JPH0148349B2 - - Google Patents

Info

Publication number
JPH0148349B2
JPH0148349B2 JP25554484A JP25554484A JPH0148349B2 JP H0148349 B2 JPH0148349 B2 JP H0148349B2 JP 25554484 A JP25554484 A JP 25554484A JP 25554484 A JP25554484 A JP 25554484A JP H0148349 B2 JPH0148349 B2 JP H0148349B2
Authority
JP
Japan
Prior art keywords
solution
concentration
ferric
nickel plating
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25554484A
Other languages
Japanese (ja)
Other versions
JPS60138075A (en
Inventor
Ei Aashireshi Donarudo
Daburyu Kurain Roi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMI International Corp
Original Assignee
OMI International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMI International Corp filed Critical OMI International Corp
Publication of JPS60138075A publication Critical patent/JPS60138075A/en
Publication of JPH0148349B2 publication Critical patent/JPH0148349B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高分子プラスチツク素地上の金属めつ
き膜に対してひろく適用できるものであつて、更
に詳しくは銅及び銅合金素地を処理してこれらを
引き続く無電解ニツケルめつきを受け易くするた
めの改良イニシエタ溶液及びその処理方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is widely applicable to metal plating films on polymeric plastic substrates, and more specifically, to the treatment of copper and copper alloy substrates. The present invention relates to an improved initiator solution and a method for treating the same to make them susceptible to subsequent electroless nickel plating.

[従来技術] 無電解銅めつきに引き続いて無電解ニツケルめ
つきを行なつたものは、電気部品ハウジングのよ
うな高分子性素地上の複合金属めつき皮膜として
非常に有用であることが判明しているが、その理
由はかかる皮膜が提供するエレクトロマグネチツ
ク・インターフエアレンス(EMI)シールデイ
ング性が優れているからである。かかる高分子性
素地上に被覆された約20〜約40マイクロインチ
(0.508〜1.01μ)の無電解銅皮膜は必要とされる
EMIシールデイング性を提供し、かつ引き続く
無電解ニツケルめつき膜は改良された耐食性と改
良された装飾的外観を提供する。
[Prior art] Electroless copper plating followed by electroless nickel plating has been found to be extremely useful as a composite metal plating film on polymeric substrates such as electrical component housings. This is because such coatings provide excellent electromagnetic interference (EMI) shielding properties. An electroless copper coating of about 20 to about 40 microinches (0.508 to 1.01μ) coated on such polymeric substrates is required.
Providing EMI shielding properties, the subsequent electroless nickel plating film provides improved corrosion resistance and an improved decorative appearance.

銅又は銅合金素地上に均一な無電解ニツケルめ
つき膜を生成させるに際しての相変わらぬ問題点
は、採用した無電解ニツケルめつき方法のそのと
きのタイプによつては結果の予測が不可能なこと
である。一般に、無電解ニツケルめつき方法は高
温(175゜〜212〓、79〜100℃)酸性方と低温
(75゜〜160〓、24〜71℃)アルカリ性法とに類別
することができる。ニツケル皮膜の生成開始は低
温アルカリ性無電解ニツケル法よりも高温酸性無
電解ニツケル法のほうがはるかに速く生起する。
低温法の場合には30分以上かかり、工業的には適
さない。以下に記載のイニシエシヨン時間なる用
語は銅素地が浴中に浸漬されてからニツケルめつ
きが始まるまでの期間と定義される。該イニシエ
シヨン時間を短縮するために、近年では三通りの
方法が採用されていて、これによつて銅及び銅合
金表面上に無電解ニツケルめつきを可成り迅速に
生成せしめることができるが、これらには最初に
ニツケルのストライクめつきを行なう方法、銅素
地を還元剤と接触させる直接還元方法並びに金も
しくはパラジウムのような貴金属イオンを含有す
る水溶液を用いて化学的置換によつて銅素地上に
触媒的な還元サイトを析出させてやるカソードセ
ル方法が包含される。これらのなかで、カソード
セル方法が技術的に優れていると考えられ、容量
の大きな生産設備には好適である。
A continuing problem in producing uniform electroless nickel plating films on copper or copper alloy substrates is that results are unpredictable depending on the current type of electroless nickel plating method employed. That's true. In general, electroless nickel plating methods can be classified into high-temperature (175°-212°, 79-100°C) acidic methods and low-temperature (75°-160°, 24-71°C) alkaline methods. The onset of nickel film formation occurs much faster in the high temperature acidic electroless nickel process than in the low temperature alkaline electroless nickel process.
In the case of the low temperature method, it takes more than 30 minutes and is not suitable for industrial use. The term initiation time hereinafter is defined as the period of time from when the copper substrate is immersed in the bath until nickel plating begins. In order to shorten the initiation time, three methods have been adopted in recent years, which allow electroless nickel plating to be produced on copper and copper alloy surfaces fairly quickly: These methods include first striking nickel plating, direct reduction methods in which the copper substrate is brought into contact with a reducing agent, and chemical substitution using an aqueous solution containing precious metal ions such as gold or palladium. includes cathode cell methods in which catalytic reduction sites are deposited. Among these, the cathode cell method is considered to be technically superior and is suitable for large-capacity production equipment.

従来公知のカソードセルイニシエタ技術によれ
ば、水溶液中には貴金属、特にパラジウムが用い
られ、予め無電解銅めつきされた素地がこの中に
一定時間、浸漬される。しかし、激しく使用する
とわずか数日間でかかるパラジウム含有イニシエ
タ溶液は効力を失なつて廃棄又は取り替えなけれ
ばならなくなる。このイニシエタ溶液中には比較
的低濃度のパラジウムが含まれているので、かか
る廃棄液中から高価なパラジウム成分を回収する
ことは現在のところ経済的ではない。かかる使用
済みイニシエタ溶液を廃棄するのに伴う費用と処
理問題に加えて、使用中にかかる溶液が次第に劣
化するという問題があつて、これもまた被めつき
素地の挙動を誤つて理解したり予測不能にして均
一なニツケル皮膜の達成を困難にするのである。
According to the conventionally known cathode cell initiator technique, a noble metal, particularly palladium, is used in an aqueous solution, and a substrate previously electrolessly plated with copper is immersed therein for a certain period of time. However, after only a few days of heavy use, such palladium-containing initiator solutions lose their effectiveness and must be discarded or replaced. Since this initiator solution contains relatively low concentrations of palladium, it is currently not economical to recover the expensive palladium component from such waste solutions. In addition to the costs and disposal problems associated with disposing of such used initiator solutions, there is also the problem of gradual deterioration of such solutions during use, which also makes it difficult to misunderstand or predict the behavior of overlaid substrates. This makes it difficult to achieve a uniform nickel film.

本発明はこれらの諸問題を克服し、かつ公知の
貴金属イニシエタ溶液に伴う不利な経済性を克服
するものであつて、特に有機金属イオン錯化剤に
よる汚染が進行したために効力を減じたか、もし
くは効力を失なつているようなイニシエタ溶液を
再生する方法並びにかかるイニシエタ溶液の安定
で効果的な操業寿命の延長を提供しうる組成物を
提供するものである。
The present invention overcomes these problems and the disadvantageous economics associated with known noble metal initiator solutions, particularly those that have reduced efficacy due to advanced contamination with organometallic ion complexing agents, or A method for regenerating initiator solutions that have lost their potency as well as compositions that can provide stable and effective extension of the operational life of such initiator solutions is provided.

[発明の要約] かかるイニシエタ溶液が急速に劣化し、かつそ
の効果が消失することは、前処理用溶液の持ち込
みによる汚染の進行及び高分子素地用の無電解銅
めつき浴中に存在する有機錯化剤の持ち込みによ
る汚染の進行に少なくとも一部の原因があること
が判つてきた。電気部品用のハウジングを包含す
るかかる高分子性素地の形状は複雑なものが多い
ので、工業的な見知からすればかかる持ち込みを
排除することは不可能に近い。実験によれば0.3
容量%だけの典型的銅めつき溶液でさえもパラジ
ウムイニシエタ溶液を無効にしてしまい、次の無
電解銅ニツケルめつき浴中で工業的に容認しうる
ような時間以内にニツケル皮膜を生成しはじめる
ことができなくなる。
[Summary of the Invention] The rapid deterioration and loss of effectiveness of such initiator solutions is due to the progression of contamination due to carryover of pretreatment solutions and the presence of organic compounds in electroless copper plating baths for polymeric substrates. It has been found that at least part of the cause of the contamination is due to the introduction of complexing agents. Since the shapes of such polymeric substrates containing housings for electrical components are often complex, it is almost impossible to eliminate such introduction from an industrial perspective. According to experiments 0.3
Even a typical copper plating solution of only % by volume will override the palladium initiator solution and produce a nickel film within an industrially acceptable time in a subsequent electroless copper-nickel plating bath. I won't be able to start.

さらに、パラジウムイニシエタ溶液のようなイ
ニシエタ溶液の劣化と効力の消失は、パラジウム
金属を含むパラジウム化合物が沈殿して、次の無
電解ニツケルめつき浴中でニツケル皮膜を生成せ
しめうる該溶液の能力を減少させるか、又は操業
を全く不可能にしてしまうことにも原因があるこ
とが判つた。
Furthermore, the degradation and loss of potency of an initiator solution, such as a palladium initiator solution, is due to the ability of the solution to allow palladium compounds containing palladium metal to precipitate and form a nickel film in a subsequent electroless nickel plating bath. It was also found that the cause was to reduce the amount of water or make the operation completely impossible.

したがつて、本発明の方法に関する提案による
利益と有利性には、前段における無電解銅めつき
溶液からの有機錯化剤による汚染によつて効力を
失なつたために次の無電解ニツケルめつき工程に
おいて銅めつき素地上にニツケルめつきが生成し
なくなつたような貴金属含有イニシエタ水溶液の
再生方法が包含されている。該方法によれば、浴
可溶性・相溶性第2鉄イオンを該無効イニシエタ
溶液中に十分な量だけ加えることによつて効果的
な操業性が達成されて該イニシエタ溶液を再生す
ることができるものであつて、該鉄イオンの量は
一般には約10mg/〜約5g/である。
Therefore, the benefits and advantages of the proposed method of the present invention include that subsequent electroless nickel plating may be ineffective due to contamination by organic complexing agents from the previous electroless copper plating solution. The present invention includes a method for regenerating a precious metal-containing initiator aqueous solution such that nickel plating is no longer formed on a copper-plated substrate during the process. According to the method, by adding a sufficient amount of bath-soluble and compatible ferric ions to the ineffective initiator solution, effective operability can be achieved and the initiator solution can be regenerated. and the amount of iron ions is generally about 10 mg/- to about 5 g/.

本発明のさらにその他の方法に関する提案によ
れば、かかるイニシエタ水溶液の安定性と有用な
操業寿命の実質的延長は、一定制御量の第2鉄イ
オンを予め有機金属イオン錯化物及び貴金属イオ
ンの沈殿によつて著しく汚染されているイニシエ
タ溶液中に加えることによつて、浸漬された銅及
び銅合金素地と反応しうるような貴金属イオンを
該イニシエタ溶液中に維持させて、引き続く無電
解ニツケルめつき工程中で迅速かつ予測しうる状
態での均一なニツケル皮膜を確保するようになす
ことによつて達成することができる。
According to yet another method proposal of the present invention, substantial extension of the stability and useful operating life of such initiator aqueous solutions is achieved by pre-precipitating controlled amounts of ferric ions into organometallic ion complexes and noble metal ions. subsequent electroless nickel plating by maintaining precious metal ions in the initiator solution that are capable of reacting with the immersed copper and copper alloy substrates by adding them to the initiator solution which is heavily contaminated with This can be achieved by ensuring a uniform nickel coating quickly and predictably during the process.

本発明の組成物に関する提案によれば、前処理
後に素地上に迅速な無電解ニツケル皮膜の生成を
開始せしめるのに十分な量で存在する一定制御量
の貴金属イオンを、汚染有機金属イオンキレート
化剤と第2鉄イオンの有効量との組み合わせにお
いて含有する改良されたイニシエタ水溶液が提供
される。第2鉄イオンは約40〜約500mg/の量
で含まれる。
According to the proposal for the composition of the present invention, a controlled amount of precious metal ions present in a sufficient amount to initiate the rapid formation of an electroless nickel film on the substrate after pretreatment is removed from the contaminating organometallic ion chelate. An improved aqueous initiator solution is provided containing in combination a ferric agent and an effective amount of ferric ions. Ferric ions are included in an amount of about 40 to about 500 mg/.

[好ましい実施態様の説明] 本発明の組成物と方法は、アクリロニトリル−
ブタジエン−スチレン(ABS)樹脂、ポリアリ
ールエーテル樹脂、ポリフエニレンオキシド樹
脂、ポリスチレン、ポリカーボネート、ナイロン
又はその他を包含するめつき可能なプラスチツク
及び高分子性プラスチツクから成る高分子性素地
上に銅とニツケルとから成る複合無電解めつきを
施す際に特に有用である。通常、採用される前処
理工程には表面フイルムもしくは汚染物質除去の
目的での清浄もしくは一連の清浄工程が包含さ
れ、次いで所望の表面粗さもしくは模様を作るた
めに6価クロム溶液を用いた酸性水溶液によるエ
ツチング工程にかけて素地とその上に施される金
属めつき間の機械的密着を強化するようにする。
該エツチング済み素地は一回又は数回の水すすぎ
に処して素地上にあるいつさいの残留6価クロム
イオンを抽出・除去するが、この際にはすべての
残留6価クロムを3価状態に実質的に還元するた
めの還元剤を伴つた中和工程をも包含させること
もまた可能である。水すすぎしたエツチング済み
素地は、次いでスズ−パラジウム錯化剤を含む酸
性水溶液中で活性化処理を施して素地面上に活性
点を形成させてから同一又は数回水すすぎし、次
いで該活性化済み表面を水溶液中で促進化処理に
かけて表面上の残留スズ成分又はスズ化合物のす
べてを抽出する。促進化処理済みのプラスチツク
部品は再度水すすぎし、次いで無電解めつきして
全面又は部分的表面上に銅めつきを施してから、
該銅めつき済み素地を水すすぎしてから、無電解
ニツケルめつき工程にさき立つてイニシエタ水溶
液処理を行なう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The compositions and methods of the present invention provide acrylonitrile-
Copper and nickel on a polymeric substrate consisting of plateable plastics and polymeric plastics including butadiene-styrene (ABS) resins, polyarylether resins, polyphenylene oxide resins, polystyrene, polycarbonate, nylon or others. It is particularly useful when applying composite electroless plating consisting of. Typically, the pretreatment steps employed include a surface film or cleaning or series of cleaning steps for the purpose of removing contaminants, followed by acidification using a hexavalent chromium solution to create the desired surface roughness or texture. The mechanical adhesion between the substrate and the metal plating applied thereon is strengthened by an etching process using an aqueous solution.
The etched substrate is rinsed with water once or several times to extract and remove all residual hexavalent chromium ions on the substrate, but at this time all residual hexavalent chromium is converted to trivalent state. It is also possible to include a neutralization step with a reducing agent for substantial reduction. The etched substrate that has been rinsed with water is then activated in an acidic aqueous solution containing a tin-palladium complexing agent to form active points on the substrate surface, rinsed with water the same time or several times, and then activated. The finished surface is subjected to an accelerated treatment in an aqueous solution to extract any residual tin components or compounds on the surface. The accelerated plastic parts are rinsed again with water and then electroless plated to provide copper plating on the entire or partial surface.
After rinsing the copper-plated substrate with water, an initiator aqueous solution treatment is performed prior to the electroless nickel plating process.

プラスチツク性素地を前処理するめつき方法の
典型例は米国特許第3622370号公報;同第3961109
号公報;同第3962497号公報及び同第4204013号公
報に開示がある。米国特許第3962497号公報は典
型的な中和処理工程を開示し、同第3011920号及
び同第3532518号公報には典型的な一段活性化処
理法が開示されている。米国特許第4204013号は
高分子性素地のエツチング、中和、活性化及び無
電解銅めつき用の典型的な組成物を開示してい
る。かかる無電解銅めつき溶液は銅イオンを溶液
中に維持するのに十分な量の有機錯化剤を含有し
ている。かかる錯化剤の典型例はエチレンジアミ
ンテトラアセチツクアシド(EDTA)、N,N,
N′,N′テトラキス(2−ヒドロキシプロピル)
エチレンジアミンその他である。
Typical examples of plating methods for pre-treating plastic substrates are U.S. Pat. No. 3,622,370; U.S. Pat. No. 3,961,109.
Publication No. 3962497 and No. 4204013 disclose the disclosure. US Pat. No. 3,962,497 discloses a typical neutralization treatment process, and US Pat. No. 3,011,920 and US Pat. No. 3,532,518 disclose typical one-stage activation treatment methods. U.S. Pat. No. 4,204,013 discloses exemplary compositions for etching, neutralizing, activating and electroless copper plating of polymeric substrates. Such electroless copper plating solutions contain a sufficient amount of organic complexing agent to maintain copper ions in solution. Typical examples of such complexing agents are ethylenediaminetetraacetic acid (EDTA), N,N,
N',N'tetrakis (2-hydroxypropyl)
Ethylenediamine and others.

本発明の組成物についての提案による酸性水溶
液は、通常約1以下のPHを与える量の水素イオン
を含んでいる。該溶液の酸性化は各種の酸性物
質、なかでも鉱酸、特に好ましくは塩化水素酸を
用いて行なうことができる。該活性化溶液はさら
に金、白金、パラジウム及びこれらの混合物のよ
うな貴金属イオンを含有しているが、かなでもパ
ラジウム自体が好ましい。該貴金属イオンの濃度
は一般には約0.5mg/〜約100mg/及びこれ以
上に及ぶ。一般に濃度が高い程、経済性が悪化
し、かつ約100mg/以上の濃度ではこれより低
濃度の場合に比べて格別の利益が得られない。特
に満足できる結果は、貴金属イオン濃度が約5〜
約50mg/範囲に制御されたときに得られる。
The proposed acidic aqueous solution for the composition of the present invention typically contains hydrogen ions in an amount that provides a PH of about 1 or less. Acidification of the solution can be carried out using various acidic substances, especially mineral acids, particularly preferably hydrochloric acid. The activation solution further contains noble metal ions such as gold, platinum, palladium and mixtures thereof, preferably palladium itself. The concentration of the noble metal ions generally ranges from about 0.5 mg/ to about 100 mg/and more. In general, the higher the concentration, the worse the economic efficiency, and at concentrations of about 100 mg/or higher, no particular benefit can be obtained compared to lower concentrations. Particularly satisfactory results were obtained when the noble metal ion concentration was ca.
Obtained when controlled to approximately 50 mg/range.

銅もしくは銅合金素地は、通常約室温ないし約
100〓(38℃)に制御された活性化水溶液中に約
10秒ないし約5分又はそれ以上浸漬して接触され
る。高容量での典型的工業的操作においては浸漬
時間が約15秒ないし約2分であれば次の無電解ニ
ツケルめつき工程に対する前処理として満足な結
果が得られる。該活性化溶液中での銅又は銅合金
の前処理は、機械かくはん、カソード棒かくはん
及び好ましくは空気かくはんしながら行なうのが
好ましく、かくすると溶液中の第2鉄イオンの存
在下で活性剤浴中に形成される貴金属の沈殿を再
溶解させるのに著しく有効であることが判明し
た。
Copper or copper alloy substrates are typically kept at about room temperature to about
Approx.
Contact is made by immersion for 10 seconds to about 5 minutes or more. In typical industrial operations at high volumes, soak times of about 15 seconds to about 2 minutes provide satisfactory pretreatment for subsequent electroless nickel plating steps. The pretreatment of the copper or copper alloy in said activating solution is preferably carried out with mechanical stirring, cathode rod stirring and preferably air stirring, so that the activator bath is carried out in the presence of ferric ions in the solution. It has been found to be extremely effective in redissolving the precious metal precipitates that form therein.

前記成分に加えて、該酸性イニシエタ溶液は、
さらに一定制御量で有効量の第2鉄イオンを含ん
でおり、その量は長期間に亘つて該イニシエタ溶
液の操業効率を維持・安定させると同時に汚染錯
化剤の存在及び/又は貴金属イオンの沈殿によつ
て効力が低下しているイニシエタ溶液を再生しう
るのに有効な量である。約10mg/のような低濃
度の第2鉄イオンでも効果があるが、一方でこれ
より実質的に高濃度もまた使用でき、その上限は
第2鉄イオンによる過剰な酸化浸漬の結果、銅素
地上のめつきがはげる程の過剰なエツチングが生
起する濃度水準以下である。そのときの第2鉄イ
オンの最高濃度はイニシエシヨンサイクル時間、
イニシエタ溶液の温度及びその酸性度を考慮のう
え変更できる。高温ほど処理時間に長く、PHが低
いほど第2鉄イオン濃度を低減する必要がある。
一般に、第2鉄イオン濃度は約10mg/〜約5
g/、好ましくは約40mg/〜約500mg/の
範囲以内に制御する。
In addition to the above components, the acidic initiator solution comprises:
Furthermore, it contains an effective amount of ferric ions in a controlled amount that maintains and stabilizes the operating efficiency of the initiator solution over a long period of time, while also eliminating the presence of contaminating complexing agents and/or precious metal ions. The amount is effective to regenerate an initiator solution that has been rendered ineffective by precipitation. Although low concentrations of ferric ion, such as about 10 mg/l, are effective, substantially higher concentrations than this can also be used, with the upper limit being that copper ions are The concentration is below the level at which excessive etching occurs to the extent that the plating on the ground comes off. The maximum concentration of ferric ions at that time is the initiation cycle time,
The temperature of the initiator solution and its acidity can be varied with consideration. The higher the temperature, the longer the treatment time, and the lower the pH, the more it is necessary to reduce the ferric ion concentration.
Generally, the ferric ion concentration is about 10 mg/~5
g/, preferably within the range of about 40 mg/ to about 500 mg/.

第2鉄イオンは浴可溶性・相溶性の第2鉄塩を
添加するか、又は鉄粉及び/又は第1鉄塩もしく
は第1鉄化合物を添加して種々の酸化剤を用いて
第2鉄イオンの状態にこれらをその場で酸化する
ことによつてイニシエタ溶液中に導入するが、こ
の場合浴中に空気もしくは酸素を吹き込むことが
好ましい。
Ferric ions can be produced by adding bath-soluble/compatible ferric salts, or by adding iron powder and/or ferrous salts or ferrous compounds and using various oxidizing agents. They are introduced into the initiator solution by oxidizing them in situ to the state of , in which case it is preferable to blow air or oxygen into the bath.

新鮮なイニシエタ溶液の調製に際しては、第2
鉄イオン濃度を前記の範囲に制御するのであるが
該溶液の使用中、その安定性と有効性とを維持す
るために低濃度から高濃度に向つて増加させてや
ることが好ましい。汚染錯化剤の存在によるか及
び/又は貴金属成分が沈殿してしまつたために効
力を失なつているようなイニシエタ溶液の再生方
法においては、かくはん下で徐々に第2鉄イオン
を添加して約1〜2時間以内で該溶液の活性を回
復させることが好ましい。貴金属イオンが沈殿し
たことが第一の理由で効力が減少しているような
イニシエタ溶液の場合には、空気かくはん下で第
2鉄イオンを導入して酸化性雰囲気とすることに
よつて液中のパラジウムのような貴金属を再溶解
させるのが好ましく、かくすることにより次の段
階である無電解ニツケルめつき工程にさき立つて
の銅素地の前処理が効果的である。
When preparing fresh initiator solution, the second
The iron ion concentration is controlled within the above range, but is preferably increased from low to high concentrations to maintain stability and effectiveness during use of the solution. A method for regenerating initiator solutions that have lost their potency due to the presence of contaminating complexing agents and/or due to precipitation of precious metal components involves the gradual addition of ferric ions under stirring. Preferably, the activity of the solution is restored within about 1 to 2 hours. In the case of an initiator solution whose efficacy has decreased primarily due to the precipitation of precious metal ions, it is possible to introduce ferric ions into the solution under air agitation to create an oxidizing atmosphere. Preferably, the precious metal such as palladium is remelted, thereby effectively pretreating the copper substrate prior to the next step, the electroless nickel plating process.

[実施例] 本発明の組成物と方法とをさらに詳述するため
に、次いで実施例を述べる。これらの実施例は単
に説明の目的のためであるから前記の特許請求の
範囲に記載され、ここに開示された本発明の範囲
を制約するものではない。
[Examples] In order to further illustrate the compositions and methods of the present invention, Examples are now described. These examples are provided in the following claims for illustrative purposes only and are not intended to limit the scope of the invention disclosed herein.

実施例 1 表面サイズが約3インチ×約4インチ(7.6×
10.1cm)、厚さ1/10インチ(0.254cm)「PG298」
(Monsanto Chemical Company、商品名)から
成る一連のABS樹脂製パネルを通常の予備処理
である清浄化、水すすぎ及び酸性水溶液中でのの
エツチング処理にかけた。エツチング液は356
g/のクロム酸、412g/の硫酸及び「FC−
98」(Minnesota Mining&Manufacturing
Company、商品名)として市販のパーフルオロ
湿潤剤0.2g/を含んでおり、液温は140〓(60
℃)、処理時間は5分であつた。次いで70〓(21
℃)で1分間、水すすぎしてから18g/の塩化
水素酸と3g/のヒドロキシルアミン硫酸塩を
含む水溶液を用いて120〓(49℃)、5分間、中和
処理した。次いで該中和試験パネルを70〓(21
℃)で1分間、水すすぎした後、0.77g/のパ
ラジウム、9g/の塩化第一スズ、35.2g/
の塩化水素酸及び192g/の塩化ナトリウムを
含む酸性水溶液を用いて110〓(43℃)において
5分間、活性化処理を行なつた。活性化後、該試
験パネルを70〓(21℃)にて1分間、水すすぎ
し、次いでフツ化ホウ素酸の5容量%水溶液を用
いて75〓(24℃)で1分間、促進化処理し、次い
で70〓(21℃)で1分間、水すすぎを行なつた。
Example 1 The surface size is about 3 inches x about 4 inches (7.6 x
10.1cm), thickness 1/10 inch (0.254cm) "PG298"
A series of ABS resin panels (Monsanto Chemical Company, trade name) were subjected to conventional pretreatments of cleaning, water rinsing, and etching in an acidic aqueous solution. Etching liquid is 356
g/ of chromic acid, 412 g/ of sulfuric acid and “FC-
98” (Minnesota Mining & Manufacturing
Contains 0.2 g of a perfluoro wetting agent commercially available as Company, trade name), and the liquid temperature is 140〓 (60
℃), and the treatment time was 5 minutes. Then 70〓(21
After rinsing with water at 120° C. (49° C.) for 1 minute, it was neutralized using an aqueous solution containing 18 g hydrochloric acid and 3 g hydroxylamine sulfate at 120° C. (49° C.) for 5 minutes. The neutralized test panel was then heated to 70〓(21
After rinsing with water for 1 min at
Activation treatment was carried out at 110° C. (43° C.) for 5 minutes using an acidic aqueous solution containing 100 g of hydrochloric acid and 192 g of sodium chloride. After activation, the test panel was rinsed with water at 70°C (21°C) for 1 minute and then accelerated with a 5% by volume aqueous solution of fluoroboric acid at 75°C (24°C) for 1 minute. Then, a water rinse was performed at 70°C (21°C) for 1 minute.

次いで前処理したパネルを、40g/の
EDTAテトラナトリウム塩、4.2g/の塩化第
2銅、3g/のホルムアルデヒド及びPH約12.3
にするための水酸化ナトリウムを含む無電解鋼め
つきにかけた。浴温140〓(60℃)、めつき時間、
10分であつた。約45マイクロインチ(1.143μ)の
銅が析出した。次いで該銅めつき済み試験パネル
を70〓(21℃)にて1分間、水すすぎし、50mg/
の塩化パラジウム及び1容量%の塩化水素酸を
含むイニシエタ溶液中に浸漬した。次いで70〓
(21℃)にて1分間、水すすぎした。
The pretreated panels were then exposed to 40 g/
EDTA tetrasodium salt, 4.2g/cupric chloride, 3g/formaldehyde and pH approx. 12.3
It was subjected to electroless steel plating containing sodium hydroxide to make it. Bath temperature 140〓 (60℃), plating time,
It was hot in 10 minutes. Approximately 45 microinches (1.143μ) of copper was deposited. Next, the copper-plated test panel was rinsed with water at 70°C (21°C) for 1 minute, and 50mg/
of palladium chloride and 1% by volume of hydrochloric acid. Then 70〓
(21°C) for 1 minute with water.

次いで生成した試験パネルを、12g/の塩化
ニツケル・6水和物、18g/の次亜リン酸ナト
リウム塩及び23g/のクエン酸を含む浴中で85
〓(29℃)、2分間、無電解ニツケルめつきを施
した。
The resulting test panels were then exposed to 85 g of nickel chloride hexahydrate in a bath containing 18 g of sodium hypophosphite and 23 g of citric acid.
Electroless nickel plating was applied at (29°C) for 2 minutes.

イニシエシヨン時間は無電解ニツケルめつき浴
中に試験片を浸漬してからニツケルの析出が起こ
るまで約15〜20秒であつた。85〓(29℃)、2分
間の無電解めつき後、約2マイクロインチ
(0.051μ)のニツケルめつきが析出した。
The initiation time was approximately 15-20 seconds from immersion of the specimen in the electroless nickel plating bath until nickel precipitation occurred. After electroless plating at 85°C (29°C) for 2 minutes, approximately 2 microinches (0.051μ) of nickel plating was deposited.

実施例 2 通常の商業運転に際して起こる汚染をシユミレ
ートするために、該パラジウムイニシエタ溶液に
人為的に130mg/のEDTAテトラナトリウム塩
を添加した以外は、実施例1に記載の操作に従つ
て試験パネルの第2の群を予備処理及び無電解銅
及びニツケルめつきした。該試験パネルを無電解
ニツケル溶液中に浸漬したとき、ニツケルの析出
までのイニシエシヨン時間は約25秒であつた。
Example 2 Test panels were prepared according to the procedure described in Example 1, except that 130 mg/sodium EDTA was artificially added to the palladium initiator solution to simulate contamination that occurs during normal commercial operation. A second group of samples was pretreated and electroless copper and nickel plated. When the test panel was immersed in the electroless nickel solution, the initiation time to nickel deposition was about 25 seconds.

実施例 3 170mg/のEDTAテトラナトリウム塩を該パ
ラジウムイニシエタ溶液中に人為的に添加した以
外は実施例1に記載のような予備めつき処理、無
電解銅及びニツケルめつき操作に従つて試験パネ
ルの第3の群を処理した。次いでパネルを無電解
ニツケルめつき浴に浸漬したが2分間経過しても
試験パネル上にはなんらのニツケルめつきも生じ
なかつた。このことはパラジウムイニシエタ溶液
中に存在する汚染性錯化剤の致命的影響を示して
いる。
Example 3 Tested according to the pre-plating process, electroless copper and nickel plating procedure as described in Example 1, except that 170 mg/sodium EDTA tetrasodium salt was artificially added to the palladium initiator solution. A third group of panels was processed. The panels were then immersed in an electroless nickel plating bath and no nickel plating occurred on the test panels after 2 minutes. This shows the fatal effects of contaminating complexing agents present in the palladium initiator solution.

実施例 4 170mg/のEDTAテトラナトリウム塩、170
mg/の塩化第2鉄・6水和物をイニシエタ溶液
中に添加した以外は実施例3に記載の操作に従つ
て第4の群の試験片を処理した。このABS試験
パネルは無電解ニツケルめつき溶液中に浸漬した
際に、ニツケルが表面に析出するまで約25秒のイ
ニシエシヨン時間であつた。この例は過剰の錯化
剤が存在するために減損しているイニシエタ溶液
の金属イオンを添加することによつて再生された
ことを示している。
Example 4 170mg/EDTA tetrasodium salt, 170
A fourth group of specimens was treated according to the procedure described in Example 3, except that mg/mg/ferric chloride hexahydrate was added to the initiator solution. When immersed in an electroless nickel plating solution, this ABS test panel had an initiation time of approximately 25 seconds before nickel was deposited on the surface. This example shows that the initiator solution was regenerated by addition of metal ions that were depleted due to the presence of excess complexing agent.

実施例 5 イニシエタ溶液中のEDTAテトラナトリウム
塩錯化剤の濃度を、塩化第2鉄・6水和物の存在
下で170mg/から510mg/に増加した以外は実
施例4に記載と同じ操作と溶液を用いて第5の試
験パネル群を処理した。
Example 5 The same procedure as described in Example 4 except that the concentration of EDTA tetrasodium salt complexing agent in the initiator solution was increased from 170 mg/ to 510 mg/ in the presence of ferric chloride hexahydrate. The solution was used to treat a fifth group of test panels.

無電解ニツケルめつき溶液中に試験パネルを浸
漬した際、パネル上にニツケル膜が析出し始める
のに約35秒のイニシエシヨン時間を要した。
When the test panels were immersed in the electroless nickel plating solution, it took approximately 35 seconds of initiation time for the nickel film to begin to deposit on the panels.

実施例 6 510mg/のEDTAテトラナトリウム塩錯化剤
の存在下、第2塩化鉄・6水和物の濃度をイニシ
エタ溶液中で170mg/から300mg/に増加した
以外は、実施例5に記載したと同じ組成と同じ操
作に従つて第6の試験パネル群を処理した。無電
解ニツケルめつき溶液中に該試験パネルを浸漬し
た際に、パネル上にニツケル膜が生成しはじめる
のにわずか約20秒を要するのみであつた。
Example 6 As described in Example 5, except that the concentration of ferric chloride hexahydrate was increased from 170 mg/ to 300 mg/ in the initiator solution in the presence of 510 mg/ of EDTA tetrasodium salt complexing agent. A sixth group of test panels was processed according to the same composition and the same procedure. When the test panel was immersed in an electroless nickel plating solution, it took only about 20 seconds for a nickel film to begin to form on the panel.

Claims (1)

【特許請求の範囲】 1 引き続く無電解ニツケルめつきを銅系素地上
に施し易くするための予備処理に用いる貴金属イ
オン含有無電解ニツケルめつき用イニシエタ水溶
液であつて、引き続く無電解ニツケル浴中で浸漬
ニツケルめつきを開始せしめるのに有効な量の貴
金属イオンを含有し、かつ該貴金属イオンの少な
くとも一部が錯化していない状態で溶液中に維持
されるのに十分な量で第2鉄イオンを含有して成
るイニシエタ水溶液。 2 10mg/ないし銅系素地上に過剰なエツチン
グが生起し始めない濃度で該第2鉄イオンを含有
して成る特許請求の範囲第1項記載のイニシエタ
水溶液。 3 引き続く無電解ニツケルめつきを銅系素地上
に施し易くするための予備処理に用いる貴金属イ
オン含有無電解ニツケルめつき用イニシエタ水溶
液の再生方法であつて、 前段工程の無電解銅めつき液から持ち込まれた
錯化剤により汚染されて無効となつた該イニシエ
タ水溶液中に十分な量の第2鉄イオンを導入する
ことから成るイニシエタ水溶液の再生方法。 4 該第2鉄イオンを少なくとも10mg/の濃度
で存在せしめる特許請求の範囲第3項記載の方
法。 5 銅系素地上に過剰なエツチングが生起し始め
ない濃度で該第2鉄イオンを存在せしめる特許請
求の範囲第3項記載の方法。 6 該第2鉄イオンを5g/以下の濃度で存在
せしめる特許請求の範囲第3項記載の方法。 7 該第2鉄イオンを40〜500mg/の濃度で存
在せしめる特許請求の範囲第3項記載の方法。 8 該イニシエタ水溶液中への第2鉄イオンの導
入を、浴可溶性で浴相容性の第2鉄化合物を用い
て行なう特許請求の範囲第3項記載の方法。 9 第2鉄化合物としてFeCl3を用いる特許請求
の範囲第8項記載の方法。 10 引き続く無電解ニツケルめつきを銅系素地
上に施し易くするための予備処理に用いる貴金属
イオン含有無電解ニツケルめつき用イニシエタ水
溶液の再生方法であつて、 貴金属イオンが沈殿したために無効となつた該
イニシエタ水溶液中に十分な量の第2鉄イオンを
酸化性媒体の存在下で導入して沈殿の少なくとも
一部を再溶解させることから成るイニシエタ水溶
液の再生方法。 11 該第2鉄イオンを少なくとも10mg/の濃
度で存在せしめる特許請求の範囲第10項記載の
方法。 12 銅系素地上に過剰の酸化性侵食が生起し始
めない濃度で該第2鉄イオンを存在せしめる特許
請求の範囲第10項記載の方法。 13 該第2鉄イオンを5g/以下の濃度で存
在せしめる特許請求の範囲第10項記載の方法。 14 該第2鉄イオンを40〜500mg/の濃度で
存在せしめる特許請求の範囲第10項記載の方
法。 15 該沈殿の少なくとも一部を再溶解するのに
有効な量の第2鉄イオンの存在下で酸素含有ガス
をイニシエタ水溶液中に十分な時間に亙つて吹き
込むことにより該酸化性媒体を形成せしめる特許
請求の範囲第10項記載の方法。 16 引き続く無電解ニツケルめつきを銅系素地
上に施し易くするための予備処理に用いる貴金属
イオン含有無電解ニツケルめつき用イニシエタ水
溶液の可使時間延長のための再生方法であつて、 貴金属イオンの少なくとも一部が錯化されてい
ない状態で溶液中に維持されるのに十分な量の第
2鉄イオンを該イニシエタ水溶液中に導入せしめ
ることから成るイニシエタ水溶液の再生方法。 17 該第2鉄イオンを少なくとも10mg/の濃
度で存在せしめる特許請求の範囲第16項記載の
方法。 18 銅系素地上に過剰なエツチングが生起し始
めない濃度で該第2鉄イオンを存在せしめる特許
請求の範囲第16項記載の方法。 19 該第2鉄イオンを5g/以下の濃度で存
在せしめる特許請求の範囲第16項記載の方法。 20 該第2鉄イオンを40〜500mg/の濃度で
存在せしめる特許請求の範囲第16項記載の方
法。
[Scope of Claims] 1. An initiator aqueous solution for electroless nickel plating containing noble metal ions used for preliminary treatment to facilitate subsequent electroless nickel plating on a copper substrate, the solution comprising: ferric ions in an amount effective to initiate immersion nickel plating and sufficient to maintain at least a portion of the precious metal ions in solution in an uncomplexed state; An initiator aqueous solution containing. 2. The initiator aqueous solution according to claim 1, which contains the ferric ion at a concentration of 10 mg/- to a concentration that does not cause excessive etching on the copper-based substrate. 3. A method for regenerating an aqueous initiator solution for electroless nickel plating containing noble metal ions used for preliminary treatment to facilitate subsequent electroless nickel plating on a copper base material, the method comprising: regenerating an aqueous initiator solution for electroless nickel plating containing noble metal ions from the electroless copper plating solution in the previous step; A method for regenerating an initiator aqueous solution, which comprises introducing a sufficient amount of ferric ions into the initiator aqueous solution, which has become ineffective due to contamination by an introduced complexing agent. 4. The method of claim 3, wherein said ferric ion is present in a concentration of at least 10 mg/ml. 5. The method according to claim 3, wherein the ferric ions are present at a concentration such that excessive etching does not begin to occur on the copper-based substrate. 6. The method of claim 3, wherein the ferric ion is present at a concentration of 5 g/or less. 7. The method according to claim 3, wherein the ferric ion is present at a concentration of 40 to 500 mg/. 8. The method according to claim 3, wherein the introduction of ferric ions into the aqueous initiator solution is carried out using a bath-soluble and bath-compatible ferric compound. 9. The method according to claim 8, in which FeCl 3 is used as the ferric compound. 10 A method for regenerating an aqueous initiator solution for electroless nickel plating containing precious metal ions used for preliminary treatment to facilitate subsequent electroless nickel plating on a copper substrate, which became ineffective due to precipitation of precious metal ions. A method for regenerating an aqueous initiator solution comprising introducing a sufficient amount of ferric ions into the aqueous initiator solution in the presence of an oxidizing medium to redissolve at least a portion of the precipitate. 11. The method of claim 10, wherein said ferric ion is present in a concentration of at least 10 mg/. 12. The method of claim 10, wherein the ferric ions are present at a concentration such that excessive oxidative attack does not begin to occur on the copper-based substrate. 13. The method of claim 10, wherein the ferric ion is present at a concentration of 5 g/min or less. 14. The method of claim 10, wherein the ferric ion is present at a concentration of 40 to 500 mg/. 15 A patent for forming the oxidizing medium by bubbling an oxygen-containing gas into an aqueous initiator solution for a sufficient period of time in the presence of an effective amount of ferric ions to redissolve at least a portion of the precipitate. The method according to claim 10. 16 A regeneration method for extending the pot life of an initiator aqueous solution for electroless nickel plating containing precious metal ions used for preliminary treatment to facilitate subsequent electroless nickel plating on a copper substrate, the method comprising: A method for regenerating an aqueous initiator solution comprising introducing into the aqueous initiator solution sufficient ferric ions to remain at least partially uncomplexed in solution. 17. The method of claim 16, wherein said ferric ion is present at a concentration of at least 10 mg/. 18. The method of claim 16, wherein the ferric ions are present at a concentration such that excessive etching does not begin to occur on the copper-based substrate. 19. The method of claim 16, wherein the ferric ion is present at a concentration of 5 g/min or less. 20. The method of claim 16, wherein the ferric ion is present at a concentration of 40 to 500 mg/.
JP25554484A 1983-12-02 1984-12-03 Electroless nickel initiator solution and regeneration thereof Granted JPS60138075A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55641783A 1983-12-02 1983-12-02
US556417 1983-12-02

Publications (2)

Publication Number Publication Date
JPS60138075A JPS60138075A (en) 1985-07-22
JPH0148349B2 true JPH0148349B2 (en) 1989-10-18

Family

ID=24221260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25554484A Granted JPS60138075A (en) 1983-12-02 1984-12-03 Electroless nickel initiator solution and regeneration thereof

Country Status (4)

Country Link
JP (1) JPS60138075A (en)
CA (1) CA1232104A (en)
DE (1) DE3443471A1 (en)
GB (1) GB2150601B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08512171A (en) * 1994-04-28 1996-12-17 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ A method for photolithographically producing copper patterns on a plate of electrically insulating material.
CN100342058C (en) * 2005-11-01 2007-10-10 桂林工学院 No-palladium activating recipe for chemical nickel plating on plastic surface and its technological process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1145285A (en) * 1965-03-17 1969-03-12 Nat Res Dev Improvements relating to the deposition of metals
US3902908A (en) * 1973-03-21 1975-09-02 Macdermid Inc Catalyst system for activating surfaces prior to electroless deposition

Also Published As

Publication number Publication date
DE3443471C2 (en) 1987-01-02
GB2150601A (en) 1985-07-03
DE3443471A1 (en) 1985-06-13
GB2150601B (en) 1987-06-03
JPS60138075A (en) 1985-07-22
GB8430429D0 (en) 1985-01-09
CA1232104A (en) 1988-02-02

Similar Documents

Publication Publication Date Title
US4814205A (en) Process for rejuvenation electroless nickel solution
CA1144432A (en) Method for treating polymeric substrates prior to plating
EP0913502B1 (en) Method of electroplating nonconductive plastic molded product
US3682786A (en) Method of treating plastic substrates and process for plating thereon
JP3929399B2 (en) Method for electroless metal plating
JP6195857B2 (en) Method for metallizing non-conductive plastic surface
JP6622712B2 (en) Compositions and methods for metallizing non-conductive plastic surfaces
US4448811A (en) Oxidizing agent for acidic accelerator in electroless metal plating process
JP6246139B2 (en) Method for metallizing non-conductive plastic surface
US3962497A (en) Method for treating polymeric substrates prior to plating
EP3168326B2 (en) Resin plating method
JPH06128757A (en) Zincate solution improved to process aluminum and aluminum alloy and its processing method
KR20200134345A (en) Composition for pretreatment for electroless plating, pretreatment method for electroless plating, and electroless plating method
JP4109615B2 (en) Method for activating substrate for synthetic electroplating
EP2305856A1 (en) Process for applying a metal coating to a non-conductive substrate
EP1988192B1 (en) Process for applying a metal coating to a non-conductive substrate
JPS63297573A (en) Metallizing method of plastic imparting high bonding strength
US3769061A (en) Pre-etch treatment of acrylonitrile-butadiene-styrene resins for electroless plating
JPH0148349B2 (en)
JP2001316831A (en) Treating agent for zinc immersion coating
JPH0741956A (en) Improvement of adhesion of metal coating to article made of resin
CA1058457A (en) Process for sensitizing surface of nonmetallic article for electroless deposition
JP4789361B2 (en) Method for producing a conductive layer on a dielectric surface
US3862850A (en) Electroless gold plating on refractory metals
JP7160306B2 (en) Electroless plating pretreatment composition, electroless plating pretreatment method, electroless plating method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees