 2317481A JP H0151664 B2 JPH0151664 B2 JP H0151664B2
Authority
JP
Japan
Prior art keywords
signal
fuel injection
fuel
increase
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56023174A
Other languages
Japanese (ja)
Other versions
JPS57137631A (en
Inventor
Akihiro Yamato
Hidenobu Nagase
Kunro Umesaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2317481A priority Critical patent/JPS57137631A/en
Publication of JPS57137631A publication Critical patent/JPS57137631A/en
Publication of JPH0151664B2 publication Critical patent/JPH0151664B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は電子制御による燃料噴射装置の加速時
燃料補正装置に関し、特にシングルポイント・イ
ンジエクシヨン方式により燃料の供給を受ける内
燃エンジンを一旦減速した後、再び加速する際の
加速時燃料増量補正装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronically controlled fuel correction device for accelerating a fuel injection device, and particularly to a fuel correction device for accelerating an internal combustion engine that is supplied with fuel using a single point injection system after decelerating once and then accelerating again. The present invention relates to a time fuel increase correction device.

シングルポイント・インジエクシヨン方式によ
り燃料の供給を受ける内燃エンジンにおいては、
その減速時に、エンジンの吸入空気によつて、吸
気管の吸入ポート内壁面に付着していた大部分の
燃料が、内燃エンジンの燃焼室に引込まれるた
め、空燃比(A/F)が一時的に過小(過濃)と
なる傾向がある。このため、エミツシヨンの低下
−特に、CO、HCなどの発生量増大−や燃費の増
加を招来する欠点がある。
In an internal combustion engine that is supplied with fuel by a single point injection system,
During deceleration, most of the fuel adhering to the inner wall of the intake port of the intake pipe is drawn into the combustion chamber of the internal combustion engine by the engine's intake air, causing the air-fuel ratio (A/F) to temporarily drop. It tends to be too small (too rich). For this reason, there are disadvantages of a decrease in emissions (in particular, an increase in the amount of CO, HC, etc. generated) and an increase in fuel consumption.

このような欠点を改良するためには、エンジン
の減速時に燃料供給を極端に減らしたり、完全に
停止したりすることが考えられる。ところが、減
速時に燃料供給が停止(カツト)されると、前述
のように、減速時には、吸気管の吸入ポート内壁
面に付着していた燃料が、内燃エンジンの燃焼室
に引込まれるために、吸入ポート内壁面が乾燥し
てしまうことになる。
In order to improve these drawbacks, it is conceivable to drastically reduce or completely stop the fuel supply when the engine is decelerated. However, if the fuel supply is stopped (cut) during deceleration, as mentioned above, during deceleration, the fuel adhering to the inner wall of the intake port of the intake pipe is drawn into the combustion chamber of the internal combustion engine. The inner wall surface of the suction port will become dry.

このために、引続いて加速を行なおうとすると
き、通常の加速増量(例えば、特願昭55−51680
号、特願昭55−77862号あるいは同日出願の特願
昭56−23172号など参照)を行なつただけでは、
供給燃料の大多数が吸気ポート内壁面に付着し、
空燃比(A/F)が過大(希薄)となり、エミツ
シヨンの劣化や加速運転性能の低下を生ずる場合
がある。
For this reason, when attempting to accelerate subsequently, the normal acceleration increase (for example,
(see Japanese Patent Application No. 55-77862 or Japanese Patent Application No. 56-23172 filed on the same day).
The majority of the supplied fuel adheres to the inner wall of the intake port,
The air-fuel ratio (A/F) may become excessive (lean), leading to deterioration of the emission and deterioration of acceleration performance.

このために、燃料カツト後の再噴射時に、再噴
射開始から一定時間の間だけ、一定の割合または
比率で、換言すれば、通常の温度補正などを施し
た燃料噴射時間幅に、さらに予定の固定係数を乗
算することによつて、燃料噴射量を増加すること
が提案されている(特開昭53−24925号公報)。
For this reason, during re-injection after fuel cut, for a certain period of time from the start of re-injection, a fixed rate or proportion is added to the fuel injection time width after normal temperature correction, etc. It has been proposed to increase the fuel injection amount by multiplying by a fixed coefficient (Japanese Unexamined Patent Publication No. 53-24925).

しかし、この場合は、吸入空気量に基づいて得
られる第1時間幅信号に温度補正等係数を乗算し
て第2時間幅信号を求める乗算回路を用いて、再
噴射開始後増量のための乗算補正を行なうので、
温度補正等係数に再噴射開始後の増量補正係数が
さらに乗算されることになる。
However, in this case, a multiplier circuit that obtains a second time width signal by multiplying the first time width signal obtained based on the intake air amount by a temperature correction coefficient is used to multiply the first time width signal obtained based on the intake air amount to increase the amount of air after re-injection. Since we will be making corrections,
The temperature correction coefficient is further multiplied by the increase correction coefficient after the start of re-injection.

その結果、再噴射開始後の燃料増量が温度(温
度補正)の影響を受けて不安定になるのみなら
ず、過度の増量補正が行なわれるようになつてプ
ラグのカブリを生じ易くなる欠点がある。
As a result, not only does the fuel increase after re-injection start become unstable due to the influence of temperature (temperature correction), but also excessive fuel increase correction is performed, which tends to cause plug fogging. .

さらにこの場合は、再噴射開始後の燃料増量補
正が「一定時間」行なわれるので、補正増量動作
の回数、したがつて全体的な燃料の増加量が、高
速回転時には低速回転時に比較して多くなり、や
はりカブリを生じ易くなる傾向がある。
Furthermore, in this case, since the fuel increase correction is performed for a "certain period of time" after the start of re-injection, the number of correction increase operations, and therefore the overall amount of fuel increase, is greater at high speeds than at low speeds. Therefore, fogging tends to occur more easily.

本発明の目的は、前記の如き状態を改善し、減
速時に燃料カツトが行なわれても、引続く加速時
に空燃比の過大をもたらしたり、反対に過少にな
つてプラグのカブリを生じたりしないような電子
制御によるシングルポイント・インジエクシヨン
方式内燃エンジンの加速時燃料増量補正装置を提
供するにある。
An object of the present invention is to improve the above-mentioned situation so that even if fuel is cut off during deceleration, the air-fuel ratio will not become excessive during subsequent acceleration, or conversely, it will become insufficient and cause fogging of the plug. An object of the present invention is to provide an electronically controlled single point injection type internal combustion engine fuel increase correction device during acceleration.

前記目的を達成するために、本発明において
は、減速時燃料カツトが行なわれたときには、こ
れに引続く加速時に、固定量の加速増量補正を設
定回数だけ行なうように構成されている。
In order to achieve the above object, the present invention is configured such that when fuel cut during deceleration is performed, a fixed amount of acceleration increase correction is performed a set number of times during subsequent acceleration.

以下に、図面を参照して本発明を詳細に説明す
る。
The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の一実施例のブロツク図、第2
図はその動作を説明するためのタイムチヤートで
ある。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG.
The figure is a time chart for explaining the operation.

第1図において、1はインバータ回路、2は微
分回路、3はゲート回路、4は単安定マルチ回
路、5はカウンタ回路、6は出力回数設定器、7
は一致検出回路、8は論理和回路、9は微分回路
である。10は、後述するような燃料噴射信号が
供給される入力端子、11は、減速時に燃料カツ
トが行なわれたことを示す信号が入力される制御
端子、12は燃料噴射弁を開くためのソレノイド
である。
In Fig. 1, 1 is an inverter circuit, 2 is a differential circuit, 3 is a gate circuit, 4 is a monostable multi-circuit, 5 is a counter circuit, 6 is an output number setting device, and 7
8 is a coincidence detection circuit, 8 is an OR circuit, and 9 is a differential circuit. 10 is an input terminal to which a fuel injection signal as described later is supplied; 11 is a control terminal to which a signal indicating that fuel cut has been performed during deceleration is input; 12 is a solenoid for opening the fuel injection valve. be.

つぎに、入力端子10に、燃料噴射信号とし
て、第2図aに示したような、エンジン回転
数、吸入負圧、スロツトル開度などのエンジンパ
ラメータの少なくとも一つに基づいて決定される
基本燃料噴射時間信号Tiと、スロツトル開度
(以下、θthと略する)の変化率(微分値dθth/
dt)に比例して決められる補正増量信号δtとの和
に相当する時間幅(Ti+δt)の燃料噴射信号が
供給される場合の、本実施例の動作について、第
2図を参照して説明する。
Next, a basic fuel determined based on at least one of engine parameters such as engine speed, suction negative pressure, and throttle opening as shown in FIG. 2a is input to the input terminal 10 as a fuel injection signal. The injection time signal Ti and the rate of change of the throttle opening (hereinafter abbreviated as θth) (differential value dθth/
The operation of this embodiment when a fuel injection signal with a time width (Ti + δt) corresponding to the sum of the correction increase signal δt determined in proportion to dt) is supplied will be explained with reference to FIG. .

端子10に、前記したような燃料噴射信号
(Ti+δt)が入力されると、この信号は論理和回
路8を通してソレノイド12に供給され、ソレノ
イド12を付勢して燃料供給を開始させる(第2
図g)。
When the fuel injection signal (Ti+δt) as described above is input to the terminal 10, this signal is supplied to the solenoid 12 through the OR circuit 8, energizing the solenoid 12 to start fuel supply (second
Figure g).

同時に、前記入力はインバータ回路1によつて
反転され、第2図bの波形となる。この反転波形
は微分回路2に加えられ、得られた正の微分パル
ス(第2図c)のみがゲート回路3に供給され
る。
At the same time, the input is inverted by the inverter circuit 1, resulting in the waveform of FIG. 2b. This inverted waveform is applied to the differentiating circuit 2, and only the resulting positive differential pulse (FIG. 2c) is supplied to the gate circuit 3.

後述するところから明らかなように、通常の状
態では、カウンタ5のカウント値は出力回数設定
器6の出力(設定値)と一致している。それ故
に、一致検出回路7からは一致信号が発生されて
おり、この出力によつて、第2図eのように、ゲ
ート回路3が閉じられている。
As will be clear from what will be described later, under normal conditions, the count value of the counter 5 matches the output (set value) of the output number setter 6. Therefore, a coincidence signal is generated from the coincidence detection circuit 7, and this output closes the gate circuit 3 as shown in FIG. 2e.

したがつて、前記微分パルスはゲート回路3を
通過できず、単安定マルチ回路4はトリガされる
ことがない。それ故に、前記入力端子の信号
(Ti+δt)がなくなるのと同時に、ソレノイド1
2が消勢され、エンジンへの一回の燃料供給は終
了する。
Therefore, the differential pulse cannot pass through the gate circuit 3 and the monostable multi-circuit 4 will not be triggered. Therefore, at the same time that the signal (Ti + δt) at the input terminal disappears, the solenoid 1
2 is deenergized, and one fuel supply to the engine is completed.

しかし、制御端子11に、減速時燃料カツトが
行なわれたことを示す信号(第2図d)が供給さ
れると、前記信号は微分回路9で微分され、その
微分出力によつてカウンタ回路5がクリアされ、
その出力カウント値(第2図h)が0になる。そ
の結果、一致検出回路7は出力を生じなくなり、
第2図eのように、ゲート回路3が開かれる。
However, when a signal (FIG. 2 d) indicating that fuel cut has been performed during deceleration is supplied to the control terminal 11, the signal is differentiated by the differentiating circuit 9, and the differential output is used as the counter circuit 5. is cleared,
The output count value (h in FIG. 2) becomes 0. As a result, the coincidence detection circuit 7 no longer produces an output;
As shown in FIG. 2e, the gate circuit 3 is opened.

ゲート回路3が開かれた状態のとき、入力端子
10に前述のような燃料噴射信号が到来すると、
微分回路2の正微分出力が、ゲート回路3を通過
して単安定マルチ回路4をトリガする。単安定マ
ルチ回路4は、第2図fのように、予じめ決めら
れた持続幅Δtのパルスを1個発生する。
When the aforementioned fuel injection signal arrives at the input terminal 10 when the gate circuit 3 is in an open state,
The positive differential output of the differentiating circuit 2 passes through the gate circuit 3 and triggers the monostable multicircuit 4. The monostable multicircuit 4 generates one pulse with a predetermined duration Δt, as shown in FIG. 2f.

単安定マルチ回路4の出力パルスは論理和回路
8に供給される。前述から、明らかなように、単
安定マルチ回路4の出力パルスは、入力された燃
料噴射信号の立下り点で立上るので、論理和回路
8の出力は、第2図gのように、基本燃料噴射
時間信号Ti、dθth/dtに比例して決められる
補正量信号δt、および減速時燃料カツト補正分
Δtの和に相当するものとなり、前記和信号によ
つて燃料供給制御が行なわれる。
The output pulses of the monostable multicircuit 4 are supplied to an OR circuit 8. As is clear from the above, the output pulse of the monostable multi-circuit 4 rises at the falling point of the input fuel injection signal, so the output of the OR circuit 8 is basically This corresponds to the sum of the fuel injection time signal Ti, a correction amount signal δt determined in proportion to dθth/dt, and a fuel cut correction amount Δt during deceleration, and fuel supply control is performed based on the sum signal.

一方、同時に、単安定マルチ回路4の出力はカ
ウンタ回路5にも加えられ、減速後加速時の燃料
カツトを補償するための定量増量実施回数がカウ
ントされる。すなわち、前記定量増量が1回行な
われるたびに、カウンタ回路5のカウント値は、
第2図hのように、1ずつ増加する。前記カウン
ト値が、予じめ設定されている出力回数設定値6
の出力値に一致すると、一致検出回路7が一致出
力を発生し、この出力によつてゲート回路3が閉
じられる。それ故に、それ以後の定量増量補正は
禁止される。
On the other hand, at the same time, the output of the monostable multicircuit 4 is also applied to the counter circuit 5, and the number of times the fuel is increased to compensate for fuel cut during acceleration after deceleration is counted. That is, each time the quantitative increase is performed once, the count value of the counter circuit 5 is
It increases by 1 as shown in Fig. 2h. The count value is a preset output number setting value 6
When the output value matches the output value of , the coincidence detection circuit 7 generates a coincidence output, and the gate circuit 3 is closed by this output. Therefore, subsequent quantitative increase corrections are prohibited.

なお、一致検出回路7の出力は、前記定量増量
補正が行なわれているか否かを示すフラグを制御
(セツト/リセツト)する信号としても用いるこ
とができる。
Note that the output of the coincidence detection circuit 7 can also be used as a signal for controlling (setting/resetting) a flag indicating whether or not the quantitative increase correction is being performed.

上述のように、本実施例によれば、減速時燃料
カツト後の加速時には、通常の加速時増量補正を
加えた燃料供給の外に、さらに減速時燃料カツト
を補償する分の定量増量を設定回数だけ行なうこ
とができるので、減速後の加速時における空燃比
の過大化を防止することができ、したがつてエミ
ツシヨンの劣化を防止すると共にプラグのカブリ
をも防止し、また加速運転性能の低下を防止する
ことができる。
As described above, according to the present embodiment, during acceleration after fuel cut during deceleration, in addition to the normal fuel supply with an increase correction during acceleration, a fixed amount increase is set to compensate for the fuel cut during deceleration. Since this can be repeated several times, it is possible to prevent the air-fuel ratio from becoming too high during acceleration after deceleration, thereby preventing deterioration of the emission and fogging of the plug, as well as deterioration of acceleration performance. can be prevented.

なお、以上では、入力端子10に、燃料噴射信
号として、基本燃料噴射時間信号Tiと、
dθth/dtに比例して決められる補正量信号δtとの
和に相当する時間幅の信号を供給した場合の実施
例について述べたが、本発明はつぎのような信号
を、燃料噴射信号として入力端子10に供給する
場合にも、全く同様に適用できるものである。
In the above description, the basic fuel injection time signal Ti is input to the input terminal 10 as the fuel injection signal.
Although the embodiment has been described in which a signal with a time width corresponding to the sum of the correction amount signal δt determined in proportion to dθth/dt is supplied, the present invention provides the following signal as a fuel injection signal to the input terminal. 10, it can be applied in exactly the same way.

(a) 基本燃料噴射時間信号Tiに付加して、固定
量の加速増量が、前記信号Tiと無関係かつ非
同期で行なわれる場合の、 (a‐1) 基本燃料噴射時間Ti、または (a‐2) 非同期固定量加速増量信号 (b) 基本燃料噴射時間信号Tiと比例加速増量信
号K・dθth/dtとの和信号に付加して、固定量
の加速増量が、前記和信号と無関係かつ非同期
で行なわれる場合の非同期固定量加速量信号 さらに、又、以上では単位論理素子の組合せに
よつてハード的に本発明を実施した例についての
み述べたが、同様の機能制御はマイクロコンピユ
ータ等によるソフト的制御によつても達成される
ことは明らかであり、このような態様も本発明の
範囲に含まれると解されるべきである。
(a) (a-1) Basic fuel injection time Ti, or (a-2 ) Asynchronous fixed amount acceleration increase signal (b) In addition to the sum signal of the basic fuel injection time signal Ti and the proportional acceleration increase signal K・dθth/dt, the fixed amount acceleration increase signal is unrelated to and asynchronous with the sum signal. Asynchronous fixed amount acceleration amount signal in the case where the acceleration amount signal is used It is clear that this can also be achieved through control, and it should be understood that such an aspect is also included within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロツク図、第2
図はその動作説明用のタイムチヤートである。 1…インバータ回路、2…微分回路、3…ゲー
ト回路、4…単安定マルチ回路、5…カウンタ回
路、6…出力回数設定器、7…一致検出回路、8
…論理和回路、9…微分回路、12…ソレノイ
ド。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG.
The figure is a time chart for explaining its operation. 1... Inverter circuit, 2... Differential circuit, 3... Gate circuit, 4... Monostable multi-circuit, 5... Counter circuit, 6... Output number setter, 7... Coincidence detection circuit, 8
...OR circuit, 9...differential circuit, 12...solenoid.

Claims (1)

【特許請求の範囲】 1 少なくとも一つのエンジンパラメータに基づ
いて基本燃料噴射時間信号を読み出す手段と、 エンジンの加速時に燃料噴射量を増加させるた
めの付加信号を発生する手段と、 前記基本燃料噴射信号および加速時の付加信号
の少なくとも一つを燃料噴射信号として供給され
る入力端子と、 前記燃料噴射信号の立下りに応じて発生される
トリガ信号を、ゲート回路を介して供給される単
安定マルチ回路と、 前記燃料噴射信号および単安定マルチ回路の出
力の論理和に相当する時間だけ燃料噴射弁を開く
ように制御する手段と、 前記単安定マルチ回路の出力回数を計数するカ
ウンタと、 前記カウンタの計数値が予め設定された定量増
量実施回数設定値よりも小さいとき、前記ゲート
回路を開く手段と、 減速時の燃料カツトが行なわれたときに前記カ
ウンタをリセツトする手段とを具備したことを特
徴とする電子制御によるシングルポイント・イン
ジエクシヨン方式内燃エンジンの加速時燃料増量
補正装置。 2 入力端子供給される燃料噴射信号が、基本燃
料噴射時間信号と、スロツトル開度の増加率に比
例した補正増量信号との和であることを特徴とす
る特許請求の範囲第1項記載の電子制御によるシ
ングルポイント・インジエクシヨン方式内燃エン
ジンの加速時燃料増量補正装置。 3 入力端子に供給される燃料噴射信号が、基本
燃料噴射時間信号であることを特徴とする特許請
求の範囲第1項記載の電子制御によるシングルポ
イント・インジエクシヨン方式内燃エンジンの加
速時燃料増量補正装置。 4 入力端子に供給される燃料噴射信号が、基本
燃料噴射時間信号とは無関係、かつ非同期に発生
される非同期固定量増量信号であることを特徴と
する特許請求の範囲第1項記載の電子制御による
シングルポイント・インジエクシヨン方式内燃エ
ンジンの加速時燃料増量補正装置。
[Scope of Claims] 1. Means for reading a basic fuel injection time signal based on at least one engine parameter; means for generating an additional signal for increasing the fuel injection amount when the engine accelerates; and the basic fuel injection signal. and an input terminal to which at least one of the additional signals during acceleration is supplied as a fuel injection signal; a circuit, means for controlling the fuel injection valve to open for a time corresponding to the logical sum of the fuel injection signal and the output of the monostable multi-circuit, a counter for counting the number of outputs of the monostable multi-circuit, and the counter. means for opening the gate circuit when the counted value is smaller than a preset value for the number of times of quantitative increase, and means for resetting the counter when fuel cut during deceleration is performed. Features an electronically controlled single-point injection fuel increase correction device during acceleration for internal combustion engines. 2. The electronic device according to claim 1, wherein the fuel injection signal supplied to the input terminal is the sum of a basic fuel injection time signal and a corrected increase signal proportional to the rate of increase in throttle opening. Controlled single-point injection fuel increase correction device during acceleration for internal combustion engines. 3. The fuel increase correction device during acceleration of an electronically controlled single point injection type internal combustion engine according to claim 1, wherein the fuel injection signal supplied to the input terminal is a basic fuel injection time signal. . 4. The electronic control according to claim 1, wherein the fuel injection signal supplied to the input terminal is an asynchronous fixed amount increase signal that is generated asynchronously and unrelated to the basic fuel injection time signal. Single-point injection fuel increase correction device during acceleration for internal combustion engines.
JP2317481A 1981-02-20 1981-02-20 Electronically controlled excess fuel correction accelerating device for single point injection internal combustion engine Granted JPS57137631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2317481A JPS57137631A (en) 1981-02-20 1981-02-20 Electronically controlled excess fuel correction accelerating device for single point injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2317481A JPS57137631A (en) 1981-02-20 1981-02-20 Electronically controlled excess fuel correction accelerating device for single point injection internal combustion engine

Publications (2)

Publication Number Publication Date
JPS57137631A JPS57137631A (en) 1982-08-25
JPH0151664B2 true JPH0151664B2 (en) 1989-11-06

Family

ID=12103261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2317481A Granted JPS57137631A (en) 1981-02-20 1981-02-20 Electronically controlled excess fuel correction accelerating device for single point injection internal combustion engine

Country Status (1)

Country Link
JP (1) JPS57137631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734483B2 (en) 2018-09-14 2020-08-04 Kabushiki Kaisha Toshiba Semiconductor device
US10872974B2 (en) 2018-09-15 2020-12-22 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939940A (en) * 1982-08-31 1984-03-05 Toyota Motor Corp Electronically controlled fuel injection device
JPS5946343A (en) * 1982-09-10 1984-03-15 Toyota Motor Corp Fuel injection controlling apparatus
JPS59168233A (en) * 1983-03-14 1984-09-21 Toyota Motor Corp Electronic fuel injection controlling method
JPS6053646A (en) * 1983-09-05 1985-03-27 Japan Electronic Control Syst Co Ltd Electronically controlled fuel supply system of internal-combustion engine
JPS6060233A (en) * 1983-09-13 1985-04-06 Japan Electronic Control Syst Co Ltd Electronically controlled fuel supplying apparatus for internal-combustion engine
JPS60116838A (en) * 1983-11-26 1985-06-24 Nippon Denso Co Ltd Electronically controlled fuel injection device
JPS611844A (en) * 1984-06-15 1986-01-07 Automob Antipollut & Saf Res Center Fuel injection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324925A (en) * 1976-08-18 1978-03-08 Nippon Denso Co Ltd Electronic control system fuel injector
JPS541721A (en) * 1977-06-03 1979-01-08 Nippon Denso Co Ltd Electronicaly controlled fuel injection system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324925A (en) * 1976-08-18 1978-03-08 Nippon Denso Co Ltd Electronic control system fuel injector
JPS541721A (en) * 1977-06-03 1979-01-08 Nippon Denso Co Ltd Electronicaly controlled fuel injection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734483B2 (en) 2018-09-14 2020-08-04 Kabushiki Kaisha Toshiba Semiconductor device
US10872974B2 (en) 2018-09-15 2020-12-22 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JPS57137631A (en) 1982-08-25

Similar Documents

Publication Publication Date Title
GB1592124A (en) Methods of and apparatus for controlling the operating behaviour of a spark-ignited internal combustion engine upon the commencement of during and after overrun operations
US4327682A (en) Fuel supply system for an internal combustion engine
US4227490A (en) Electronic control fuel injection system which compensates for fuel drying in an intake passage
JPH0151664B2 (en)
US4242991A (en) Method and apparatus for adjusting fuel supply to an internal combustion engine
US4250853A (en) Method and apparatus for controlling the fuel supply of an internal combustion engine
JPS63189633A (en) Fuel supply control device for internal combustion engine
JPS602505B2 (en) Electronically controlled fuel injection device
US4981122A (en) Fuel injection control device of an engine
JPS611844A (en) Fuel injection device
US4387687A (en) Control apparatus for a fuel metering system in an internal combustion engine
US4512321A (en) Fuel supply control method for multi cylinder internal combustion engines after termination of fuel cut
JPS5949334A (en) Acceleration/deceleration correction in electronically controlled fuel injector for internal-combustion engine
JPS5612029A (en) Control method for speed of revolution in internal combustion engine
JPS5614832A (en) Electronically controlled fuel injection system for internal combustion engine
JPH0243906B2 (en)
JPH0610443B2 (en) Electronic fuel injection device
JPS6245950A (en) Electronic control fuel injection device for car internal combustion engine
JPH0599036A (en) Fuel controller of engine
JPS61142343A (en) Air-fuel ratio control device in internal combustion engine
JP2523524Y2 (en) Engine fuel control device
JP2518604B2 (en) Engine fuel cut device
JP2588919B2 (en) Acceleration correction method for electronically controlled fuel injection device of engine
JP3203790B2 (en) Fuel injection control device
JPH0248727B2 (en)