JPH0149796B2 - - Google Patents

Info

Publication number
JPH0149796B2
JPH0149796B2 JP58203390A JP20339083A JPH0149796B2 JP H0149796 B2 JPH0149796 B2 JP H0149796B2 JP 58203390 A JP58203390 A JP 58203390A JP 20339083 A JP20339083 A JP 20339083A JP H0149796 B2 JPH0149796 B2 JP H0149796B2
Authority
JP
Japan
Prior art keywords
plating
alloy
metal
linear body
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58203390A
Other languages
Japanese (ja)
Other versions
JPS6096753A (en
Inventor
Takeshi Shiba
Toshiaki Shimizu
Fumihiro Yanase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20339083A priority Critical patent/JPS6096753A/en
Publication of JPS6096753A publication Critical patent/JPS6096753A/en
Publication of JPH0149796B2 publication Critical patent/JPH0149796B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続的に線状体上に2種以上の異なる
金属を二層以上の多層状にメツキし、その後熱拡
散することにより熱拡散合金メツキを行うゴム補
強用線状体への熱拡散合金メツキ方法に関するも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a method of continuously plating two or more different metals on a linear body in a multilayered form of two or more layers, and then thermally diffusing the metal. The present invention relates to a method of plating a rubber reinforcing linear body with a heat diffusion alloy.

(従来の技術およびその課題) 従来、線状体に連続的に2種以上の金属よりな
る合金メツキを施す場合、線状体に対し目的の合
金金属成分を同時に含むメツキ浴槽で熱拡散を行
なわずに合金としてメツキを施すか、あるいは合
金成分となる金属を順次層状にメツキした後、熱
拡散処理を行い、合金メツキを施している。
(Prior art and its problems) Conventionally, when a linear body is continuously plated with an alloy made of two or more metals, thermal diffusion is performed on the linear body in a plating bath that simultaneously contains the desired alloy metal components. Either the metal is plated as an alloy, or the metals serving as alloy components are plated in layers and then subjected to thermal diffusion treatment to form an alloy.

そして、この様な線状体上にメツキされた合金
の厚み、もしくは合金組成比を、生産工程中にお
いて非破壊で分析し、その結果にもとずいてリア
ルタイムで工程にフイードバツクさせ、メツキ電
流等を自動制御し、メツキの品質精度を上げるこ
とは各種検討されてきた。
Then, the thickness or alloy composition ratio of the alloy plated on such a linear body is non-destructively analyzed during the production process, and the results are fed back to the process in real time to determine the plating current, etc. Various studies have been conducted to automatically control the process and improve the quality and accuracy of matsuki.

たとえば、特開昭54−29843号公報に示される
ように同時電着による合金メツキにおいては、完
全に合金メツキされた後、非破壊で精度良く分析
する方法が確立されており、実際の工程にも応用
が検討されているが、後者のような熱拡散方式に
よつて得られる合金メツキでは、メツキ液の濃度
変化、メツキ電圧の変化、電極棒の損耗状態、電
極板の状態等のメツキ電流効率および拡散電圧、
電流の変化等により、メツキ付着量、メツキ合金
組成比(合金メツキを構成する各種金属の重量比
%)および熱拡散合金メツキ方法特有のメツキ合
金組成傾斜(合金組成比がメツキ層の内層部から
中間層部、表層部へと連続的に変化すること)等
にバラツキが生じ、従来のように完全に合金メツ
キされた後に分析する方法では精度良く分析する
ことが不可能なため、目的とする合金メツキを精
度良く、しかも線状体に対し長手方向に均一に得
ることが非常に困難で実用化に至つていないのが
現状である。
For example, in the case of alloy plating by simultaneous electrodeposition, as shown in Japanese Patent Application Laid-open No. 54-29843, a method has been established to conduct a non-destructive and accurate analysis after complete alloy plating, and this method can be used in the actual process. However, in alloy plating obtained by the latter thermal diffusion method, the plating current is affected by changes in the concentration of the plating solution, changes in the plating voltage, the state of wear and tear on the electrode rods, the condition of the electrode plates, etc. efficiency and spreading voltage,
Due to changes in current, etc., the amount of plating deposited, the plating alloy composition ratio (% by weight of various metals constituting the alloy plating), and the plating alloy composition gradient unique to the heat diffusion alloy plating method (the alloy composition ratio changes from the inner layer of the plating layer to the plating layer) (continuous changes from the middle layer to the surface layer), etc., and it is impossible to analyze with high accuracy using the conventional method of analyzing after complete alloy plating. At present, it is extremely difficult to obtain alloy plating with high precision and uniformly in the longitudinal direction of a linear body, and it has not yet been put to practical use.

ところで、自動車用タイヤやコンベアベルト等
のゴム補強用に用いられる線状体においては、そ
の強度とともに、ゴムとの接着性が最重要品質と
して要求され、この種の合金メツキに要求される
精度は極めて厳しいものがある。
By the way, for linear bodies used to reinforce rubber in automobile tires, conveyor belts, etc., the most important qualities are required to have strength as well as adhesion to the rubber, and the precision required for this type of alloy plating is There are some extremely tough ones.

すなわち、上記線状体への合金メツキはゴムと
の接着性の影響からメツキ付着量、メツキ合成組
成比(例えばCuとZnとの重量比率)が厳しく制
限され、しかも、その値はゴムの種類によつて微
妙に変化するものである。
In other words, when alloy plating is applied to the above-mentioned linear bodies, the amount of plating deposited and the composite composition ratio of plating (for example, the weight ratio of Cu and Zn) are strictly limited due to the influence of adhesion with the rubber, and the value also depends on the type of rubber. It changes slightly depending on the situation.

しかも、これらの精度は合金メツキ後行なわれ
る伸線工程における伸線性にも大きく影響する。
特にメツキ合金組成比は伸線工程における断線に
関係する問題である。さらに、近年公害問題など
からシアン化浴等を用い、同時電着により合金メ
ツキを行なう方法よりも、拡散により合金メツキ
を行なう方法がよく利用されるようになつてき
た。
Furthermore, these precisions greatly affect the wire drawability in the wire drawing process performed after alloy plating.
In particular, the plating alloy composition ratio is a problem related to wire breakage in the wire drawing process. Furthermore, in recent years, due to pollution problems, a method of alloy plating by diffusion using a cyanide bath or the like has become more popular than a method of performing alloy plating by simultaneous electrodeposition.

このような要求に対して、目的のメツキ付着
量、メツキ合金組成比を精度良く、しかも線状体
に対し長手方向に均一に得る従来の方法として
は、実際に熱拡散合金メツキされた線状体の一部
を分析用として切り取り、この切り取つたサンプ
ルを用いて原子吸光法、もしくは蛍光X線法等の
各種分析を行い、そこで得られた分析結果に基づ
き、各種金属メツキのためのメツキ槽におけるメ
ツキ電流値を修正することにより目的のメツキ付
着量、メツキ合金組成比を有する合金メツキを得
ている。
In response to these demands, the conventional method of obtaining the desired plating coating amount and plating alloy composition ratio with high precision and uniformity in the longitudinal direction of the linear object is to A part of the body is cut out for analysis, and the cut sample is used for various analyzes such as atomic absorption spectrometry or fluorescent X-ray method. Based on the analysis results, plating tanks for various metal plating are prepared. By modifying the plating current value in , an alloy plating having the desired plating amount and plating alloy composition ratio is obtained.

しかるに、上記方法で合金メツキ精度の均一な
線状体を連続的に得るには、できるだけ多くのサ
ンプリング及び分析をすれば良いが、線状体のよ
うに連続性が要求される場合は実用的でないとい
う欠点があつた。
However, in order to continuously obtain linear bodies with uniform alloy plating accuracy using the above method, it is sufficient to sample and analyze as much as possible, but it is not practical when continuity is required, such as with linear bodies. The drawback was that it was not.

また、上述の従来の方法によつて、例えばCu
濃度65%の真鍮メツキ鋼線を製造しようとして
も、せいぜい62〜68%に抑えるのが限度であり、
Cu濃度において±3%のバラツキを生じること
は不可避であつた。
Moreover, by the above-mentioned conventional method, for example, Cu
Even if we try to manufacture brass-plated steel wire with a concentration of 65%, the limit is to keep it to 62-68% at most.
It was inevitable that there would be a ±3% variation in Cu concentration.

しかるに、Cu濃度(Cu/Cu+Zn×100(重量
比))と、ゴムとの接着性及び伸線性との関係は、
第4図の通りである。この図において接着試験後
のゴム付とは、熱拡散による真鍮メツキ鋼線を伸
線加工後、80℃×95%RHで2週間放置して鋼線
の表面に付着しているゴムの量を表わす。
However, the relationship between Cu concentration (Cu/Cu + Zn x 100 (weight ratio)) and adhesion to rubber and wire drawability is as follows.
As shown in Figure 4. In this figure, the rubber attached after the adhesion test refers to the amount of rubber attached to the surface of the steel wire after drawing the brass-plated steel wire by heat diffusion and leaving it at 80℃ x 95% RH for two weeks. represent.

上記図から明らかなように、ゴムとの接着性と
伸線性とは相反関係にあり、従来の方法のよう
に、Cu濃度において±3%のバラツキが生じる
ということは、合金メツキ精度のよい線状体を製
造できず、品質面、生産性の面においても満足さ
せる線状体を生産できないことがわかる。
As is clear from the above figure, adhesion with rubber and wire drawability are in a contradictory relationship, and the fact that the conventional method has a variation of ±3% in Cu concentration means that wires with good alloy plating accuracy It can be seen that it is not possible to produce a linear body that satisfies both quality and productivity.

このように、線状体への熱拡散合金メツキ方法
において、メツキ付着量、メツキ合金組成比を管
理して、そのバラツキを少なくすることは今日、
重要な課題になつている。
In this way, in the heat diffusion alloy plating method for linear bodies, it is important today to control the amount of plating deposited and the plating alloy composition ratio to reduce the variation.
It has become an important issue.

(課題を解決するための手段) 本発明は上記欠点を除去するためになされたも
のであり、ゴム補強用線状体に対し連続的に熱拡
散による合金メツキをそのメツキ厚み及び合金組
成比が目的の値になるよう精度よく施すことを目
的としたものであり、合金化後のメツキ厚み、も
しくはその合金組成比を分析するのではなく、合
金化前、すなわち各金属のメツキ層の厚み、又は
各金属の付着量比を熱拡散する前の層状態で運転
を停止することなく測定し、その測定結果を各メ
ツキ工程にフイードバツクし、メツキ電流等のメ
ツキ条件を調整することにより精度の良い合金メ
ツキを得るゴム補強用線状体への熱拡散合金メツ
キ方法を提供する。
(Means for Solving the Problems) The present invention has been made to eliminate the above-mentioned drawbacks, and consists of continuously applying alloy plating to a rubber reinforcing linear body by thermal diffusion, with the thickness of the plating and alloy composition ratio changing. The purpose is to accurately apply the plating layer to the desired value, and rather than analyzing the plating thickness after alloying or the alloy composition ratio, it is based on the thickness of the plating layer of each metal before alloying, Alternatively, the coating weight ratio of each metal can be measured without stopping operation in the layer state before thermal diffusion, and the measurement results can be fed back to each plating process, and the plating conditions such as the plating current can be adjusted to improve accuracy. Provided is a method for plating a rubber reinforcing wire with a heat diffusion alloy to obtain an alloy plating.

(作用) 分析の位置を熱拡散前、すなわちメツキが合金
化される前の二層メツキ状態で測定を行なうの
は、熱拡散により合金化された場合は、その熱の
加え方によつて、メツキ層の内層部から表層部に
かけて均一な合金層状態にならない場合、すなわ
ち合金組成比がメツキ層の内層部から中間層部、
表層部で異なる(いわゆる組成傾斜)場合がほと
んどであり、また拡散のための加熱量が不安定な
場合、もしくは意図的にその加熱量を変化された
場合(Cu濃度を一定にし得たときの拡散加熱量
と、ゴムとの接着性及び伸線性との関係は、第5
図の通りである。この図において、接着試験後の
ゴム付とは、Cu濃度65%真鍮メツキ鋼線を伸線
加工後、80℃×95%RHで2週間放置して、鋼線
の表面に付着しているゴムの量を表わす。よつ
て、伸線性もしくは接着性より拡散熱量を変更す
る場合がある。)にも上記現象が生じると、蛍光
X線分析において熱拡散による合金メツキ層を測
定したとき、その測定結果、特に合金組成比にお
いて大きな誤差を生じるためである。
(Function) The reason why the analysis is performed at the position of the two-layer plating before thermal diffusion, that is, before the plating is alloyed, is because when alloying occurs by thermal diffusion, depending on the method of applying heat, If the alloy layer is not uniform from the inner layer to the surface layer of the plating layer, that is, if the alloy composition ratio is not uniform from the inner layer to the intermediate layer of the plating layer,
In most cases, the difference occurs in the surface layer (so-called composition gradient), and the amount of heating for diffusion is unstable, or the amount of heating is intentionally changed (when the Cu concentration is kept constant). The relationship between the amount of diffusion heating, adhesion to rubber, and wire drawability is explained in the fifth
As shown in the figure. In this figure, the rubber attached after the adhesion test refers to the rubber that adheres to the surface of the steel wire after drawing the brass-plated steel wire with a Cu concentration of 65% and leaving it at 80℃ x 95%RH for 2 weeks. represents the amount of Therefore, the amount of diffusion heat may be changed depending on wire drawability or adhesiveness. ), if the above phenomenon occurs, a large error will occur in the measurement results, especially in the alloy composition ratio, when measuring the alloy plating layer by thermal diffusion in fluorescent X-ray analysis.

例えば鋼線上に真鍮メツキした場合を例にとる
と、蛍光X線分析で直接線状体の状態で測定する
場合は、前もつて厚み及び合金組成のわかつてい
る真鍮メツキ鋼線を幾種類か測定し、得られた真
鍮メツキ中のCu、Zn及び下地鋼線のFeよりの二
次X線強度のそれぞれの比、すなわち厚みにおい
ては、 Icu/IFe+Izn/IFe Icu:Cuからの二次X線強度(cps) Izn:Znからの二次X線強度(cps) IFe:Feからの二次X線強度(cps) (cps)=Count per second 組成比においては、 Icu/(Icu+Izn) と、それらの実際のメツキ厚み及び組成比より第
2図イ,ロのように検量線を作成し、これより未
知試料測定で得た各二次X線の強度からそのメツ
キ厚み及び組成比(ここではCu濃度)を知る方
法がとられる。しかし、実際の熱拡散真鍮メツキ
鋼線では前述の如きメツキ層内部で組成比すなわ
ちCu−Znの濃度差を生じさせることがあり、た
とえば第3図ハに示す表層部、中間層部、内層部
でのCu組成比を61%、65%、69%等(組成比の
平均は65%)とすることがある。
For example, when brass-plated steel wire is used, if the linear object is directly measured using fluorescent X-ray analysis, several types of brass-plated steel wire with known thickness and alloy composition must be used. The ratio of the secondary X-ray intensities from Cu, Zn in the brass plating and the Fe of the underlying steel wire, that is, the thickness, is as follows: Icu/IFe+Izn/IFe Icu: Secondary X-rays from Cu Intensity (cps) Izn: Secondary X-ray intensity from Zn (cps) IFe: Secondary X-ray intensity from Fe (cps) (cps) = Count per second In terms of composition ratio, Icu/(Icu+Izn) and their A calibration curve is created as shown in Figure 2 A and B from the actual plating thickness and composition ratio of concentration). However, in actual heat-diffusion brass-plated steel wire, a difference in composition ratio, that is, concentration of Cu-Zn, may occur inside the plating layer as described above. The Cu composition ratio is sometimes set to 61%, 65%, 69%, etc. (the average composition ratio is 65%).

そして、この場合蛍光X線測定における特質
上、メツキ層全体より発生した二次X線は照射X
線量と同量でなくメツキ内層部より発生した二次
X線ほど第3図ハに示すように検出器に至るまで
にメツキ内部で多く吸収され減衰するため、情報
源となる二次X線は、最表面より反射するものが
最も多く含まれていることとなり、たとえばこの
場合Cu組成比が63%と検出され、実際のCu組成
比と異なる分析結果値となつてしまう。
In this case, due to the characteristics of fluorescent X-ray measurement, the secondary X-rays generated from the entire plating layer are
As shown in Figure 3 (c), the more secondary X-rays generated from the inner layer of the mesh are absorbed and attenuated within the mesh before reaching the detector, and the amount of secondary X-rays that are the information source are In this case, for example, the Cu composition ratio is detected as 63%, which results in an analysis result value that differs from the actual Cu composition ratio.

しかしながら、上記のような現象は、従来の同
時電着の合金メツキのようにメツキ層内の各部で
完全にCu−Zn濃度が均一な真鍮メツキの場合に
はほとんど見られないのである。
However, the above phenomenon is hardly observed in the case of brass plating, where the Cu-Zn concentration is completely uniform in each part of the plating layer, such as in conventional simultaneous electrodeposition alloy plating.

第3図に鋼線上に第一層としてCuを、第二層
にZnをメツキして熱拡散の程度を変化させた時
に、あらかじめ均一な層状態の標準試料より得た
検量線を用いて蛍光X線分析した場合の組成比を
一例として示し、イは拡散における加熱量の程度
を変化させ、エネルギー分散型蛍光X線分析装置
により測定したものである。
Figure 3 shows that the degree of thermal diffusion was varied by plating Cu as the first layer and Zn as the second layer on the steel wire. The composition ratio in the case of X-ray analysis is shown as an example, and (a) is measured by changing the amount of heating during diffusion and using an energy dispersive X-ray fluorescence analyzer.

例えば、aのように熱拡散の為の綱線表面への
加熱量が小さい場合(例えば400℃×4秒)では、
拡散が不十分な為、メツキ層表層部においてCu
組成比が低く、中間層部、内層部においてCu組
成比の高い真鍮となつており、実際のメツキ層全
体のCu組成比が65%であつても綱線を直接蛍光
X線分析した場合に、このCu組成比の濃度勾配
の影響をうけ、63%程度と言うように誤差のある
分析結果となる。また、cの場合は十分な熱量
(例えば500℃×4秒)により均一な拡散が得ら
れ、ほぼ実際の値に近い分析結果となる。なお、
bは中間状態の熱量(例えば450℃×4秒)の場
合である。
For example, when the amount of heating to the wire surface for thermal diffusion is small (e.g. 400°C x 4 seconds) as in case a,
Due to insufficient diffusion, Cu is present in the surface layer of the plating layer.
Brass has a low composition ratio and a high Cu composition ratio in the intermediate layer and inner layer. , due to the influence of the concentration gradient of this Cu composition ratio, the analysis result has an error of about 63%. Furthermore, in the case of c, uniform diffusion can be obtained with a sufficient amount of heat (for example, 500° C. x 4 seconds), resulting in an analysis result that is almost close to the actual value. In addition,
b is a case of an intermediate state of heat (for example, 450° C. x 4 seconds).

このような、a、b、cのメツキをX線回析装
置にて測定すると、拡散の為の熱量が少ない真鍮
ほどβ相の出現が大きくなり、合金メツキ層表層
部のCu組成比が少なくなることを裏付けている。
また、第3図ロは上記a、b、cのα相、β相を
X線分析装置により測定し、それが変化している
ことを示す図である。
When such plating of a, b, and c is measured using an X-ray diffraction device, the appearance of β phase becomes larger in brass, which requires less heat for diffusion, and the Cu composition ratio in the surface layer of the alloy plating layer is lower. It confirms that it will happen.
FIG. 3B is a diagram showing changes in the α and β phases of a, b, and c as measured by an X-ray analyzer.

以上のように本発明のメツキ方法は、熱拡散工
程前にエネルギー分散型蛍光X線分析を用いて、
分析測定を行つているので組成傾斜の影響がなく
なり、X線分析の減衰は前述と同様に発生する
が、Cu単独、Zn単独メツキ内における減衰であ
るので、あらかじめその減衰率は容易に計算で
き、このため非常に精度のよい分析測定を行うこ
とが可能となる。
As described above, the plating method of the present invention uses energy dispersive X-ray fluorescence analysis before the thermal diffusion process.
Since analytical measurements are being performed, the influence of compositional gradients is eliminated, and attenuation in X-ray analysis occurs in the same way as described above, but since the attenuation is within the plating of Cu alone and Zn alone, the attenuation rate can be easily calculated in advance. , This makes it possible to perform highly accurate analytical measurements.

また、熱拡散は上記分析測定後に行なわれるた
め、拡散熱量を自在に変化させても測定結果には
全く影響しない。
Furthermore, since thermal diffusion is performed after the analysis and measurement described above, even if the amount of diffusion heat is freely changed, the measurement results are not affected at all.

(実施例) 以下、本発明の一実施例を図面に基いて説明す
る。
(Example) Hereinafter, one example of the present invention will be described based on the drawings.

第1図に示すように、繰出しリール1より引き
出された線状体は脱脂、水洗、酸洗等の前処理装
置2を通り、電流制御装置7によりメツキ電流が
設定された第一層目のCuメツキのためのメツキ
浴槽3及び第二層目のZnメツキのためのメツキ
浴槽4を通つて二層メツキされ、さらに水洗装置
8、乾燥装置9を通過した後、熱拡散装置5を通
つて熱拡散処理され、合金メツキされた線状体1
1となつて巻取りリール12に連続的に巻き取ら
れる。
As shown in FIG. 1, the linear body drawn out from the feed reel 1 passes through a pretreatment device 2 for degreasing, washing with water, pickling, etc., and then passes through a first layer where a plating current is set by a current control device 7. Two layers are plated through a plating bath 3 for Cu plating and a plating bath 4 for the second layer of Zn plating, and then passed through a washing device 8 and a drying device 9, and then passed through a heat diffusion device 5. Linear body 1 subjected to heat diffusion treatment and alloy plated
1 and is continuously wound onto the take-up reel 12.

上記のように配置された熱拡散合金メツキ工程
において、金属メツキ工程終了後、熱拡散工程前
の所定位置の線状体の近傍にエネルギー分散型蛍
光X線分析装置6を配置する。
In the heat diffusion alloy plating process arranged as described above, after the metal plating process is completed, the energy dispersive X-ray fluorescence analyzer 6 is placed near the linear body at a predetermined position before the heat diffusion process.

上記エネルギー分散型蛍光X線分析装置6はそ
の蛍光X線発生管13よりX線を線状体11の表
面に照射し、線状体表面に二層メツキされた各金
属からの特性X線を同時に検出し、上記検出した
各金属からの特性X線の強度比率より二層メツキ
の層状態(メツキ付着量、又は金属付着量比)を
分析し、上記検知した値とあらかじめ設定した基
準値とを比較して修整値をコンピユータ10にお
いて演算し、上記修整値を各金属メツキのメツキ
条件設定手段に連続的にフイードバツクし、目的
のメツキ付着量、又は金属付着量比が線状体の長
手方向に均一に得られるようメツキ層3,4のメ
ツキ電流等のメツキ条件を自動制御する。
The energy dispersive X-ray fluorescence analyzer 6 irradiates the surface of the linear body 11 with X-rays from its fluorescent X-ray generating tube 13, and collects characteristic X-rays from each metal plated in two layers on the surface of the linear body. At the same time, the layer condition of the two-layer plating (plating adhesion amount or metal adhesion amount ratio) is analyzed from the intensity ratio of the characteristic X-rays from each metal detected above, and the detected value is compared with the preset reference value. are compared and a modified value is calculated in the computer 10, and the modified value is continuously fed back to the plating condition setting means for each metal plating, and the target plating deposit amount or metal deposit amount ratio is determined in the longitudinal direction of the linear body. The plating conditions such as the plating current of the plating layers 3 and 4 are automatically controlled so as to obtain uniform plating conditions.

上記のように二層メツキされた線状体は熱拡散
装置5により合金メツキ化されるが、この合金メ
ツキ状態では、すでにメツキ厚み及び合金組成比
は目的の値に調節されたものとなつている。
The linear body plated in two layers as described above is alloy-plated by the heat diffusion device 5, but in this alloy-plated state, the plating thickness and alloy composition ratio have already been adjusted to the desired values. There is.

このようにして、運転を停止することなく連続
的に、しかも時間的に各メツキ電流効率が変化し
ても目的とする合金メツキが均一に精度よく得ら
れる。
In this way, the desired alloy plating can be uniformly and precisely obtained continuously without stopping operation, and even if the plating current efficiency changes over time.

本発明はエネルギー分散型蛍光X線分析装置を
用いているため、線径が1mmφ程度の細い線状体
で、しかも微小振動をともなう連続運転中にも精
度よく分析が可能となつた。
Since the present invention uses an energy dispersive X-ray fluorescence analyzer, it is possible to analyze thin linear bodies with a wire diameter of about 1 mmφ with high accuracy even during continuous operation accompanied by minute vibrations.

すなわち本発明では、このような拡散状態の変
動がひきおこす測定誤差をさせるため、熱拡散前
のそれぞれの層状態になつたメツキの厚み及びそ
れぞれの金属比率のわかつた試料において前述の
検量線を作成し、実際の連続運転中の熱拡散前に
未知試料を測定することにより、この誤差をさけ
ることに成功している。また第1図のように分析
装置に乾燥装置の後に配置しておけば線状体に付
着している水分等による分析装置の損傷を防ぐこ
とができる。また分析装置のX線発生管13、検
出器と線状体の走行方向が同一平面上になるよう
に分析装置を設置すればより効率良くX線の検出
が可能となり、その精度も良好となる。
That is, in the present invention, in order to eliminate measurement errors caused by such fluctuations in the diffusion state, the above-mentioned calibration curve is created for samples for which the thickness of the plating in each layer state before thermal diffusion and the metal ratio of each are known. However, we succeeded in avoiding this error by measuring the unknown sample before thermal diffusion during actual continuous operation. Further, if it is placed after the drying device in the analyzer as shown in FIG. 1, damage to the analyzer due to moisture adhering to the linear body can be prevented. In addition, if the analyzer is installed so that the X-ray generating tube 13 of the analyzer, the detector, and the linear object travel in the same plane, X-rays can be detected more efficiently and the accuracy can be improved. .

従来、そのメツキ合金比の精度が、ゴムとの接
着性により非常に厳しく要求されており、スチー
ルタイヤコード用の真鍮メツキ鋼線においては、
たとえば65%のCu濃度を得るのに現状では連続
メツキ生産で、せいぜい62%〜68%程度の精度で
あるが、本発明の方法を使用すれば64〜66%以内
の精度の真鍮メツキを得ることが可能となつた。
Conventionally, the accuracy of the plating alloy ratio has been extremely strict due to its adhesion to rubber, and for brass-plated steel wires for steel tire cords,
For example, to obtain a Cu concentration of 65%, currently continuous plating production has an accuracy of at most 62% to 68%, but using the method of the present invention, brass plating with an accuracy of within 64 to 66% can be obtained. It became possible.

(発明の効果) 本発明の方法によるときは、連続生産中におけ
るゴム補強用線状体のメツキの層状態の変動をエ
ネルギー分散型蛍光X線分析装置、マイクロコン
ピユータで以て分析補正し、その補正したデータ
を制御部へフイードバツクし、時々刻々メツキ電
流を自動的に調整して、金属メツキ、熱拡散を行
なつているので、メツキ付着量、メツキ合金組成
比のバラツキの極めて少ない、精度の良い合金メ
ツキを線状体の長手方向にほぼ均一に施すことが
できる。従つて、ゴムとの接着性の点からメツキ
厚み及び、メツキ合金組成比の精度が厳しく要求
されると共に、ゴムの種類、用途等に応じて上記
値を種々組合わさなければならない自動車用タイ
ヤコードの鋼線の製造に最適である。更に、従
来、メツキ浴管理、電流管理、拡散熱量管理、各
種分析等に多大の労力をかけなければならず、ま
た合金メツキの線状体の操業率も悪かつたのが、
大幅に軽減、向上する等の優れた効果を有するも
のである。
(Effects of the Invention) When the method of the present invention is used, fluctuations in the plating layer state of the rubber reinforcing linear body during continuous production are analyzed and corrected using an energy dispersive fluorescent X-ray analyzer and a microcomputer. Corrected data is fed back to the control unit, and the plating current is automatically adjusted from time to time to perform metal plating and thermal diffusion, resulting in highly accurate plating with very little variation in the plating amount and plating alloy composition ratio. Good alloy plating can be applied almost uniformly in the longitudinal direction of the linear body. Therefore, from the viewpoint of adhesion to rubber, precision of plating thickness and plating alloy composition ratio is strictly required, and various combinations of the above values are required depending on the type of rubber, application, etc. for automobile tire cords. Ideal for manufacturing steel wire. Furthermore, in the past, a great deal of effort had to be put into plating bath management, current control, diffusion heat control, various analyses, etc., and the operating efficiency of alloy-plated linear bodies was also poor.
It has excellent effects such as significant reduction and improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す製造工程の概
略図であり、第2図イ,ロはFeにメツキされた
真鍮メツキにおける蛍光X線分析の検量線を示す
相関図、第3図イは鋼線上の熱拡散真鍮メツキに
おける加熱量による蛍光X線分析結果を示す相関
図、ロはイにおけるそれぞれのメツキの合金状態
の変化を示すX線分析図、ハは真鍮メツキ層への
蛍光X線分析の検量線の減衰程度を示す作用図、
第4図はCu濃度と、ゴムとの接着性及び伸線性
との関係を示す相関図、第5図は拡散加熱量と、
ゴムとの接着性及び伸線性との関係を示す相関図
である。 1……繰出リール、2……前処理装置、3,4
……メツキ浴槽、5……熱拡散加熱装置、6……
エネルギー分散型蛍光X線分析装置、7……電流
制御装置、8……水洗装置、9……乾燥装置、1
0……マイクロコンピユーター、11……線状
体、12……リール、13……X線発生管。
Fig. 1 is a schematic diagram of the manufacturing process showing one embodiment of the present invention, Fig. 2 A and B are correlation diagrams showing the calibration curve of fluorescent X-ray analysis of brass plating plated with Fe, and Fig. 3 A is a correlation diagram showing the results of fluorescent X-ray analysis depending on the amount of heating in the heat diffusion brass plating on the steel wire, B is an X-ray analysis diagram showing changes in the alloy state of each plating in A, C is fluorescence on the brass plating layer An action diagram showing the degree of attenuation of the calibration curve of X-ray analysis,
Figure 4 is a correlation diagram showing the relationship between Cu concentration, adhesion to rubber and wire drawability, and Figure 5 is a correlation diagram showing the relationship between Cu concentration and adhesion to rubber and wire drawability.
It is a correlation diagram showing the relationship between adhesiveness with rubber and wire drawability. 1... Feeding reel, 2... Pretreatment device, 3, 4
...Metsuki bathtub, 5...Thermal diffusion heating device, 6...
Energy dispersive X-ray fluorescence spectrometer, 7...Current control device, 8...Water washing device, 9...Drying device, 1
0... Microcomputer, 11... Linear body, 12... Reel, 13... X-ray generating tube.

Claims (1)

【特許請求の範囲】[Claims] 1 線状体を走行させながら連続的に2種以上の
異なる金属を各種金属毎に順次二層以上の層にわ
けてメツキを施し、次いで熱拡散を行ない合金と
する線状体の連続合金メツキ方法において、上記
各種の金属メツキ工程終了後、熱拡散工程前に所
定位置に配置したエネルギー分散型蛍光X線分析
装置でもつて層状にメツキされた各金属からの二
次X線を同時に検知し、上記二次X線の強度比率
から各金属の付着量、又は金属付着量比を分析
し、上記検知した値とあらかじめ設定した基準値
とを比較して修整値を演算し、上記修整値を各金
属メツキのメツキ条件設定手段に連続的にフイー
ドバツクし、メツキ条件を自動制御することを特
徴とするゴム補強用線状体への熱拡散合金メツキ
方法。
1. Continuous alloy plating of a linear body, in which two or more different metals are sequentially plated into two or more layers for each type of metal while the linear body is running, and then thermal diffusion is performed to form an alloy. In the method, after the various metal plating processes described above are completed and before the thermal diffusion process, secondary X-rays from each metal plated in a layer are simultaneously detected using an energy dispersive fluorescent X-ray analyzer placed at a predetermined position, Analyze the amount of each metal deposited or the ratio of deposited metals from the intensity ratio of the secondary X-rays, calculate the modified value by comparing the detected value with a preset reference value, A method for plating a rubber reinforcing linear body with a heat diffusion alloy, characterized in that the plating conditions are automatically controlled by continuously feeding back to a plating condition setting means for metal plating.
JP20339083A 1983-10-29 1983-10-29 Heat diffusion alloy plating method to wire body Granted JPS6096753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20339083A JPS6096753A (en) 1983-10-29 1983-10-29 Heat diffusion alloy plating method to wire body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20339083A JPS6096753A (en) 1983-10-29 1983-10-29 Heat diffusion alloy plating method to wire body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10843489A Division JPH02138494A (en) 1989-04-27 1989-04-27 Thermally diffused alloy plated device to wire-shaped body for reinforcing rubber

Publications (2)

Publication Number Publication Date
JPS6096753A JPS6096753A (en) 1985-05-30
JPH0149796B2 true JPH0149796B2 (en) 1989-10-26

Family

ID=16473247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20339083A Granted JPS6096753A (en) 1983-10-29 1983-10-29 Heat diffusion alloy plating method to wire body

Country Status (1)

Country Link
JP (1) JPS6096753A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083156B2 (en) * 1989-11-20 1996-01-17 株式会社堀場製作所 Alloy plating equipment
US20070227633A1 (en) * 2006-04-04 2007-10-04 Basol Bulent M Composition control for roll-to-roll processed photovoltaic films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214294A (en) * 1975-06-06 1977-02-03 Habib Robert Machine tool
JPS5429843A (en) * 1977-08-10 1979-03-06 Nippon Steel Corp Controlling method for composition and thickness of plated multicomponent alloy films
JPS5840255A (en) * 1981-08-25 1983-03-09 モンタンベルケ・バルタ−・ゲ−エムベ−ハ− Grinder for programme control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214294A (en) * 1975-06-06 1977-02-03 Habib Robert Machine tool
JPS5429843A (en) * 1977-08-10 1979-03-06 Nippon Steel Corp Controlling method for composition and thickness of plated multicomponent alloy films
JPS5840255A (en) * 1981-08-25 1983-03-09 モンタンベルケ・バルタ−・ゲ−エムベ−ハ− Grinder for programme control

Also Published As

Publication number Publication date
JPS6096753A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
US4659437A (en) Method of thermal diffusion alloy plating for steel wire on continuous basis
US4064437A (en) Method for measuring the degree of alloying of galvannealed steel sheets
JPH0149796B2 (en)
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
US5579362A (en) Method of and apparatus for the quantitative measurement of paint coating
JPH031396B2 (en)
JPH0699797B2 (en) Method for plating thermal diffusion alloy on rubber-reinforced wire
JP2932110B2 (en) Thermal diffusion alloy plating equipment for raw material of steel cord for rubber reinforcement
CN109563606B (en) Method for measuring alloying degree and/or plating adhesion amount of galvanized steel sheet
KR900002160B1 (en) Method of thermal diffusion alloy plating for steel wire
JPS63140950A (en) X-ray measuring instrument for plating film
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
JP2018173378A (en) Method for evaluating quality of water vapor treatment product
JPH06331576A (en) Analysis of iron zinc alloy plating layer on iron
JPH01301155A (en) Method of measuring degree of alloying of alloyed and galvanized steel sheet by x-ray diffraction method and method of controlling degree of alloying in production line for alloyed and galvanized steel sheet
JPH05203593A (en) Method and device for measuring plating adhesion quantity
JP2707865B2 (en) Method of measuring alloying degree of alloyed galvanized layer
JPH0118373B2 (en)
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
JPS62127619A (en) Method for measuring plating thickness
JP2861598B2 (en) Method and apparatus for measuring coating thickness on metal and method and apparatus for producing coated metal body
JP2672929B2 (en) Quantitative analysis method for upper layer plating of double-layered alloyed hot dip galvanized steel sheet by glow discharge emission spectrometry
JP2809774B2 (en) Manufacturing method of hot dip galvanized alloyed steel sheet
JPH0625894A (en) Production of fe-zn alloy plated steel sheet