JPH0148334B2 - - Google Patents

Info

Publication number
JPH0148334B2
JPH0148334B2 JP59156875A JP15687584A JPH0148334B2 JP H0148334 B2 JPH0148334 B2 JP H0148334B2 JP 59156875 A JP59156875 A JP 59156875A JP 15687584 A JP15687584 A JP 15687584A JP H0148334 B2 JPH0148334 B2 JP H0148334B2
Authority
JP
Japan
Prior art keywords
less
steel
hardness
temperature
hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59156875A
Other languages
Japanese (ja)
Other versions
JPS6134162A (en
Inventor
Seiji Kobayashi
Chisato Ishioka
Kazuhiko Yano
Takamichi Hamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15687584A priority Critical patent/JPS6134162A/en
Publication of JPS6134162A publication Critical patent/JPS6134162A/en
Publication of JPH0148334B2 publication Critical patent/JPH0148334B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金型用プレハードン鋼の製造方法に関
し、詳しくは、焼入れ焼戻しを行なうことによつ
て、硬度(HB)250以上を有し、例えば、500℃
以下の温度でプラスチツク、ゴム、亜鉛合金或い
はスズ合金等の成形に用いられる金型製造のため
のプレハードン型金型用の製造方法に関する。 プレハードン鋼とは、予め調質、即ち、熱処理
による硬度調整がなされた鋼材を意味し、金型に
加工後の調質が不必要であると共に、型仕上の寸
法精度が高いので、高硬度を要する金型用鋼とし
て広く用いられつつある。 一般に金型用プレハードン鋼には、硬度(HB
硬度、以下、特に明示がないときは硬度はHB
度を意味する。)が250以上であること、鋼材内で
の硬度差が少なく、均質な組成を有すること、偏
析、介在物、ピンホール、ザク状欠陥等が少な
く、内部品質が良好であること、強度及び靭性に
すぐれること、機械加工性が良好であること、研
摩及び鏡面加工性が良好であること、シボ加工性
が良好であること、溶接補修性が良好であるこ
と、鋼材費用及び型加工費用を含む金型製作費が
低廉であること等が要求される。 従来より使用されているプレハードン鋼として
は、JIS SCM440鋼やAISI P20等の高C−Cr−
Mo系鋼があるが、これらは金型のために特に設
計された鋼ではないので、上記要求の一部を満た
すにすぎず、金型用鋼としては尚多くの欠点を有
する。 即ち、上記した従来鋼は高C鋼であるので、プ
レハードン化するために水焼入れを行なうと、鋼
材表面部の硬化が著しく、焼き割れを発生する。
また、鋼材の表面と中心部との間に大きい硬度差
が生じて、加工性が劣化し、使用に供し得ない場
合が多い。従つて、従来鋼においては、鋼材のプ
レハードン化は、油焼入れ法に限定されている。
しかし、このように油焼入れを行なつても、従来
鋼によれば鋼材の表面と中心部には尚大きい硬度
差が残り、加工性が低い。 更に、従来鋼は溶接性が悪く、溶接補修時に割
れを発生しやすい。割れ防止のためには、溶接補
修に際して300〜500℃程度の高温度での予熱と後
熱が必要である。また、従来鋼は焼入れ性を向上
させるために、多量の合金元素が添加されている
が、このような鋼材を用いて、生産性の低い油焼
入れ法によりプレハードン鋼を製造しているた
め、鋼材費用が高い。 上記したような金型用プレハードン鋼における
問題を解決するために、例えば、特公昭54−
18214号公報には高Cr鋼からなるプレハードン鋼
が開示されているが、Cr含有量が高いために靭
性に劣る問題が残つており、更に、希土類元素に
よる清浄度の向上を図る必要があり、製鋼におけ
る技術的制御が容易ではないので、安定した品質
の鋼材を得ることが困難であり、製造費用も高
い。また、特公昭57−11945号公報に開示されて
いる鋼はCu添加鋼であるため、鋼片や鋳片に生
じる表面割れの防止に複雑な工程を必要とし、製
造費用も高くならざるを得ない。 本発明者らは上記した問題を解決するために鋭
意研究した結果、 (ア) 水焼入れ時に発生する焼き割れを防止するた
めには、焼入れ時の表面硬度を低下させること
が極めて効果的であるが、水焼入れ(焼入れ温
度850〜930℃)時の鋼板の表面硬度(Hv)は、
第1図に示すようにC量に依存し、焼き割れを
発生しない限界C量は、第2図に示すように約
0.35%であること、 (イ) 焼入れ焼戻し後の鋼材の表面と中心部との硬
度差を小さくするためには、焼入れ性向上を図
つて、焼入れ時に生じる硬度差を低減させるの
がよく、硬度差を30以下とするには、第3図に
示すように、後述する焼入れ性倍数値の積をf
(M)、板厚をT(mm)とするとき、f(M)がT
に対して、 f(M)≧0.2T+30 を満たすこと、 (ウ) プレハードン鋼のような高C鋼の溶接性の向
上を図るには、低炭素当量鋼とすること、特
に、第4図に示すようにC量の低減が極めて効
果的であること、即ち、以上を要すれば、低C
化を図ると共に、合金元素の種類を選択し、且
つ、その添加量を制御することにより、水焼入
れを行なつても焼き割れが発生せず、しかも、
鋼材内の硬度差が小さく、溶接性も大幅に改善
されることを見出した。 本発明は上記した知見に基づいてなされたも
のであり、水焼入れによつても焼き割れが発生
せず、しかも、加工性と溶接性にすぐれ、高靭
性高品質であるプレハードン鋼の製造方法を提
供することを目的とする。 本発明によるプレハードン鋼の製造方法は、重
量%で (a) C 0.15%から0.35%未満、 Si 0.05〜0.80%、 Mn 0.50〜2.00% P 0.030%以下、 Al 0.005〜0.080%、 N 0.0060%以下、及び O 0.0050%以下を含むと共に、 (b) Cr 0.50〜2.50%、 Mo 0.05〜1.00%、 Ni 0.05〜2.00%、 Cu 0.05%から0.20%未満、及び B 0.0005〜0.0030% よりなる群から選ばれる少なくとも1種の焼入
れ性向上元素を含み、残部鉄及び不可避的不純
物よりなる鋳片又は鋼片を温度1150〜1350℃に
加熱した後、連鋳片又は鋼塊から圧下比が3以
上となるように、且つ、 (c) 上記元素についての焼入れ性倍数値 f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)=1+0.52%Ni f(Cu)=1+0.27%Cu、及び f(B)=1+1.50(0.90−%C) (但し、%元素は鋼における当該元素の重量%
による含有量を示す。) の積をf(M)、板厚をT(mm)とするとき、f
(M)がTに対して f(M)≧0.2T+30 を満たすように圧延し、次いで、温度Ac3
Ac3+100℃から水焼入れした後、温度500〜
720℃で焼戻すことによつて、硬度(HB)250
以上を有し、且つ、鋼板の表面と中心部の硬度
差が30以下である金型用プレハードン鋼を得る
ことを特徴とする。 先ず、本発明鋼における化学成分の限定理由を
説明する。 Cは、安価な元素であるが、焼入れ性を向上さ
せる効果が大きい。しかし、過剰に添加するとき
は焼き割れを生じさせ、或いは溶接の低下を招
く。プレハードン鋼として通常必要とされる硬度
は250以上であるので、本発明鋼においては、こ
の硬度を確保するために、Cの添加量は少なくと
も0.15%とする。C量が増加するにつれて焼き入
れ硬度も上昇するが、過多に添加するときは、水
焼入れ時に焼き割れが発生しやすくなると共に、
溶接補修時に溶接割れを防止するのに必要な予熱
温度が300℃以上となり、また、後熱温度も400〜
500℃の高温度が必要となつて、溶接作業性が極
めて劣化するので、Cの添加量は、0.35%未満と
する。 Siは、脱酸元素として製鋼時に不可欠の元素と
して少なくとも0.05%が添加される。添加量の増
加に伴つて焼入れ性が向上するが、同時に偏析を
助長し、製品内部の局部的な硬度異常を誘発し、
加工性不良の原因となる。従つて、偏析の悪影響
の少ない添加量に制限する必要があり、その上限
を0.80%とする。 MnもSiと同様に脱酸元素として添加される。
また、硫化物を形成することにより、熱間加工性
を著しく改善する。このような効果を有効に発揮
させるためには、少なくとも0.5%の添加を必要
とする。更に、Mnは焼入れ性を高める安価な元
素としても添加されるが、2.0%を越えて過多に
添加するときは、偏析を助長し、加工性を劣化さ
せるので、上限を2.0%とする。 Pは、偏析を助長し、鋼板内部に局部的な硬度
上昇を引き起こして、機械加工性やシボ加工性を
劣化させるので、上限を0.030%とする。 Alは、強力な脱酸元素として添加されるが、
添加量が0.005%よりも少ないときはこの脱酸効
果に乏しい。また、同時にAlは窒化物を形成し、
オーステナイト粒の整細粒化を図り、均一な焼入
れ性を実現するために不可欠の元素として添加さ
れるが、しかし、過多に添加するときは、Al2O3
を増加させ、地疵や加工性不良の原因となるた
め、上限を0.080%とする。 Nは、Alと結合することにより、オーステナ
イト粒を整細粒化し、均一な焼入れ性を確保する
効果がある。しかし、過剰に添加するときは、粗
大なAlN又はBNを析出し、粒界脆化や焼入れ性
劣化を招くので、上限を0.0060%とする。 Oは、酸化物系介在物を形成し、地疵やピンホ
ールの原因となるのみならず、鋼の被削性やシボ
加工性を阻害するため、できる限り低減すること
が望ましい。しかし、一方においてOを低減する
ことは、製造費用の増加を招くため、本発明にお
いては、許容し得る上限を0.0050%とする。 本発明による鋼は、上記した元素に加えて、
Cr、Mo、Ni、Cu及びBよりなる群から選ばれ
る1種又は2種以上の焼入れ性向上元素を所定の
範囲内で含有する。 Crは、厚肉材の内部まで焼入れるために必要
不可欠の元素として、また、Nを安定化させる表
面窒化処理のための元素として、0.50%以上添加
する必要がある。しかし、過剰に添加するとき
は、Cr炭化物の析出による脆化を招来し、靭性
を低下させ、かくして、精密加工時に微小部の欠
損を起こしやすいので、2.50%を上限とする。 Moは、焼入れ性及び焼戻し軟化抵抗を高める
ために添加されるが、非常に高価な元素であるの
で、実用的な観点からその上限を1.00%とする。 Niは、焼入れ性を高め、靭性を向上させるた
めに添加されるが、Moと同じく高価であると共
に、過剰量の添加は却つて被削性を低下させるの
で、その上限を2.00%とする。 Cuは、焼入れ性を高める反面、熱間加工時の
割れ、所謂銅割れを発生するので、添加量は、
0.20%未満とする。 本発明鋼には、その強靭性を高めるために、必
要に応じて上記した元素に加えて、Nb及びVの
一方又は両方を添加することができる。 Nb及びVは、微量の添加よつて、焼戻し軟化
抵抗を向上させ、また、細粒化による強靭性の向
上を図り得るが、過多に添加するときは粗大な炭
窒化物を形成し、被削性や鏡面加工性を劣化させ
るため、その上限をNbについては0.10%、Vに
ついては0.15%未満とする。 Bは、少量の添加によつて焼入れ性を向上させ
るが、その添加量が0.0005%以下であるときはそ
の効果が乏しく、一方、0.0030%を越えて過剰に
添加しても、焼入れ性向上効果が飽和するので、
上限を0.0030%とする。 更に、本発明においては、鋼に良好な被削性を
付与するために、必要に応じて上記した元素に加
えて、Sと共に、Ti、Ca、Pb及びZrよりなる群
から選ばれる1種又は2種以上の元素を所定範囲
内で添加することができる。 Sは、上記のように鋼に被削性を付与するため
に有効であるが、過多に添加するときは、熱間延
性を劣化させ、或いは清浄度を悪化させるので、
その上限を0.070%とする。 Ti、Ca及びZrは、いずれも単独にて、或いは
複合して添加することにより、硫化物の形態を制
御し、機械的性質の方向性を改善する。また、靭
性を向上させ、快削性を付与する効果もある。し
かし、過多に添加するときは、却つて被削性を阻
害し、或いはシボ加工性を劣化させるので、それ
ぞれの上限をTi0.10%、Ca0.05%及びZr0.15%と
する。 Pbも快削性を付与するが、過剰に添加すると
きは、鏡面加工性やシボ加工性を劣化させるの
で、0.30%をその上限とする。 鋼板の焼入れ深度は、添加合金元素の種類とそ
の添加量とによつて決定され、添加された個々の
合金元素の焼入れ性倍数値の積に比例することは
既によく知られている。上記焼入れ性倍数値とし
ては、従来より多くの数値が知られているが、本
発明においては、工業上よく用いられている
Grossmanの値を用いることとする。即ち、 f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)=1+0.52%Ni f(Cu)=1+0.27%Cu (但し、%元素は鋼における当該元素の重量%に
よる含有量を示す。) とする。 しかし、上記Si、Mn、Cr、Mo、Cu及びNi以
外の焼入れ性向上元素、例えば、V、Al、Ti、
P、S等については、その添加量の上限値におい
ても、焼入れ性に与える影響が僅少であることが
知られているので、本発明においても、これらの
元素についての焼入れ性倍数値は無視することと
する。Bは微量の添加によつて焼入れ性を著しく
改善する効果があり、その焼入れ性倍数値とし
て、本発明においては、 f(B)=1+1.5(0.90−%C) 用いることとする。 前記したように、プレハードン鋼として必要な
最低の硬度は、従来、特に定められていないが、
通常、最低の硬度として250が要求されている。
本発明鋼はかかる硬度要求に十分に応えるもので
ある。 前記したように、一般にプレハードン鋼におい
て、鋼材内部の硬度差が最も大きいのは、熱処理
時の質量効果に起因する表面の硬度と板厚中心部
の硬度との差である。板厚方向の過大な硬度差
は、型加工時の機械加工性、研摩性或いはシボ加
工性を劣化させるため、できる限りに硬度差を低
減させることが望ましい。しかし、徒らに硬度差
を低減することは過剰品質となるばかりが、製品
コストを引き上げて工業製品としての価値を損な
うこととなる。 このように型加工に悪影響を及ぼす板厚方向の
硬度差は、加工の種類と条件によつて異なるが、
硬度差が30以下では、通常、加工上特に問題を生
じないため、本発明においても、上記硬度差が30
以下の鋼を得るものである。 焼入れ時に生じる表面と板厚中心部の硬度
(Hv)差は、第5図に示すように、前記焼入れ性
倍数値の積f(M)の増加と共に減少し、焼戻し
後の硬度差を30以下とするためには、第3図に示
すように、f(M)は板厚T(mm)に対して、 f(M)≧0.2T+30 を満たす必要がある。即ち、f(M)がTに対し
てこの関係を満たすとき、焼戻し後の硬度差は30
以下となり、加工性にすぐれるプレハードン鋼を
得ることができる。 以上のように、本発明によれば、鋼を低C化す
ることによつて、水焼入れ時の表面硬度を低下さ
せ、水焼入れ時の割れ発生を防止し、また、焼入
れ性倍数値の積f(M)を板厚に対して所定の関
係を満足させることによつて、水焼入れ時に生じ
る鋼板の表面と中心部の硬度差を30以下とすると
共に、低炭素当量鋼としてその溶接性を改善した
ので、かくして得られるプレハードン鋼は水焼入
れを行なつても焼き割れが発生せず、しかも、加
工性、溶接性、靭性にすぐれるのである。 本発明によるプレハードン鋼は、品質面及び製
造費用面から、本発明に従つて、前記した化学組
成を有する鋼片又は鋳片を圧延し、水焼入れし、
次いで、焼戻しすることによつて製造される。 上記鋼片又は鋳片の加熱温度は、偏析拡散の観
点からは高いほどよいが、1350℃を越えるとき
は、鋼板の表面にスケールが多量に付着し、鋼板
の表面疵の原因となる。また、1150℃よりも低い
ときは、偏析拡散の効果が乏しい。従つて、本発
明においては、上記加熱温度は1150〜1350℃の範
囲とする。 次に、金型用鋼は健全な内部品質を有すること
が必要である。従つて、ザク状欠陥やピンホール
を圧着するためには、鋼塊又は連鋳片から製品厚
までの圧下比で3以上が必要である。圧下比が3
よりも小さいときは、上記欠陥が残留する等の問
題が生じるからである。また、この際、前記した
ように、水焼入れ時に生じる表面と板厚中心部の
硬度(Hv)差を小さくするために、板厚Tに対
してf(M)が前記所定の関係を満たすことが必
要である。 焼入れ温度は、圧延鋼板をオーステナイト化す
るために少なくともAc3温度以上が必要である。
しかし、Ac3+100℃を越えるときは、一部結晶
粒の粗大化による焼入れのむらを生じて、加工性
不良を惹起する。従つて、本発明においては、焼
入れ温度はAc3〜Ac3+100℃の範囲とする。 焼入れは、冷却能がすぐれ、且つ、製造費用の
安価な水焼入れによる。前記したように、本発明
によれば、水焼入れしても焼き割れの生じないこ
とが一つの大きい特徴である。焼戻し温度は、硬
度調整及び焼入れ時の残留応力除去のために重要
であり、残留応力の除去には高温焼戻しが望まし
いが、720℃を越える高温の場合には、鋼の軟化
が著しく、プレハードン鋼として必要とされる硬
度250以上を達成し得なくなる。一方、500℃より
も低い温度では残留応力除去が不完全であつて、
型加工時のそり、曲がり等の原因となる。 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら限定されるもので
はない。 実施例 第1表に示す化学成分を有する本発明鋼、比較
鋼及び従来鋼を1160〜1340℃の温度に加熱した
後、圧下率3〜9にて圧延して、板厚20〜250mm
の鋼板を得た。これらをそれぞれ同表
The present invention relates to a method for manufacturing pre-hardened steel for molds, and more specifically, it has a hardness (H B ) of 250 or more by quenching and tempering, for example, 500°C.
The present invention relates to a manufacturing method for a pre-hardened mold for manufacturing molds used for molding plastics, rubber, zinc alloys, tin alloys, etc. at the following temperatures. Pre-hardened steel refers to a steel material that has been tempered in advance, that is, has its hardness adjusted by heat treatment.It does not require tempering after being processed into a mold, and has high dimensional accuracy when finishing the mold, so it can achieve high hardness. It is becoming widely used as steel for molds. Generally, pre-hardened steel for molds has hardness (H B
Hardness: Hereinafter, unless otherwise specified, hardness means H B hardness. ) is 250 or more, there is little difference in hardness within the steel material, it has a homogeneous composition, there are few segregations, inclusions, pinholes, hollow defects, etc., and the internal quality is good, and it has good strength and toughness. Good machinability, good polishing and mirror workability, good texture workability, good welding repairability, low steel material cost and mold processing cost. It is required that the mold manufacturing cost including that is low. Conventionally used pre-hardened steels include high C-Cr- steels such as JIS SCM440 steel and AISI P20.
Although there are Mo-based steels, these are not steels specifically designed for molds, so they meet only a portion of the above requirements, and still have many drawbacks as steels for molds. That is, since the above-mentioned conventional steel is a high C steel, when water quenching is performed to pre-harden the steel, the surface portion of the steel material is significantly hardened and quench cracks occur.
Moreover, a large difference in hardness occurs between the surface and the center of the steel material, resulting in poor workability and often making the steel material unusable. Therefore, in conventional steel, pre-hardening of steel materials is limited to oil quenching.
However, even if oil quenching is performed in this manner, conventional steels still have a large difference in hardness between the surface and center of the steel material, resulting in poor workability. Furthermore, conventional steels have poor weldability and are prone to cracking during weld repair. To prevent cracking, preheating and postheating at high temperatures of approximately 300 to 500°C are required during welding repairs. In addition, conventional steels have large amounts of alloying elements added to improve their hardenability, but pre-hardened steel is manufactured using oil quenching methods, which have low productivity. Expensive. In order to solve the above-mentioned problems with pre-hardened steel for molds, for example,
Publication No. 18214 discloses a pre-hardened steel made of high Cr steel, but there remains the problem of poor toughness due to the high Cr content, and it is also necessary to improve the cleanliness by using rare earth elements. Since technical control in steel manufacturing is not easy, it is difficult to obtain steel products of stable quality, and manufacturing costs are high. In addition, since the steel disclosed in Japanese Patent Publication No. 57-11945 is Cu-added steel, complicated processes are required to prevent surface cracks that occur in slabs and slabs, and manufacturing costs are unavoidably high. do not have. As a result of intensive research by the present inventors to solve the above-mentioned problems, it was found that (a) reducing the surface hardness during quenching is extremely effective in preventing quench cracking that occurs during water quenching; However, the surface hardness (Hv) of the steel plate during water quenching (quenching temperature 850 to 930℃) is
As shown in Figure 1, it depends on the amount of C, and the limit amount of C that does not cause quench cracking is approximately
(a) In order to reduce the difference in hardness between the surface and the center of steel after quenching and tempering, it is best to improve hardenability and reduce the difference in hardness that occurs during quenching. In order to make the difference 30 or less, as shown in Figure 3, the product of the hardenability multiple values described later is f
(M), and when the plate thickness is T (mm), f (M) is T
(c) In order to improve the weldability of high C steel such as pre-hardened steel, it is necessary to use low carbon equivalent steel, especially as shown in Figure 4. As shown, reducing the amount of C is extremely effective, that is, if the above is required, low C
By selecting the type of alloying element and controlling the amount added, quenching cracks will not occur even when water quenching is performed.
It was discovered that the difference in hardness within the steel material is small and weldability is significantly improved. The present invention has been made based on the above findings, and provides a method for manufacturing pre-hardened steel that does not cause quench cracking even when water quenched, has excellent workability and weldability, and has high toughness and high quality. The purpose is to provide. The method for producing pre-hardened steel according to the present invention includes (a) C 0.15% to less than 0.35%, Si 0.05 to 0.80%, Mn 0.50 to 2.00%, P 0.030% or less, Al 0.005 to 0.080%, N 0.0060% or less , and O 0.0050% or less, and (b) selected from the group consisting of Cr 0.50 to 2.50%, Mo 0.05 to 1.00%, Ni 0.05 to 2.00%, Cu 0.05% to less than 0.20%, and B 0.0005 to 0.0030%. After heating a cast slab or steel slab containing at least one hardenability-improving element and consisting of the balance iron and unavoidable impurities to a temperature of 1150 to 1350°C, a rolling ratio of 3 or more is obtained from the continuous slab or steel ingot. and (c) Hardenability multiple values for the above elements f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo) = 1 + 3.14% Mo f (Ni) = 1 + 0.52% Ni f (Cu) = 1 + 0.27% Cu, and f (B) = 1 + 1.50 (0.90 - % C) (However, the % element is the Weight% of the element
Indicates the content according to ) is the product of f (M) and the plate thickness is T (mm), then f
(M) is rolled so that f(M)≧0.2T+30 is satisfied with respect to T, and then the temperature A c3 ~
A c3 After water quenching from +100℃, the temperature is 500~
Hardness (H B ) 250 by tempering at 720℃
The present invention is characterized by obtaining a pre-hardened steel for molds having the above properties and having a hardness difference of 30 or less between the surface and center of the steel plate. First, the reason for limiting the chemical components in the steel of the present invention will be explained. Although C is an inexpensive element, it is highly effective in improving hardenability. However, when added in excess, it causes quench cracking or deteriorates welding performance. Since the hardness normally required for pre-hardened steel is 250 or more, in order to ensure this hardness in the steel of the present invention, the amount of C added is at least 0.15%. As the amount of C increases, the quenching hardness also increases, but when adding too much C, quenching cracks are more likely to occur during water quenching, and
The preheating temperature required to prevent weld cracking during welding repair is 300℃ or higher, and the postheating temperature is also 400℃ or higher.
Since a high temperature of 500° C. is required and welding workability is extremely deteriorated, the amount of C added should be less than 0.35%. At least 0.05% of Si is added as an essential element during steel manufacturing as a deoxidizing element. Hardenability improves as the amount added increases, but at the same time it promotes segregation and induces local hardness abnormalities inside the product.
It causes poor workability. Therefore, it is necessary to limit the amount added to have less negative effects of segregation, and the upper limit is set at 0.80%. Like Si, Mn is also added as a deoxidizing element.
Furthermore, the formation of sulfides significantly improves hot workability. In order to effectively exhibit such an effect, it is necessary to add at least 0.5%. Furthermore, Mn is added as an inexpensive element that improves hardenability, but when added in excess of 2.0%, it promotes segregation and deteriorates workability, so the upper limit is set at 2.0%. P promotes segregation, causes a local increase in hardness inside the steel plate, and deteriorates machinability and texturing property, so the upper limit is set to 0.030%. Al is added as a strong deoxidizing element, but
When the amount added is less than 0.005%, this deoxidizing effect is poor. At the same time, Al forms nitrides,
Al 2 O 3 is added as an essential element to refine the austenite grains and achieve uniform hardenability, but when added in excess, Al 2 O 3
The upper limit is set at 0.080% because it increases the amount of carbon and causes scratches and poor workability. By combining with Al, N has the effect of refining austenite grains and ensuring uniform hardenability. However, when added in excess, coarse AlN or BN precipitates, leading to grain boundary embrittlement and deterioration of hardenability, so the upper limit is set to 0.0060%. O forms oxide-based inclusions that not only cause scratches and pinholes, but also impede the machinability and texturability of steel, so it is desirable to reduce it as much as possible. However, on the other hand, reducing O causes an increase in manufacturing costs, so in the present invention, the allowable upper limit is set to 0.0050%. The steel according to the invention contains, in addition to the above-mentioned elements,
Contains one or more hardenability-enhancing elements selected from the group consisting of Cr, Mo, Ni, Cu, and B within a predetermined range. Cr needs to be added in an amount of 0.50% or more as an essential element for hardening to the inside of thick-walled materials and as an element for surface nitriding treatment to stabilize N. However, when added in excess, it causes embrittlement due to the precipitation of Cr carbides, lowers toughness, and is likely to cause fractures in minute parts during precision machining, so the upper limit is set at 2.50%. Mo is added to improve hardenability and temper softening resistance, but since it is a very expensive element, its upper limit is set at 1.00% from a practical standpoint. Ni is added to improve hardenability and toughness, but like Mo, it is expensive, and addition of an excessive amount actually reduces machinability, so the upper limit is set at 2.00%. Although Cu improves hardenability, it also causes cracking during hot working, so-called copper cracking, so the amount added is
Less than 0.20%. In addition to the above-mentioned elements, one or both of Nb and V can be added to the steel of the present invention, if necessary, in order to improve its toughness. When Nb and V are added in small amounts, they can improve temper softening resistance and improve toughness by making the grains finer, but when added in excess, they form coarse carbonitrides and In order to prevent the deterioration of properties and mirror workability, the upper limit is set to 0.10% for Nb and less than 0.15% for V. B improves hardenability when added in small amounts, but the effect is poor when the amount added is less than 0.0005%, while on the other hand, even when added in excess of 0.0030%, there is no improvement in hardenability. is saturated, so
The upper limit shall be 0.0030%. Furthermore, in the present invention, in addition to the above-mentioned elements as necessary, one element selected from the group consisting of Ti, Ca, Pb, and Zr or Two or more types of elements can be added within a predetermined range. As mentioned above, S is effective in imparting machinability to steel, but when added in excess, it deteriorates hot ductility or cleanliness.
The upper limit shall be 0.070%. Ti, Ca, and Zr can be added singly or in combination to control the morphology of sulfides and improve the directionality of mechanical properties. It also has the effect of improving toughness and imparting free machinability. However, when added in excess, it actually impairs machinability or deteriorates texturing properties, so the respective upper limits are set to 0.10% of Ti, 0.05% of Ca, and 0.15% of Zr. Pb also imparts free machinability, but when added in excess, it deteriorates mirror workability and texture workability, so the upper limit is set at 0.30%. It is already well known that the hardening depth of a steel plate is determined by the type and amount of added alloying elements, and is proportional to the product of the hardenability multiplier values of the individual alloying elements added. Many numerical values have been known for the above-mentioned hardenability multiple values, but in the present invention, the hardenability multiple values that are commonly used in industry are used.
We will use Grossman's value. That is, f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)=1+0.52 %Ni f(Cu) = 1 + 0.27%Cu (However, % element indicates the content of the element in weight% in steel.) However, hardenability improving elements other than the above-mentioned Si, Mn, Cr, Mo, Cu and Ni, such as V, Al, Ti,
It is known that the influence of P, S, etc. on hardenability is negligible even at the upper limit of the amount added, so the hardenability multiplier values for these elements are ignored in the present invention. That's it. Addition of a small amount of B has the effect of significantly improving hardenability, and in the present invention, the following hardenability multiplier is used: f(B)=1+1.5(0.90-%C). As mentioned above, the minimum hardness required for pre-hardened steel has not been particularly determined, but
Usually, a minimum hardness of 250 is required.
The steel of the present invention satisfactorily meets such hardness requirements. As described above, in general, in pre-hardened steel, the largest difference in hardness inside the steel material is the difference between the surface hardness due to the mass effect during heat treatment and the hardness at the center of the plate thickness. An excessive hardness difference in the plate thickness direction deteriorates the machinability, abrasiveness, or texturing property during mold processing, so it is desirable to reduce the hardness difference as much as possible. However, needlessly reducing the hardness difference not only results in excessive quality, but also increases the product cost and impairs the value as an industrial product. The hardness difference in the plate thickness direction, which has a negative effect on die processing, varies depending on the type and conditions of processing, but
If the hardness difference is 30 or less, usually no particular problem occurs in processing, so in the present invention, the hardness difference is 30 or less.
The following steel is obtained. As shown in Fig. 5, the hardness (Hv) difference between the surface and the center of the plate thickness that occurs during hardening decreases as the hardenability multiple value f (M) increases, and the hardness difference after tempering is reduced to 30 or less. In order to do so, as shown in FIG. 3, f(M) needs to satisfy the following relationship with respect to the plate thickness T (mm): f(M)≧0.2T+30. That is, when f(M) satisfies this relationship with respect to T, the hardness difference after tempering is 30
The results are as follows, and a pre-hardened steel with excellent workability can be obtained. As described above, according to the present invention, by lowering the carbon content of steel, the surface hardness during water quenching is reduced, cracking during water quenching is prevented, and the product of the hardenability multiple value is reduced. By making f(M) satisfy a predetermined relationship with respect to the plate thickness, the hardness difference between the surface and center of the steel plate that occurs during water quenching can be reduced to 30 or less, and the weldability of the steel plate can be improved as a low carbon equivalent steel. Because of this improvement, the pre-hardened steel thus obtained does not suffer from quench cracking even when water quenched, and has excellent workability, weldability, and toughness. In terms of quality and manufacturing cost, the pre-hardened steel according to the present invention is obtained by rolling a steel billet or cast billet having the above-mentioned chemical composition and water-quenching it according to the present invention.
Then, it is manufactured by tempering. The higher the heating temperature of the steel slab or cast slab, the better from the viewpoint of segregation and diffusion, but if it exceeds 1350°C, a large amount of scale will adhere to the surface of the steel plate, causing surface flaws on the steel plate. Further, when the temperature is lower than 1150°C, the effect of segregation and diffusion is poor. Therefore, in the present invention, the heating temperature is in the range of 1150 to 1350°C. Next, the mold steel needs to have sound internal quality. Therefore, in order to crimp the pit-like defects and pinholes, a reduction ratio of 3 or more from the steel ingot or continuous slab to the product thickness is required. The reduction ratio is 3
This is because, if it is smaller than this, problems such as the above-mentioned defects remaining will occur. In this case, as mentioned above, in order to reduce the difference in hardness (Hv) between the surface and the center of the plate thickness that occurs during water quenching, f(M) should satisfy the predetermined relationship with respect to the plate thickness T. is necessary. The quenching temperature must be at least A c3 temperature or higher to austenitize the rolled steel sheet.
However, when A c3 exceeds +100°C, uneven hardening occurs due to coarsening of some crystal grains, resulting in poor workability. Therefore, in the present invention, the quenching temperature is in the range of A c3 to A c3 +100°C. The quenching is performed by water quenching, which has excellent cooling ability and is inexpensive to manufacture. As described above, one of the major features of the present invention is that no quenching cracks occur even when water quenching is performed. Tempering temperature is important for adjusting hardness and removing residual stress during quenching. High temperature tempering is desirable for removing residual stress, but if the temperature exceeds 720°C, the steel will soften significantly and pre-hardened steel It becomes impossible to achieve the required hardness of 250 or higher. On the other hand, at temperatures lower than 500℃, residual stress removal is incomplete;
This may cause warpage, bending, etc. during mold processing. The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way. Example Inventive steel, comparative steel, and conventional steel having the chemical components shown in Table 1 were heated to a temperature of 1160 to 1340°C, and then rolled at a reduction rate of 3 to 9 to obtain a sheet with a thickness of 20 to 250 mm.
steel plate was obtained. These are listed in the same table.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 に示す条件にて熱処理した。熱処理は850〜930℃
の水焼入れ又は油焼入れをした後、510〜720℃の
温度にて焼戻し処理を行なつた。 (1) 水焼入れ時の耐焼き割れ性 第2表に、鋼板の水焼入れ(焼入れ温度850
〜930℃)時の焼き割れの発生状況を示す。C
量が0.35%未満である本発明鋼A〜Jは、いず
れも焼き割れが発生していない。一方、C量が
0.39%である比較鋼L、及びC量が0.55%であ
る従来鋼S、及びC量が0.38%である従来鋼T
にはそれぞれ割れが発生している。このように
C量を低減することは、焼き割れの発生を防止
するうえに極めて効果的であることが理解され
る。 (2) 表面と板厚中心部との硬度差 第3表に焼入れ焼戻し後の鋼板の表面硬度、
板厚中心部の硬度及びその硬度差を示す。本発
明鋼A〜Jのf(M)値の実績値はいずれも硬
度差を30以下とするのに必要な最小値を満足し
ており、その結果、硬度差は2〜27の範囲にあ
る。一方、比較鋼Kは、f(M)の実績値が必
要最小値よりも大きいために、硬度差は17であ
つて、本発明による条件を満たしているが、C
量が低いために、板厚中心部の硬度はプレハー
ドン鋼に必要な250に達していない。比較鋼M
のf(M)値は必要最小値よりも小さく、板厚
50mmのときは硬度差70、板厚150mmのときは硬
度差129であつて、いずれも大きい硬度差を有
している。従来鋼Rは油焼入れ、Tは水焼入れ
を行なつているが、いずれも硬度差30以下を達
成し得ない。 比較鋼C′及F′は、化学成分においては、それ
ぞれ発明鋼A及びFと実質的に同じであるが、
油焼入れしたものである。表面硬さは、要求値
を満たしているものの、油焼入れによつては、
板厚中心部まで焼きが入らないために、板厚中
心部は硬度が小さく、表面との硬度差が30を越
えている。この硬度差を30以下に抑えるために
は、焼戻し温度を高めればよいが、鋼板全体の
硬さを低下させるので、表面の要求値を満足さ
せることができない。 (3) 加工性 第4表に加工性試験の結果を示す。ドリル穴
あけ試験の条件は、工具としてSKH9(ストレ
ートドリル穴径10mm)を用い、切削油を用い
ず、送り0.1mm/回転、切削速度30m/分及び
穴深さ50mm(全厚)であり、判定は工具溶損或
いは破損時の切削長さにより判定した。供試材
としては、板厚の影響をなくすために板厚50mm
材のみとした。 試験結果によれば、板厚方向の硬度差の少な
い本発明鋼A、G、H、I及びJにおいて良好
な切削性を示し、特に、快削性を付与する元素
を添加した鋼がすぐれている。比較鋼M1は、
表面硬度が376と高いこと、及び硬度差が70と
大きいために、一つの穴も貫通することができ
ずして、ドリルが破損した。従来鋼Rも硬度差
が46と大きいために、切削長さは272mmであつ
て、本発明鋼の5〜10%程度にすぎない。 研摩性は、研摩むらや疵等を発生することな
しに板厚横断面部を研摩し得る限界のペーパー
メツシユ番号で比較した。本発明鋼は#1800以
上の研摩が可能であつて、良好な研摩性を有し
ている。一方、比較鋼M1とM2は硬度差が大き
いため、#1000〜1200以上では研摩むらを生じ
る。比較鋼P及びQは、偏析に起因する研摩む
らを生じるため、#600以上の研摩は不可能で
あつた。また、従来鋼R及びTも硬度差が大き
いために、#1200以上では研摩し得ない。 シボ加工性は梨地のシボ加工を行なつて、シ
ボ加工面の状態を目視により判定した。本発明
鋼はいずれも良好なシボ加工面を呈したが、比
較鋼M1とM2、及び従来鋼RとTは硬度差が大
きく、組織が不均一であることに起因するシボ
むらを生じた。また、比較鋼P及びQもミクロ
偏析の程度が大きいために、シボむらを生じ
た。 尚、比較鋼Nは、Alの含有量が多いために、
鋼板には多量の地疵が発生し、金型鋼材として
用いるには不適当であつた。また、Cr含有量
が低いため、窒化性も不良であつた。比較鋼O
はCr含有量が高いために、靭性値が低く、精
密加工時に微小部分の欠損を引き起こした。更
に、比較鋼Qはガス成分元素、即ち、N及びO
が多いために、鋼板内部にピンホールを多量に
発生した。 以上のように、本発明鋼によれば、鋼板の表
面と板厚中心部の硬度差を30以下にしたので、
ドリル穴あけ性、研摩性、シボ加工性等の金型
材として必要不可欠の加工性が良好であるのみ
ならず、鋼板内部品質がすぐれている。 (4) 溶接性 第5表に溶接性試験の結果を示す。最高硬さ
試験はJIS Z3101に準拠した。第4図に炭素当
量(Ceq)と最高硬さ(Hv)との関係を示す。
ここに、 Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4
+ V/14 である。 本発明鋼の最高硬さはHv399〜474であるの
に対して、比較鋼L及び従来鋼R、S及びTに
おいては、Hv=578〜641であつて硬化が著し
い。 また、第5表に、割れ防止予熱温度を示す。
割れ防止予熱温度とは、第6図に示すように、
表面に90゜V溝を有する試験片(高さ50mm、幅
150mm、長さ450mm、90゜V溝の深さ10mm)を用
い、V溝内にTIG溶接にてビードオンプレート
溶接した場合に発生する割れの防止に必要な予
熱温度を意味する。 本発明鋼の場合は、割れ防止予熱温度は250
℃以下であるが、比較鋼L、従来鋼R、S及び
Tの場合は400〜500℃のように高い温度での予
熱が必要であり、本発明鋼の効果が明らかであ
る。 このように、本発明鋼は従来の金型用鋼には
類をみない良好な溶接性を有しており、これは
本発明鋼における特徴の一つである低C化によ
る効果である。 (5) 靭性 第6表にシヤルピー試験結果を示す。シヤル
ピー試験片はJIS Z2202の3号試験片(2mmU
ノツチ)を用い、20℃にて試験した。 本発明鋼はいずれも8Kg・m以上の吸収エネ
ルギーを有している。特に、強靭性向上元素添
加鋼であるE、F及びGは15Kg・m以上の吸収
エネルギーを有している。他方、比較鋼Oは、
Crを2.63%含有し、Cr含有量が高いために靭性
が悪い。 以上のように、本発明鋼によれば、従来鋼に
比較して、機械加工性、研摩性、シボ加工性、
溶接性、内部品質性及び靭性を有しており、し
かも、水焼入れが可能であるというすぐれた特
徴を兼ね備えている。
Heat treatment was performed under the conditions shown in [Table]. Heat treatment is 850-930℃
After water quenching or oil quenching, tempering treatment was performed at a temperature of 510 to 720°C. (1) Resistance to quenching during water quenching Table 2 shows water quenching of steel sheets (quenching temperature 850
This shows the occurrence of quench cracking at temperatures up to 930°C. C
Steels A to J of the present invention in which the amount was less than 0.35% did not suffer from quench cracking. On the other hand, the amount of C
Comparative steel L with a C content of 0.39%, conventional steel S with a C content of 0.55%, and conventional steel T with a C content of 0.38%.
There are cracks in each. It is understood that reducing the amount of C in this manner is extremely effective in preventing the occurrence of quench cracking. (2) Hardness difference between the surface and the center of the plate thickness Table 3 shows the surface hardness of the steel plate after quenching and tempering.
Shows the hardness at the center of the plate thickness and the difference in hardness. The actual f(M) values of the invention steels A to J all satisfy the minimum value required to keep the hardness difference to 30 or less, and as a result, the hardness difference is in the range of 2 to 27. . On the other hand, comparative steel K has a hardness difference of 17 because the actual value of f(M) is larger than the required minimum value, which satisfies the conditions according to the present invention, but C
Due to the low amount, the hardness at the center of the plate thickness does not reach the 250 required for pre-hardened steel. Comparative steel M
f(M) value is smaller than the required minimum value, and the plate thickness
When the plate thickness is 50 mm, the hardness difference is 70, and when the plate thickness is 150 mm, the hardness difference is 129, both of which have large hardness differences. Conventionally, steel R has been oil quenched and steel T has been water quenched, but neither of them has been able to achieve a hardness difference of 30 or less. Comparative steels C' and F' are substantially the same as invention steels A and F, respectively, in terms of chemical composition;
It is oil-quenched. Although the surface hardness meets the required value, due to oil quenching,
Because the hardening does not reach the center of the board, the hardness of the center of the board is small, with a hardness difference of more than 30 between the center and the surface. In order to suppress this hardness difference to 30 or less, the tempering temperature may be increased, but this lowers the hardness of the entire steel plate, making it impossible to satisfy the required surface value. (3) Workability Table 4 shows the results of the workability test. The conditions for the drill hole test were to use SKH9 (straight drill hole diameter 10 mm) as a tool, use no cutting oil, feed 0.1 mm/rotation, cutting speed 30 m/min, and hole depth 50 mm (total thickness). was determined by the cutting length at the time of tool melting or damage. The sample material was 50 mm thick to eliminate the influence of plate thickness.
Only wood was used. According to the test results, the steels A, G, H, I, and J of the present invention, which have a small difference in hardness in the thickness direction, exhibited good machinability, and in particular, the steels to which elements that impart free machinability were added had excellent machinability. There is. Comparative steel M1 is
Due to the high surface hardness of 376 and the large difference in hardness of 70, the drill was damaged without being able to penetrate even a single hole. Since the conventional steel R also has a large hardness difference of 46, the cutting length was 272 mm, which is only about 5 to 10% of the steel of the present invention. The abrasiveness was compared based on the paper mesh number that was the limit that allowed the cross-sectional area of the plate to be abraded without producing unevenness or scratches. The steel of the present invention can be polished to #1800 or higher and has good polishing properties. On the other hand, since the comparative steels M1 and M2 have a large difference in hardness, polishing unevenness occurs when the steels are #1000 to #1200 or more. Comparative steels P and Q could not be polished to #600 or higher because of uneven polishing caused by segregation. Furthermore, conventional steels R and T cannot be polished with #1200 or higher because of the large difference in hardness. Texture workability was determined by performing texturing on a matte finish and visually observing the condition of the texturing surface. All of the steels of the present invention exhibited good grained surfaces, but comparative steels M1 and M2 and conventional steels R and T had large hardness differences and uneven graining due to non-uniform structures. Comparative steels P and Q also had uneven grains due to the large degree of micro-segregation. In addition, comparative steel N has a high Al content, so
The steel plate had a large number of scratches and was unsuitable for use as mold steel. Furthermore, since the Cr content was low, the nitriding properties were also poor. Comparative steel O
Because of the high Cr content, the toughness value was low and caused microscopic fractures during precision machining. Furthermore, comparative steel Q contains gas component elements, namely N and O.
Due to the large number of pinholes, a large number of pinholes were generated inside the steel plate. As described above, according to the steel of the present invention, the hardness difference between the surface of the steel plate and the center of the plate thickness is set to 30 or less,
Not only does it have good workability, which is essential as a mold material, such as drillability, polishability, and texturability, but it also has excellent internal quality of the steel sheet. (4) Weldability Table 5 shows the results of the weldability test. The maximum hardness test was based on JIS Z3101. Figure 4 shows the relationship between carbon equivalent (Ceq) and maximum hardness (Hv).
Here, Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4
+V/14. The maximum hardness of the steel of the present invention is Hv 399 to 474, whereas the comparative steel L and conventional steels R, S, and T have Hv = 578 to 641, and are significantly hardened. Further, Table 5 shows the preheating temperature for preventing cracking.
The crack prevention preheating temperature is as shown in Figure 6.
Test piece with a 90° V groove on the surface (height 50 mm, width
150mm, length 450mm, depth 10mm of 90° V groove), and means the preheating temperature necessary to prevent cracks that occur when bead-on-plate welding is performed using TIG welding inside the V groove. In the case of the invention steel, the preheating temperature to prevent cracking is 250
℃ or less, but in the case of comparative steel L and conventional steels R, S, and T, preheating is required at a high temperature of 400 to 500°C, and the effect of the steel of the present invention is clear. As described above, the steel of the present invention has excellent weldability unparalleled by conventional steels for molds, and this is an effect of the low carbon content, which is one of the characteristics of the steel of the present invention. (5) Toughness Table 6 shows the results of the Charpy test. The Shapey test piece is a No. 3 test piece of JIS Z2202 (2mmU
The test was conducted at 20°C using All of the steels of the present invention have an absorbed energy of 8 kg·m or more. In particular, E, F, and G, which are steels with added toughness-improving elements, have an absorbed energy of 15 kg·m or more. On the other hand, comparative steel O is
Contains 2.63% Cr, and has poor toughness due to the high Cr content. As described above, the steel of the present invention has better machinability, abrasiveness, graining workability, and
It has excellent weldability, internal quality, and toughness, and can be water quenched.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼材におけるC量と焼入れ時の表面硬
度(Hv)との関係を示すグラフ、第2図は所定
厚の鋼板を850〜930℃の温度で水焼入れしたとき
の板厚とC量との関係において焼き割れ発生の有
無を示すグラフである。第3図はC量0.35%以下
の所定厚の鋼板を845〜930℃の温度から水焼入れ
した後、500〜720℃の温度に焼戻したときの板厚
T(mm)と焼入れ性倍数値の積f(M)との関係を
示し、表面と板厚中心部の硬度(HB)差が30以
下である領域が f(M)≧0.3T+20 で示されている。第4図は炭素数当量(Ceq)と
最高硬さ(Hv)との関係を示すグラフ、第5図
は焼入れ性倍数値の積f(M)と、焼入れ後の表
面と板厚中心部の硬度(Hv)差を示すグラフ、
第6図は溶接性試験において割れ防止予熱温度を
測定するために用いた試験片を示す斜視図であつ
て、Vは90゜V溝を示す。
Figure 1 is a graph showing the relationship between the amount of C in steel and the surface hardness (Hv) during quenching, and Figure 2 is the thickness and amount of C when a steel plate of a specified thickness is water-quenched at a temperature of 850 to 930°C. 2 is a graph showing whether or not quench cracking occurs in relation to Figure 3 shows the relationship between the plate thickness T (mm) and the hardenability multiplier when a steel plate of a specified thickness with a C content of 0.35% or less is water-quenched from a temperature of 845 to 930°C and then tempered to a temperature of 500 to 720°C. The relationship with the product f(M) is shown, and the region where the difference in hardness (H B ) between the surface and the center of the plate thickness is 30 or less is shown as f(M)≧0.3T+20. Figure 4 is a graph showing the relationship between carbon number equivalent (Ceq) and maximum hardness (Hv), and Figure 5 is a graph showing the relationship between the hardenability multiple value f (M) and the difference between the surface after quenching and the center of the plate thickness. Graph showing hardness (Hv) difference,
FIG. 6 is a perspective view showing a test piece used to measure the crack prevention preheating temperature in the weldability test, and V indicates a 90° V groove.

Claims (1)

【特許請求の範囲】 1 重量%で (a) C 0.15%から0.35%未満、 Si 0.05〜0.80%、 Mn 0.50〜2.00% P 0.030%以下、 Al 0.005〜0.080%、 N 0.0060%以下、及び O 0.0050%以下を含むと共に、 (b) Cr 0.50〜2.50%、 Mo 0.05〜1.00%、 Ni 0.05〜2.00%、 Cu 0.05%から0.20%未満、及び B 0.0005〜0.0030% よりなる群から選ばれる少なくとも1種の焼入
れ性向上元素を含み、残部鉄及び不可避的不純
物よりなる鋳片又は鋼片を温度1150〜1350℃に
加熱した後、連鋳片又は鋼塊から圧下比が3以
上となるように、且つ、 (c) 上記元素についての焼入れ性倍数値 f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)=1+0.52%Ni f(Cu)=1+0.27%Cu、及び f(B)=1+1.50(0.90−%C) (但し、%元素は鋼における当該元素の重量%
による含有量を示す。) の積をf(M)、板厚をT(mm)とするとき、f
(M)がTに対して f(M)≧0.2T+30 を満たすように圧延し、次いで、温度Ac3
Ac3+100℃から水焼入れした後、温度500〜
720℃で焼戻すことを特徴とする硬度(HB
250以上を有し、且つ、鋼板の表面と中心部の
硬度差が30以下である金型用プレハードン鋼の
製造方法。 2 重量%で (a) C 0.15%から0.35%未満、 Si 0.05〜0.80%、 Mn 0.50〜2.00%、 P 0.030%以下、 Al 0.005〜0.080%、 N 0.0060%以下、及び O 0.0050%以下を含むと共に、 (b) Cr 0.50〜2.50%、 Mo 0.05〜1.00%、 Ni 0.05〜2.00%、 Cu 0.05%から0.20%未満、及び B 0.0005〜0.0030% よりなる群から選ばれる少なくとも1種の焼入
れ性向上元素を含み、更に、 (c) Nb 0.10%以下、 V 0.15%未満 よりなる群から選ばれる少なくとも1種の元素
を含み、 残部鉄及び不可避的不純物よりなる鋳片又は
鋼片を温度1150〜1350℃に加熱した後、連鋳片
又は鋼塊から圧下比が3以上となるように、且
つ、 (d) 上記元素についての焼入れ性倍数値 f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)=1+0.52%Ni f(Cu)=1+0.27%Cu、及び f(B)=1+1.50(0.90−%C) (但し、%元素は鋼における当該元素の重量%
による含有量を示す。) の積をf(M)、板厚をT(mm)とするとき、f
(M)がTに対して f(M)≧0.2T+30 を満たすように圧延し、次いで、温度Ac3
Ac3+100℃から水焼入れした後、温度500〜
720℃で焼戻すことを特徴とする硬度(HB
250以上を有し、且つ、鋼板の表面と中心部の
硬度差が30以下である金型用プレハードン鋼の
製造方法。 3 重量%で (a) C 0.15%から0.35%未満、 Si 0.05〜0.80%、 Mn 0.50〜2.00% P 0.030%以下、 Al 0.005〜0.080%、 N 0.0060%以下、及び O 0.0050%以下を含むと共に、 (b) Cr 0.50〜2.50%、 Mo 0.05〜1.00%、 Ni 0.05〜2.00%、 Cu 0.05%から0.20%未満、及び B 0.0005〜0.0030% よりなる群から選ばれる少なくとも1種の焼入
れ性向上元素を含み、更に、 (c) S 0.07%以下と共に、 (d) Ti 0.10%以下、 Ca 0.05%以下、 Pb 0.30%以下、及び Zr 0.15%以下 よりなる群から選ばれる少なくとも1種の元素
を含み、 残部鉄及び不可避的不純物よりなる鋳片又は
鋼片を温度1150〜1350℃に加熱した後、連鋳片
又は鋼塊から圧下比が3以上となるように、且
つ、 (e) 上記元素についての焼入れ性倍数値 f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)=1+0.52%Ni f(Cu)=1+0.27%Cu、及び f(B)=1+1.50(0.90−%C) (但し、%元素は鋼における当該元素の重量%
による含有量を示す。) の積をf(M)、板厚をT(mm)とするとき、f
(M)がTに対して f(M)≧0.2T+30 を満たすように圧延し、次いで、温度Ac3
Ac3+100℃から水焼入れした後、温度500〜
720℃で焼戻すことを特徴とする硬度(HB
250以上を有し、且つ、鋼板の表面と中心部の
硬度差が30以下である金型用プレハードン鋼の
製造方法。 4 重量%で (a) C 0.15%から0.35%未満、 Si 0.05〜0.80%、 Mn 0.50〜2.00% P 0.030%以下、 Al 0.005〜0.080%、 N 0.0060%以下、及び O 0.0050%以下を含むと共に、 (b) Cr 0.50〜2.50%、 Mo 0.05〜1.00%、 Ni 0.05〜2.00%、 Cu 0.05%から0.20%未満、及び B 0.0005〜0.0030% よりなる群から選ばれる少なくとも1種の焼入
れ性向上元素を含み、更に、 (c) S 0.07%以下と共に、 (d) Nb 0.10%以下、 V 0.15%未満 よりなる群から選ばれる少なくとも1種の元素
と、 (e) Ti 0.10%以下、 Ca 0.50%以下、 Pb 0.30%以下、及び Zr 0.15%以下 よりなる群から選ばれる少なくとも1種の元素
を含み、 残部鉄及び不可避的不純物よりなる鋳片又は
鋼片を温度1150〜1350℃に加熱した後、連鋳片
又は鋼塊から圧下比が3以上となるように、且
つ、 (f) 上記元素についての焼入れ性倍数値 f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)=1+0.52%Ni f(Cu)=1+0.27%Cu、及び f(B)=1+1.50(0.90−%C) (但し、%元素は鋼における当該元素の重量%
による含有量を示す。) の積をf(M)、板厚をT(mm)とするとき、f
(M)がTに対して f(M)≧0.2T+30 を満たすように圧延し、次いで、温度Ac3
Ac3+100℃から水焼入れした後、温度500〜
720℃で焼戻すことを特徴とする硬度(HB
250以上を有し、且つ、鋼板の表面と中心部の
硬度差が30以下である金型用プレハードン鋼の
製造方法。
[Claims] 1% by weight: (a) C 0.15% to less than 0.35%, Si 0.05 to 0.80%, Mn 0.50 to 2.00%, P 0.030% or less, Al 0.005 to 0.080%, N 0.0060% or less, and O 0.0050% or less, and (b) at least one selected from the group consisting of Cr 0.50 to 2.50%, Mo 0.05 to 1.00%, Ni 0.05 to 2.00%, Cu 0.05% to less than 0.20%, and B 0.0005 to 0.0030%. After heating a cast slab or steel slab containing a seed hardenability-improving element and consisting of the remainder iron and unavoidable impurities to a temperature of 1150 to 1350°C, from the continuous slab or steel ingot so that the rolling ratio is 3 or more, And, (c) Hardenability multiple values for the above elements f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3. 14%Mo f(Ni)=1+0.52%Ni f(Cu)=1+0.27%Cu, and f(B)=1+1.50(0.90-%C) (However, % element is the percentage of the element in steel. weight%
Indicates the content according to ) is the product of f (M) and the plate thickness is T (mm), then f
(M) is rolled so that f(M)≧0.2T+30 is satisfied with respect to T, and then the temperature A c3 ~
A c3 After water quenching from +100℃, the temperature is 500~
Hardness characterized by tempering at 720℃ (H B )
250 or more, and the difference in hardness between the surface and center of the steel plate is 30 or less. 2. Contains (a) C 0.15% to less than 0.35%, Si 0.05 to 0.80%, Mn 0.50 to 2.00%, P 0.030% or less, Al 0.005 to 0.080%, N 0.0060% or less, and O 0.0050% or less in 2% by weight. and (b) at least one hardenability improving member selected from the group consisting of Cr 0.50-2.50%, Mo 0.05-1.00%, Ni 0.05-2.00%, Cu 0.05% to less than 0.20%, and B 0.0005-0.0030%. (c) At least one element selected from the group consisting of Nb 0.10% or less, V 0.15% or less, and the balance consisting of iron and unavoidable impurities is heated to a temperature of 1150 to 1350. After heating to ℃, the continuous slab or steel ingot is heated so that the rolling ratio is 3 or more, and (d) Hardenability multiplier value for the above elements f (Si) = 1 + 0.64% Si f (Mn) =1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)=1+0.52%Ni f(Cu)=1+0.27%Cu, and f( B) = 1 + 1.50 (0.90 - %C) (However, % element is the weight % of the element in steel
Indicates the content according to ) is the product of f (M) and the plate thickness is T (mm), then f
(M) is rolled so that f(M)≧0.2T+30 is satisfied with respect to T, and then the temperature A c3 ~
A c3 After water quenching from +100℃, the temperature is 500~
Hardness characterized by tempering at 720℃ (H B )
250 or more, and the difference in hardness between the surface and center of the steel plate is 30 or less. 3. Contains (a) C 0.15% to less than 0.35%, Si 0.05 to 0.80%, Mn 0.50 to 2.00%, P 0.030% or less, Al 0.005 to 0.080%, N 0.0060% or less, and O 0.0050% or less in 3% by weight; , (b) at least one hardenability improving element selected from the group consisting of Cr 0.50-2.50%, Mo 0.05-1.00%, Ni 0.05-2.00%, Cu 0.05% to less than 0.20%, and B 0.0005-0.0030%. (c) 0.07% or less of S, and (d) at least one element selected from the group consisting of 0.10% or less of Ti, 0.05% or less of Ca, 0.30% or less of Pb, and 0.15% or less of Zr. , After heating a slab or steel slab consisting of the remaining iron and unavoidable impurities to a temperature of 1150 to 1350°C, the continuous slab or steel ingot is heated so that the rolling ratio is 3 or more, and (e) Regarding the above elements. Hardenability multiple value f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)= 1 + 0.52% Ni f (Cu) = 1 + 0.27% Cu, and f (B) = 1 + 1.50 (0.90 - % C) (However, % element is the weight % of the element in steel
Indicates the content according to ) is the product of f (M) and the plate thickness is T (mm), then f
(M) is rolled so that f(M)≧0.2T+30 is satisfied with respect to T, and then the temperature A c3 ~
A c3 After water quenching from +100℃, the temperature is 500~
Hardness characterized by tempering at 720℃ (H B )
250 or more, and the difference in hardness between the surface and center of the steel plate is 30 or less. 4. Contains (a) C 0.15% to less than 0.35%, Si 0.05 to 0.80%, Mn 0.50 to 2.00%, P 0.030% or less, Al 0.005 to 0.080%, N 0.0060% or less, and O 0.0050% or less in weight% , (b) at least one hardenability improving element selected from the group consisting of Cr 0.50-2.50%, Mo 0.05-1.00%, Ni 0.05-2.00%, Cu 0.05% to less than 0.20%, and B 0.0005-0.0030%. (c) S 0.07% or less, (d) Nb 0.10% or less, V less than 0.15%, and (e) Ti 0.10% or less, Ca 0.50%. Hereinafter, after heating a slab or steel slab containing at least one element selected from the group consisting of Pb 0.30% or less and Zr 0.15% or less, and the balance consisting of iron and unavoidable impurities to a temperature of 1150 to 1350°C, (f) Hardenability multiplier value for the above elements f(Si)=1+0.64%Si f(Mn)=1+4.10%Mn f(Cr)=1+2.33%Cr f(Mo)=1+3.14%Mo f(Ni)=1+0.52%Ni f(Cu)=1+0.27%Cu, and f(B)=1+1.50 (0.90-%C) (However, % element is the weight% of the element in steel.
Indicates the content according to ) is the product of f (M) and the plate thickness is T (mm), then f
(M) is rolled so that f(M)≧0.2T+30 is satisfied with respect to T, and then the temperature A c3 ~
A c3 After water quenching from +100℃, the temperature is 500~
Hardness characterized by tempering at 720℃ (H B )
250 or more, and the difference in hardness between the surface and center of the steel plate is 30 or less.
JP15687584A 1984-07-26 1984-07-26 Prehardened steel for metallic die and its manufacture Granted JPS6134162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15687584A JPS6134162A (en) 1984-07-26 1984-07-26 Prehardened steel for metallic die and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15687584A JPS6134162A (en) 1984-07-26 1984-07-26 Prehardened steel for metallic die and its manufacture

Publications (2)

Publication Number Publication Date
JPS6134162A JPS6134162A (en) 1986-02-18
JPH0148334B2 true JPH0148334B2 (en) 1989-10-18

Family

ID=15637297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15687584A Granted JPS6134162A (en) 1984-07-26 1984-07-26 Prehardened steel for metallic die and its manufacture

Country Status (1)

Country Link
JP (1) JPS6134162A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277743A (en) * 1987-01-22 1988-11-15 Sanyo Tokushu Seiko Kk Seamless steel pipe having superior machinability by rolling method
JPH0250911A (en) * 1988-08-15 1990-02-20 Nippon Steel Corp Production of steel plate for die having good heat fatigue characteristic
JPH0257633A (en) * 1988-08-24 1990-02-27 Nippon Steel Corp Manufacture of die steel excellent in fatigue characteristic
JPH02285049A (en) * 1989-04-26 1990-11-22 Nippon Steel Corp Free-cutting die steel
JPH03115523A (en) * 1989-09-28 1991-05-16 Kobe Steel Ltd Production of directly quenched type prehardened steel
US6184910B1 (en) 1994-04-08 2001-02-06 Ricoh Company, Ltd. Color image forming apparatus with polygonal mirror rotation phase control
US6478898B1 (en) * 1999-09-22 2002-11-12 Sumitomo Metal Industries, Ltd. Method of producing tool steels
KR100960088B1 (en) * 2009-10-20 2010-05-31 주식회사 세아베스틸 Plastic die steels with superior uniformity hardness distribution and machinability
CN101805874B (en) * 2010-03-30 2011-09-07 莱芜钢铁集团有限公司 Low-carbon Mn-Cr steel for engine camshaft and manufacturing method thereof
CN103233184B (en) * 2013-04-18 2015-05-27 毛建其 Non-quenched-tempered naturally pre-hardened easy-cutting forging die steel
JP6189248B2 (en) * 2014-04-22 2017-08-30 株式会社日本製鋼所 Mold steel for plastic molding and manufacturing method thereof
CN104451431A (en) * 2014-11-19 2015-03-25 钢铁研究总院 High-performance marine riser board and production method
CN106086693B (en) * 2016-07-07 2017-11-28 袁书强 A kind of preparation technology for the inexpensive hydraulic pressure material pump for being suitable for covering process for copper
CN113373380B (en) * 2021-06-30 2022-07-01 宝武集团鄂城钢铁有限公司 Zirconium-treated economical plastic die steel and production method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4862615A (en) * 1971-12-06 1973-09-01
JPS49114A (en) * 1972-04-21 1974-01-05
JPS493809A (en) * 1972-05-02 1974-01-14
JPS5013632A (en) * 1973-06-09 1975-02-13
JPS50129421A (en) * 1974-03-27 1975-10-13
JPS51134307A (en) * 1975-05-19 1976-11-20 Hitachi Metals Ltd Martensitic tool steel for hot working
JPS5278613A (en) * 1975-12-25 1977-07-02 Kito Kk Link chain
JPS5462114A (en) * 1977-10-26 1979-05-18 Kobe Steel Ltd High tensile steel for chain
JPS5492512A (en) * 1977-12-29 1979-07-21 Kubota Ltd Metal mold for centrifugal casting of cast iron pipe
JPS5628989A (en) * 1979-08-10 1981-03-23 Eng Enterpr Well sinking tool and method of operating said tool
JPS5711945A (en) * 1980-05-19 1982-01-21 Air Prod & Chem Manufacture of cyanide-reducing nitroaromatic compound
JPS5785952A (en) * 1980-11-17 1982-05-28 Daido Steel Co Ltd High-speed steel
JPS581059A (en) * 1981-06-25 1983-01-06 Sumitomo Metal Ind Ltd High strength high toughness rolled steel material for pressure vessel
JPS5831067A (en) * 1981-08-19 1983-02-23 Mitsubishi Electric Corp Magnetic particle for electromagnetic coupler

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4862615A (en) * 1971-12-06 1973-09-01
JPS49114A (en) * 1972-04-21 1974-01-05
JPS493809A (en) * 1972-05-02 1974-01-14
JPS5013632A (en) * 1973-06-09 1975-02-13
JPS50129421A (en) * 1974-03-27 1975-10-13
JPS51134307A (en) * 1975-05-19 1976-11-20 Hitachi Metals Ltd Martensitic tool steel for hot working
JPS5278613A (en) * 1975-12-25 1977-07-02 Kito Kk Link chain
JPS5462114A (en) * 1977-10-26 1979-05-18 Kobe Steel Ltd High tensile steel for chain
JPS5492512A (en) * 1977-12-29 1979-07-21 Kubota Ltd Metal mold for centrifugal casting of cast iron pipe
JPS5628989A (en) * 1979-08-10 1981-03-23 Eng Enterpr Well sinking tool and method of operating said tool
JPS5711945A (en) * 1980-05-19 1982-01-21 Air Prod & Chem Manufacture of cyanide-reducing nitroaromatic compound
JPS5785952A (en) * 1980-11-17 1982-05-28 Daido Steel Co Ltd High-speed steel
JPS581059A (en) * 1981-06-25 1983-01-06 Sumitomo Metal Ind Ltd High strength high toughness rolled steel material for pressure vessel
JPS5831067A (en) * 1981-08-19 1983-02-23 Mitsubishi Electric Corp Magnetic particle for electromagnetic coupler

Also Published As

Publication number Publication date
JPS6134162A (en) 1986-02-18

Similar Documents

Publication Publication Date Title
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
KR101838424B1 (en) High toughness and high tensile strength thick steel plate and production method therefor
KR101988144B1 (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
US20170369958A1 (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
JP2009242820A (en) Steel, steel for die and die using the same
US6454881B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
RU2675307C1 (en) Method of manufacture of low-alloyable roll strips with enhanced corrosion resistance
JPH0148334B2 (en)
KR20190131408A (en) Precipitation hardening and grain refined hot-rolled high strength abnormal steel sheet with a tensile strength of at least 600 MPa and a method of manufacturing
CA2237851C (en) Improved steel holder block for plastic molding
KR20190028757A (en) High frequency quenching steel
RU2697301C1 (en) Method for production of tubular rolled products of increased corrosion resistance at a reversing mill
JPH1072644A (en) Cold rolled austenitic stainless steel sheet reduced in amount of springback, and its production
JP3297500B2 (en) High-strength steel bar with excellent machinability
JP6179609B2 (en) Manufacturing method of thick high-strength steel sheet with excellent cold workability
JPS647126B2 (en)
RU2495142C1 (en) Manufacturing method of rolled steel plate from low-alloy steel
KR20170059528A (en) High strength cold rolled steel sheet having excellent shear workability and method for manufacturing the same
RU2397255C1 (en) Procedure for production of sheets out of alloyed steel
JP2002088450A (en) Hot work tool steel
JP4303644B2 (en) Manufacturing method of high carbon steel sheet with excellent intergranular crack resistance and toughness
JPH06299235A (en) Manufacture of steel for die having hrc 27 or higher hardness and excellent machinability
RU2807795C1 (en) Method for manufacturing structural steel strips
JP7067578B2 (en) Manufacturing method of steel plate and steel plate and members
KR102488497B1 (en) Steel having excellent laser cutting properties and method of manufacturing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term