JPH01501437A - Method for delivering oxygen from a fermentation plant and apparatus for carrying out the method - Google Patents

Method for delivering oxygen from a fermentation plant and apparatus for carrying out the method

Info

Publication number
JPH01501437A
JPH01501437A JP62501518A JP50151887A JPH01501437A JP H01501437 A JPH01501437 A JP H01501437A JP 62501518 A JP62501518 A JP 62501518A JP 50151887 A JP50151887 A JP 50151887A JP H01501437 A JPH01501437 A JP H01501437A
Authority
JP
Japan
Prior art keywords
reactor
reinforced
synthetic membrane
oxygen
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62501518A
Other languages
Japanese (ja)
Inventor
ゼコウロフ,イフアン
ブロイテイガム,ハンス‐ユルゲン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPH01501437A publication Critical patent/JPH01501437A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/208Membrane aeration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発酵プラントから酸素を配給する方法 及びその方法を実施するための装置 酸素を必要とする生命工学的方法はしばしば、反応器の水相に酸素を配給するの に用いられる空気分散が気泡の形成につながり、その結果、発泡や望ましくない 浮遊効果が生じるという不都合がある。細胞の損傷、不十分な成長及び高い死滅 率がしばしば認められる。これらの問題を避けるため、必要とされる酸素を多孔 質で疏水性の合成膜を介して反応器に導入することが勧められているが、その際 、膜は管空膜として準備される。それらの膜では酸素分圧が低いために酸素導入 量は低くなる。さもなければ、吹出し点(Blaspunkt )を越えた場合 望ましくない気泡が膜を通過してしまう、自動制御技術は橿めて高価となろう、 又、懸濁液又は単層中の敏感な真核細胞の培養のために、期待透過性で非多孔質 のシリコン管によっては素を供給することも勧められている。しかしながら、こ れらの管空膜は機械的影響に極めて敏感であるので、反応器中への設置は損傷を 避けるため極めて注意深く行わねばならない、従って敏感な管の使用は実験室反 応器に限られる。更に別の不都合は約2g0z/rdhという低い酸素導入量で 、さもなければ管空膜は約1.5バールというより高い酸素分圧で破損してしま う。[Detailed description of the invention] How to distribute oxygen from a fermentation plant and equipment for carrying out the method. Biotechnological methods that require oxygen often rely on the delivery of oxygen to the aqueous phase of the reactor. The air dispersion used in This has the disadvantage of creating a floating effect. Cell damage, poor growth and high mortality rate is often recognized. To avoid these problems, porous It is recommended that the membrane be introduced into the reactor through a high-quality, hydrophobic synthetic membrane; , the membrane is prepared as a tubular membrane. In those films, oxygen is introduced because the oxygen partial pressure is low. quantity will be lower. Otherwise, if the Blaspunkt is exceeded Unwanted air bubbles would pass through the membrane; automated control techniques would be extremely expensive; It is also expected to be permeable and non-porous for the culture of sensitive eukaryotic cells in suspension or monolayers. It is also recommended to supply the element with some silicon tubes. However, this These membranes are extremely sensitive to mechanical influences and their installation in the reactor should be avoided without damaging them. This must be done extremely carefully to avoid the use of sensitive tubes in laboratory reactions. limited to reaction vessels. Another disadvantage is the low oxygen introduction rate of about 2g0z/rdh. , otherwise the tubular membrane would be damaged at higher oxygen partial pressures of about 1.5 bar. cormorant.

更に、非多孔質だが金属補強されたシリコン膜によって酸素を液体に導入するこ とも勧められている。シリコンゴム中の可撓性の&I&ll金属ライナーが、高 い酸素導入量用に、且つ自立式の膜組織を達成するための支持組織として、用い られる0本質的な不都合は、金属補強シリコン膜の製造及び導入系全体は技術的 に高価であるということである。そのような管空膜は限られた長さでしか製造で きない、更に、非可撓性の金TX組織では取扱いが複雑になり機械的損傷の危険 が大きくなる。Furthermore, oxygen can be introduced into the liquid through a non-porous but metal-reinforced silicon membrane. It is also recommended. Flexible &I&ll metal liner in silicone rubber provides high Used for high oxygen introduction rates and as a support structure to achieve a self-supporting membrane structure. The essential disadvantage is that the entire production and introduction system for metal-reinforced silicon membranes is technically difficult. This means that it is expensive. Such tubular membranes can only be manufactured in limited lengths. Furthermore, the non-flexible gold TX structure complicates handling and risks mechanical damage. becomes larger.

本発明の目的は、他の気泡のない酸素導入方法の前記の不都合を防ぎ、且つ高い 酸素導入量が可能な、反応器へ気泡なしに酸素を配給する方法及びその方法を実 施するための装置を提供することである。It is an object of the present invention to avoid the above-mentioned disadvantages of other bubble-free oxygen introduction methods and to avoid the high A method for distributing oxygen to a reactor without bubbles, which allows the amount of oxygen introduced, and the method is implemented. The objective is to provide a device for carrying out this process.

本発明によれば、この課題は、気体交換器として用いられる、固定の支持部材上 に設けられた可撓性の織物によって補強された少な(とも一つの固定又は可動の 合成膜を介して、酸素のすべてまたは一部を反応器に配給することで、解決され る。According to the invention, this problem is solved on a fixed support member used as a gas exchanger. A small (and one fixed or movable) reinforced by a flexible fabric provided on the The solution is to deliver all or part of the oxygen to the reactor via a synthetic membrane. Ru.

本発明の一実施例によれば、気体交換器は、可撓性の織物によって補強された少 なくとも一つの合成膜が、固定の支持部材上ムニ配設されていることを特徴とす る0合成膜は、合成膜の水相に隣接する表面又は水相と反対の表面に配設される 可撓性の織物によって補強された管空又は平型の膜として、構成されてもよい。According to one embodiment of the invention, the gas exchanger comprises a small characterized in that at least one synthetic membrane is uniformly disposed on the fixed support member. The synthetic membrane is disposed on a surface of the synthetic membrane adjacent to the aqueous phase or on a surface opposite to the aqueous phase. It may be constructed as a tubular or flat membrane reinforced with flexible fabric.

反応器の型と応用に従い、可撓性の織物によって補強された管空又は平型の合成 膜は、他の合成膜に比べて重要な利点を有することを特徴としている。自立式の 合成膜モジュールは、可視性の織物補強材と支持部材とによって達成される。何 れの場合において、合成膜と可撓性の織物補強材とは一つの膜として準備され、 圧力と機械的応力に対して極めて大きな抵抗力を有している。このような補強膜 の取扱いは極めて容易で、容易に設置され、費用のかからない自動制御技術で高 い酸素導入量(10〜20g0z/rrrh)を達成する。Depending on the reactor type and application, tubular or flat composites reinforced with flexible fabrics The membrane is characterized by important advantages over other synthetic membranes. freestanding The synthetic membrane module is accomplished with visible textile reinforcement and support members. what In this case, the synthetic membrane and the flexible textile reinforcement are prepared as one membrane; It has extremely high resistance to pressure and mechanical stress. This kind of reinforcement membrane is extremely easy to handle, easy to install, and has high performance with inexpensive automatic control technology. Achieve a high oxygen introduction amount (10-20 g0z/rrrh).

本発明のさらに別の特徴は、従属請求の範囲において、及び添付の図面を参照し て以下において説明される。Further features of the invention are found in the dependent claims and with reference to the accompanying drawings. are explained below.

図面に関して、 第1図乃至第3図は、気体交換器用の管空膜の実施例の概略切断側面図、 第4図乃至第6図は、気体交換器用の平型膜の実施例の概略切断側面図、 第7a図は、平型膜を備えた気体交換器を有する反応器の切断側面図、 第7b図は、第7a図の反応器の二重膜の拡大詳細図、第7C図は、平型膜を備 えた気体交換器を有する反応器のさらに別の実施例の切断側面図、 第8図は管空膜を備えた気体交換器を有する反応器の切断側面図、 第9a図乃至第9b図は、管空膜の配役の概略上面図、第9C図は、前型膜のさ らに別の構成の、拡大された一部を示す概略側面図である。Regarding the drawings, 1 to 3 are schematic cutaway side views of an embodiment of a tubular membrane for a gas exchanger; 4 to 6 are schematic cutaway side views of an embodiment of a flat membrane for a gas exchanger; FIG. 7a is a cutaway side view of a reactor with a gas exchanger with a flat membrane; Figure 7b is an enlarged detailed view of the double membrane of the reactor of Figure 7a; Figure 7C is a detailed view of the double membrane of the reactor of Figure 7a; a cutaway side view of yet another embodiment of a reactor having a gas exchanger with a FIG. 8 is a cutaway side view of a reactor with a gas exchanger equipped with a tubular membrane; Figures 9a and 9b are schematic top views of the cast of the tubular membrane, and Figure 9c is a top view of the anterior membrane. FIG. 7 is a schematic side view showing an enlarged part of yet another configuration.

前型膜として準備された合成膜4が第1図乃至第3閏に示されているが、これら は本技術分野で公知のシリコンから成る0合成膜4は可撓性の織物6によって補 強されている。織物6は合成膜の水側7と隣接した表面8又は水側7と反対の表 面9に埋込まれている。織物6はモノフィラメント又はマルチフィラメントの有 機又は無機繊維から成る。有機繊維は例えばポリエステル、ポリアミド又はポリ テトラフルオロエチレンから成り、無機繊維はガラス繊維又は炭素繊維から成る 。ポリエステル繊維は、滅菌に使用される高温に対して抵抗力を有し、機械的特 徴に影響を与えないという利点を示す。A synthetic film 4 prepared as a pre-form film is shown in Figures 1 to 3. A synthetic membrane 4 made of silicone, as known in the art, is supplemented by a flexible fabric 6. being strengthened. The fabric 6 is attached to a surface 8 adjacent to the water side 7 or a surface opposite the water side 7 of the synthetic membrane. It is embedded in surface 9. The fabric 6 has monofilament or multifilament. Consists of organic or inorganic fibers. Organic fibers are e.g. polyester, polyamide or polyester. It is made of tetrafluoroethylene, and the inorganic fiber is made of glass fiber or carbon fiber. . Polyester fibers are resistant to the high temperatures used in sterilization and have excellent mechanical properties. This shows the advantage of not affecting the characteristics.

平型膜として準備された非多孔質の合成膜が第4図乃至第6図に概略的に示され ている。これらの合成膜は前記のように配設された可撓性の織物6によって補強 されている。A non-porous synthetic membrane prepared as a flat membrane is shown schematically in Figures 4-6. ing. These synthetic membranes are reinforced by flexible fabrics 6 arranged as described above. has been done.

反応器1は第7a図に概略的に示されているが、底部攪拌機11を備えた反応器 ケーシング10から成る。気体交換器33は二重膜19から成る合成膜モジニー ル18として備えられており、反応器ケーシング10の内側に配設されている。The reactor 1 is shown schematically in FIG. 7a and is equipped with a bottom stirrer 11. It consists of a casing 10. The gas exchanger 33 is a synthetic membrane modine consisting of a double membrane 19. 18 and is arranged inside the reactor casing 10.

各二重膜19は、支持部材32として準備された気体透過性のスプレッダ−14 によって間隔を置いて配設されている二つの平型膜12.13から成る(第7b 図参照)、a素は、平型膜12,13によって形成された流路20を介して導入 され、平型tIll 2゜13を通って水側7へ拡散する。スプレッダ−14は 例えば波型リボン、ネット又は織物として準備され得る。Each double membrane 19 has a gas-permeable spreader 14 provided as a support member 32. Consisting of two flat membranes 12.13 spaced apart by (No. 7b) (see figure), the a element is introduced through the flow path 20 formed by the flat membranes 12 and 13. and diffuses to the water side 7 through the flat plate 2°13. Spreader 14 is For example, it can be provided as a corrugated ribbon, a net or a fabric.

スプレッダ−22は支持部材32として二重lNl119の間に配設されている 。このスプレッダ−14は、気体が流路20に導入される時、気体の圧力によっ て引き起こされる平型膜の変形を阻止する。このスプレンダーもまた・波型リボ ン、ネット又は織物として準備され得る0合成膜モジュール18は側壁23.2 4に配設され、反応器ケーシング10内に格子支持部31によって支持される。The spreader 22 is arranged as a support member 32 between the double lNl 119. . This spreader 14 is caused by the pressure of the gas when it is introduced into the flow path 20. This prevents deformation of the flat membrane caused by This Splendor is also a wave-shaped rib. The synthetic membrane module 18, which can be provided as a net or fabric, has side walls 23.2. 4 and supported within the reactor casing 10 by a grid support 31 .

気体交換器は支持部材32によって自立式の気体交換器として備えられている。The gas exchanger is provided as a self-supporting gas exchanger by means of a support member 32.

反応器1と比べて異なる構成の攪拌機を備えた別の反応器が第7C図に示されて いる。この攪拌機25は、二重膜19の外側270間に配設されたバー形状の攪 拌部材26を備えていて水平方向に配設されている。攪拌部材は、反応器ケーシ ング10の側壁に通された攪拌機25のスピンドル28に、軸方向に配設されて いる0合成膜モジエールとして備えられる。気体交換器33の設置及び取外しを 迅速に行なうために、側壁23及び二重膜19には、ここでは詳細に示されてい ないが第7c図に示されている垂直方向のスロット29.30が備えられている 。撹拌機25の回転によって、剪断力を伴わすに極めて高い酸素導入が達成され る。Another reactor with a different configuration of agitator compared to reactor 1 is shown in Figure 7C. There is. This stirrer 25 is a bar-shaped stirrer disposed between the outer sides 270 of the double membrane 19. It includes a stirring member 26 and is arranged horizontally. The stirring member is connected to the reactor casing. The spindle 28 of the stirrer 25, which is passed through the side wall of the ring 10, is axially arranged. It is provided as a 0 synthetic membrane module. Installation and removal of gas exchanger 33 For the sake of speed, the side walls 23 and the double membrane 19 are not shown in detail here. Although not provided with vertical slots 29.30 as shown in Figure 7c. . By rotating the stirrer 25, an extremely high oxygen introduction is achieved with shear force. Ru.

第8図に示された反応器2も、反応器ケーシング10中の底部攪拌機11を備え ている。しかしながら非多孔質の合成膜4は前型膜として反応器ケーシング10 中に配設されていて、気体交換器33を合成膜モジュール21として提示してい る0合成膜4は異なる断面を有し相互に離して積み重ねられた管型リング15と して配設されている。支持部材32は散布及び固定用の支持部材として備えられ ている。第9a図は合成膜モジュール21の概略上面図である。第9b図に示さ れているように、管壁合成膜4は螺旋リングとして水平方向に配設されることも 可能である。しかしながら不規則な応力と導入量の変化が生じるかもしれない、 第9C図は、直接相互に接した管型リングを備えた別の型の合成膜モジュール2 1を示している。The reactor 2 shown in FIG. 8 also includes a bottom stirrer 11 in the reactor casing 10. ing. However, the non-porous synthetic membrane 4 is used as a front membrane in the reactor casing 10. The gas exchanger 33 is presented as a synthetic membrane module 21. The synthetic membrane 4 has tubular rings 15 having different cross sections and stacked apart from each other. It is arranged as follows. The support member 32 is provided as a support member for spreading and fixing. ing. FIG. 9a is a schematic top view of the synthetic membrane module 21. FIG. Shown in Figure 9b As shown in the figure, the pipe wall synthetic membrane 4 can also be arranged horizontally as a spiral ring. It is possible. However, irregular stresses and variations in the amount introduced may occur, FIG. 9C shows another type of synthetic membrane module 2 with tubular rings in direct contact with each other. 1 is shown.

平型膜から成るモジュールに比べ、この型の有効表面は、管型リング15の湾曲 によって増大せしめられる。Compared to modules consisting of flat membranes, the effective surface of this type is limited by the curvature of the tubular ring 15. is increased by

支持部材32は管型リング15(第9a図)及び螺旋管型リング17(第9b図 )の間にもスプレッダ−22として配設される。The support member 32 has a tubular ring 15 (FIG. 9a) and a spiral tubular ring 17 (FIG. 9b). ) is also arranged as a spreader 22.

水相7の混合も、織物によって補強された合成膜を介しての酸素の配給に影響を 与えるが、これは一つ又は複数の攪拌機11及び/又は添付の図面によって示さ れていない外部ポンプによって達成される。追加の運動、回転もまた、酸素の導 入及び反応器の効率を助ける。連続回転又は二方向運動が実施可能である。The mixing of the aqueous phase 7 also affects the distribution of oxygen through the textile-reinforced synthetic membrane. provided, this is indicated by one or more agitators 11 and/or by the accompanying drawings. This is accomplished by an external pump. Additional motion, rotation, also increases the conduction of oxygen. aids in flow and reactor efficiency. Continuous rotation or bidirectional movement is possible.

支持部材32と組み合わせて可撓性の織物補強材によって合成膜3,4.5の機 械的安定性が増大する結果、膜の取扱いもまた全く容易になる。酸素配給膜モジ ュールの構造が複雑になる補強1壁膜から公知の機械的損傷は、可撓性の織物に よって補強され、支持部材32が備えられている合成膜3.4.5では全く起こ り得ない。The synthetic membranes 3, 4.5 are supported by flexible textile reinforcements in combination with support members 32. As a result of the increased mechanical stability, handling of the membrane is also much easier. Oxygen distribution membrane modi Known mechanical damage from reinforced one-wall membranes complicates the structure of the flexible fabric. Thus, with synthetic membranes 3.4.5 reinforced and provided with support elements 32, no It can't be done.

支持部材32上で可撓性の織物によって補強された固定又は可動で非多孔質の合 成膜3,4.5を介しての、発泡を伴わない気泡のない酸素配給は、一般に、生 命工学で用いられるあらゆる型の反応器への酸素配給に適している。可撓性の織 物によって補強された合成膜はループ型反応器、エアリフト反応器及び固定床反 応器中で膜モジュールとして用いられるばかりでなく、管型モジュール、平型膜 モジュール、又は、前型膜又は平型膜を伴う螺旋リングモジュールのような、特 別な型の膜モジュールを備えた流動床反応器中での生命工学的方法にも用いられ る。A fixed or movable non-porous composite reinforced with flexible fabric on the support member 32. Bubble-free oxygen delivery via deposition 3, 4.5, without foaming, generally Suitable for oxygen delivery to all types of reactors used in biotechnology. flexible woven Synthetic membranes reinforced with material can be used in loop reactors, airlift reactors and fixed bed reactors. It is not only used as a membrane module in a reactor, but also as a tubular module, a flat membrane module, etc. modules or special features such as helical ring modules with front membranes or flat membranes. It is also used in biotechnological methods in fluidized bed reactors with other types of membrane modules. Ru.

流動床反応器は、粒径0.5nの砂のような細粒化された支持材上のバイオフィ ルム中で成長するか、又は支持材なしに成長し、栄養流を逆上がることによって 達成される浮動細胞集合体を常時形成する微生物を含む0合成膜モジュールが流 動床の高さいっばいに配設され、管型モジュール又は環状管型モジュールとして !1!備されるならば、安定した気泡のない酸素配給が達成される。膜又は膜モ ジュールを水平方向又は垂直方向に連続的に動かすことによって、織物によって 補強された合成膜を介しての酸素配給が酸素分圧に依存する流動床反応器におい ても、より良好な酸素導入が達成される。A fluidized bed reactor consists of biophyte on a finely divided support material such as sand with a particle size of 0.5n. by growing in a rum or by growing without support and reversing nutrient flow. 0 synthetic membrane modules containing microorganisms that constantly form floating cell aggregates are flown. Installed at the same height as the moving bed, it can be used as a tubular module or an annular tubular module. ! 1! If provided, a stable, bubble-free oxygen delivery is achieved. membrane or membrane By continuously moving the joule horizontally or vertically, the fabric In fluidized bed reactors where oxygen delivery through reinforced synthetic membranes depends on the oxygen partial pressure. better oxygen incorporation is achieved even when

国際調査報告 、−−、−=、−−−、、−−−PCT/EP86100744A、’JNEX  TOT)!E 工NTERNAT!0NAL 5EARCHREFORT O Ninternational search report ,--,-=,---,,--PCT/EP86100744A,'JNEX TOT)! E Engineering NTERNAT! 0NAL 5EARCHREFORT O N

Claims (12)

【特許請求の範囲】[Claims] 1.織物によって補強された非多孔質の合成膜を介して気体交換が達成される、 反応器へ気泡なしに酸素を配給する方法において、 気体交換器として準備された、安定した支持部材上の可撓性の織物によって補強 された少なくとも一つの固定又は可動の合成膜を介して、酸素のすべてまたは一 部が水相へ導入されるようにしたことを特徴とする方法。1. Gas exchange is achieved through a non-porous synthetic membrane reinforced with textiles, In a method for delivering oxygen to a reactor without bubbles, Reinforced by a flexible fabric on a stable support member, prepared as a gas exchanger All or part of the oxygen is transferred through at least one fixed or movable synthetic membrane The method is characterized in that: 2.酸素の一部が、本技術分野で公知の空気混和によって水相へ導入され、しか も、可撓性の織物によって補強された一つ又は複数の非多孔質の合成膜を介して 気泡なしに導入されて、発泡や浮遊を防ぐようにしたことを特徴とする、請求の 範囲1に記載の方法。2. A portion of the oxygen is introduced into the aqueous phase by aeration as known in the art; also through one or more non-porous synthetic membranes reinforced by flexible textiles. The claimed invention is characterized by being introduced without air bubbles to prevent foaming and floating. The method described in Scope 1. 3.反応器が撹拌反応器,ループ型反応器,流動床反応器,エアリフト反応器又 は固定床反応器として備えられていることを特徴とする、請求の範囲1及び2に 記載の方法。3. The reactor may be a stirred reactor, loop reactor, fluidized bed reactor, airlift reactor or According to claims 1 and 2, the reactor is equipped as a fixed bed reactor. Method described. 4.酸素配給が、もっぱら又は付加的に、撹拌反応器,ループ型反応器,流動床 反応器又は固定反応器の再循環水流中の可撓性の織物で補強された非多孔質の合 成膜を介して行なわれようにしたことを特徴とする、請求の範囲1乃至3の何れ かに記載の方法。4. Oxygen distribution is carried out exclusively or additionally in stirred reactors, loop reactors, fluidized beds. Non-porous composites reinforced with flexible fabrics in the recirculating water stream of reactors or fixed reactors Any one of claims 1 to 3, characterized in that the method is performed through film formation. Method described in Crab. 5.可撓性の織物によって補強された非多孔質の合成膜を介しての反応器への酸 素配給が、酸素に敏感な微生物の培養、及び動物又は植物の組織培養に用いられ るようにしたことを特徴とする、請求の範囲1乃至4の何れかに記載の方法の応 用。5. Acid into the reactor through a non-porous synthetic membrane reinforced by a flexible fabric Supplements are used in the culture of oxygen-sensitive microorganisms and in animal or plant tissue cultures. An adaptation of the method according to any one of claims 1 to 4, characterized in that for. 6.織物を伴った少なくとも一つの合成膜(3,4,5)が、支持部材(32) に配設されており、合成膜(3,4,5)中に埋め込まれて合成膜(3,4,5 )の水相(7)に隣接する側(8)又は水相(7)と反対側(9)に配設された 可撓性の織物を備えていることを特徴とする、織物によって補強された少なくと も一つの多孔質の合成膜を有する、請求の範囲1乃至4の何れかに記載の方法の 実施のための気体交換器並びに請求の範囲5に記載の気体交換器の応用。6. At least one synthetic membrane (3, 4, 5) with a fabric is attached to the support member (32) It is embedded in the synthetic membrane (3, 4, 5) and the synthetic membrane (3, 4, 5) ) arranged on the side (8) adjacent to the aqueous phase (7) or on the side (9) opposite to the aqueous phase (7) at least one reinforced by a textile, characterized in that it comprises a flexible textile; The method according to any one of claims 1 to 4, wherein the method further comprises a porous synthetic membrane. Gas exchanger for implementation and application of the gas exchanger according to claim 5. 7.支持部材(32)が支持部(16)又はスプレッダー(22)として備えら れていることを特徴とする、請求の範囲6に記載の気体交換器。7. The support member (32) is provided as a support part (16) or a spreader (22). 7. The gas exchanger according to claim 6, characterized in that: 8.合成膜(3,4,5)の補強織物(6)がモノフィラメント又はマルチフィ ラメントの有機繊維から成っていることを特徴とする、請求の範囲6に記載の気 体交換器。8. The reinforcing fabric (6) of the synthetic membrane (3, 4, 5) is monofilament or multifilament. The air according to claim 6, characterized in that it is made of lament organic fibers. body exchanger. 9.合成膜(3,4,5)の補強織物(6)がモノフィラメント又はマルチフィ ラメントの無機繊維から成っていることを特徴とする、請求の範囲6に記載の気 体交換器。9. The reinforcing fabric (6) of the synthetic membrane (3, 4, 5) is monofilament or multifilament. The air according to claim 6, characterized in that it is made of a lament inorganic fiber. body exchanger. 10.非多孔質の合成膜(4)が平型腹又は管型腹として備えられていることを 特徴とする、請求の範囲7乃至12の何れかに記載の装置。10. It is noted that the non-porous synthetic membrane (4) is provided as a flat belly or a tube belly. 13. A device according to any one of claims 7 to 12, characterized in that: 11.反応器(12)への酸素の配給と、二酸化炭素及び他の代謝最終生成物の 放出とが、支持部材(32)に配設され織物によって補強された少なくとも一つ の合成膜(3,4,5)によって、同時に又は連続的に達成されるようにしたこ とを特徴とする、請求の範囲6乃至10の何れかに記載の気体交換器の応用。11. Delivery of oxygen to the reactor (12) and of carbon dioxide and other metabolic end products at least one discharge disposed on the support member (32) and reinforced by a fabric. This can be achieved simultaneously or sequentially by the synthetic membranes (3, 4, 5) of An application of the gas exchanger according to any one of claims 6 to 10, characterized in that: 12.支持部材(32)に配設され織物によって補強された合成膜(3,4,5 )を介して反応器(1,2)中の水相から望ましくない成分が撤収されることを 特徴とする、請求の範囲6乃至10の何れかに記載の気体交換器の応用。12. Synthetic membranes (3, 4, 5) arranged on the support member (32) and reinforced with textiles ) that undesired constituents are withdrawn from the aqueous phase in the reactor (1, 2). An application of the gas exchanger according to any one of claims 6 to 10, characterized in that:
JP62501518A 1985-12-14 1986-12-12 Method for delivering oxygen from a fermentation plant and apparatus for carrying out the method Pending JPH01501437A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3544382.0 1985-12-14
DE19853544382 DE3544382A1 (en) 1985-12-14 1985-12-14 METHOD FOR THE OXYGEN SUPPLY OF BIOREACTORS AND DEVICE FOR IMPLEMENTING THE METHOD AND USE OF THE DEVICE

Publications (1)

Publication Number Publication Date
JPH01501437A true JPH01501437A (en) 1989-05-25

Family

ID=6288522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62501518A Pending JPH01501437A (en) 1985-12-14 1986-12-12 Method for delivering oxygen from a fermentation plant and apparatus for carrying out the method

Country Status (3)

Country Link
EP (1) EP0248900A1 (en)
JP (1) JPH01501437A (en)
DE (1) DE3544382A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161034A (en) * 1989-11-17 1991-07-11 Komatsu Ltd Apparatus for generating fine air bubbles
JP2018089564A (en) * 2016-12-01 2018-06-14 栗田工業株式会社 Biological activated carbon treatment device
JP6365714B1 (en) * 2017-03-16 2018-08-01 栗田工業株式会社 Aerobic treatment method
JP2019037974A (en) * 2017-08-23 2019-03-14 積水化学工業株式会社 Sheet structure, wastewater treatment apparatus having the same, and method for manufacturing sheet structure

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352610A (en) * 1990-03-22 1994-10-04 Braeutigam Hans Juergen Tubular membrane assembly
DE4025645A1 (en) * 1990-08-13 1992-02-20 Berkefeld Filter Anlagenbau Gm Membrane module for passing gases in and out of liquids - has tubular membrane wound in spiral arrangement around open vertical frame members, reducing build=up of deposits on membrane
DE4041975C1 (en) * 1990-12-21 1992-06-25 Schering Ag Berlin Und Bergkamen, 1000 Berlin, De Uniform gasification of e.g. galvanising processes and septic tanks - involves injecting gas into liq. through horizontal inflow tube in lower part of liq. bath, and displacing liq. through capillary tubes
DE9413576U1 (en) * 1994-08-24 1994-11-03 Forschungszentrum Juelich Gmbh Reactor for cell culture technology with bubble-free gassing using gas-permeable tube modules
DE9413575U1 (en) * 1994-08-24 1994-11-03 Forschungszentrum Juelich Gmbh Reactor for cell culture technology with bubble-free gassing
FR2786783B1 (en) * 1998-12-04 2002-12-06 Rtm Rech S Et Tech Modernes POCKET COMPRISING A POROUS BIOCOMPATIBLE TEXTILE FOR THREE-DIMENSIONAL IN VITRO EXPANSION OF CELLS, PARTICULARLY FOR THERAPEUTIC USE
AU3716101A (en) * 2000-03-08 2001-09-17 Zenon Environmental Inc. Membrane module for gas transfer and membrane supported biofilm process
US7294259B2 (en) 2003-02-13 2007-11-13 Zenon Technology Partnership Membrane module for gas transfer
US7303676B2 (en) 2003-02-13 2007-12-04 Zenon Technology Partnership Supported biofilm apparatus and process
US7118672B2 (en) 2003-02-13 2006-10-10 Zenon Technology Partnership Membrane supported bioreactor for municipal and industrial wastewater treatment
KR20050102115A (en) 2003-02-13 2005-10-25 제논 인바이런멘탈 인코포레이티드 Supported biofilm apparatus and process
US7175763B2 (en) 2003-02-13 2007-02-13 Zenon Technology Partnership Membrane supported biofilm process for autotrophic reduction
US7300571B2 (en) 2003-02-13 2007-11-27 Zenon Technology Partnership Supported biofilm apparatus
HUE052058T2 (en) 2007-04-20 2021-04-28 Zenon Tech Partnership Membrane supported biofilm apparatus and process
GB0724813D0 (en) * 2007-12-20 2008-01-30 Questor Technologies Ltd Improvements relating to water treatment
KR102370290B1 (en) 2013-02-22 2022-03-04 비엘 테크놀러지스 인크. Membrane assembly for supporting a biofilm
EP3119724A2 (en) 2014-03-20 2017-01-25 General Electric Company Wastewater treatment with primary treatment and mbr or mabr-ifas reactor
DE102020102420A1 (en) 2020-01-31 2021-08-05 Rwth Aachen Gas-liquid reactor for bubble-free gassing of a process liquid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563456A5 (en) * 1972-08-18 1975-06-30 Mueller Hans Maennedorf
DE3122186A1 (en) * 1981-06-04 1982-12-23 Martin 3013 Barsinghausen Lauffer SILICONE RUBBER MEMBRANES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR FASTENING AND DEGASSING LIQUIDS
DE3430924A1 (en) * 1984-08-22 1986-02-27 Gesellschaft für Biotechnologische Forschung mbH (GBF), 3300 Braunschweig Process and apparatus for bubble-free introduction of gas into liquids, in particular culture media for growing tissue cultures

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161034A (en) * 1989-11-17 1991-07-11 Komatsu Ltd Apparatus for generating fine air bubbles
JP2018089564A (en) * 2016-12-01 2018-06-14 栗田工業株式会社 Biological activated carbon treatment device
US11034602B2 (en) 2016-12-01 2021-06-15 Kurita Water Industries Ltd. Biological activated carbon treatment apparatus
JP6365714B1 (en) * 2017-03-16 2018-08-01 栗田工業株式会社 Aerobic treatment method
JP2018153733A (en) * 2017-03-16 2018-10-04 栗田工業株式会社 Aerobic biological treatment method
JP2019037974A (en) * 2017-08-23 2019-03-14 積水化学工業株式会社 Sheet structure, wastewater treatment apparatus having the same, and method for manufacturing sheet structure

Also Published As

Publication number Publication date
WO1987003615A3 (en) 1987-11-19
WO1987003615A2 (en) 1987-06-18
EP0248900A1 (en) 1987-12-16
DE3544382A1 (en) 1987-06-19

Similar Documents

Publication Publication Date Title
JPH01501437A (en) Method for delivering oxygen from a fermentation plant and apparatus for carrying out the method
US5081035A (en) Bioreactor system
US5443985A (en) Cell culture bioreactor
JP6840219B2 (en) Bioreactor system and its method
US6001642A (en) Bioreactor and cell culturing processes using the bioreactor
US5008197A (en) Process and a device for improved oxygenation of biological cultures
Tharakan et al. A radial flow hollow fiber bioreactor for the large‐scale culture of mammalian cells
US4649114A (en) Oxygen permeable membrane in fermenter for oxygen enrichment of broth
EP0353893B1 (en) Cell culture bioreactor
EP0433463B1 (en) Rotary culture device
CA2186492C (en) Bioreactor
JPH03502891A (en) Bioreactors and equipment for culturing animal cells
JPH01108973A (en) Apparatus for intensive control and production of microbe by photosynthesis
JPH0439990B2 (en)
CN106282015B (en) Systemic circulation fluidized bed bioreactor and the method for cultivating zooblast
US10344257B2 (en) Horizontally rocked bioreactor system
Prokop et al. Bioreactor for mammalian cell culture
US6087158A (en) Method and apparatus for growing cells using gas or liquid aphrons
EP1923461A1 (en) A bioreactor
Oh et al. High‐density continuous cultures of hybridoma cells in a depth filter perfusion system
Yamaji et al. Long-term cultivation of anchorage-independent animal cells immobilized within reticulated biomass support particles in a circulating bed fermentor
WO2017101096A1 (en) Combined bioreactor bin applicable to perfusion culture
JPH06269274A (en) Culture device of cell of organism and method of culture
US5151362A (en) Apparatus containing a septum which impedes cell permeation for cell culture and method of use
US20240002771A1 (en) Cell culture media conditioning vessels and perfusion bioreactor system