JPH0147430B2 - - Google Patents

Info

Publication number
JPH0147430B2
JPH0147430B2 JP56162076A JP16207681A JPH0147430B2 JP H0147430 B2 JPH0147430 B2 JP H0147430B2 JP 56162076 A JP56162076 A JP 56162076A JP 16207681 A JP16207681 A JP 16207681A JP H0147430 B2 JPH0147430 B2 JP H0147430B2
Authority
JP
Japan
Prior art keywords
inorganic
sound absorbing
absorbing material
cement
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56162076A
Other languages
Japanese (ja)
Other versions
JPS5864291A (en
Inventor
Kyotaka Mishima
Takehiro Miura
Ryuichiro Takeda
Takeshi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP16207681A priority Critical patent/JPS5864291A/en
Publication of JPS5864291A publication Critical patent/JPS5864291A/en
Publication of JPH0147430B2 publication Critical patent/JPH0147430B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は吸音材、特に低音域における吸音性の
優れた無機材料から成る吸音材に係るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sound absorbing material, particularly a sound absorbing material made of an inorganic material having excellent sound absorbing properties in the low frequency range.

近年各種の不快音に対する所謂騒音公害が問題
とされ、その対策が種々の形で実現されつつあ
る。
In recent years, so-called noise pollution caused by various unpleasant sounds has become a problem, and various countermeasures are being implemented.

騒音としては、一般に低音域から高音域迄あ
り、これらのうち中音から高音域は比較的減衰し
易く、いくつかの手段が提案され、又実現されて
いる。
Generally speaking, noise ranges from low to high ranges, and among these ranges, middle to high ranges are relatively easy to attenuate, and several measures have been proposed and implemented.

これに対し、低音域における騒音は、多くの場
合不快な振動を伴うと共に、音源の位置がどこで
あるのか人体に感じ取り難い特性があり、不安感
を与えるにも拘らず、現実的にはこれを有効に減
じる手段は未だ見い出されていない。
On the other hand, noise in the low frequency range is often accompanied by unpleasant vibrations, and it is difficult for the human body to sense the location of the sound source, giving a sense of anxiety. No means have yet been found to effectively reduce it.

技術的な面だけから見れば、発泡スチロール等
の有機物によつていくらかの効果を見てはいる
が、実用には程遠い効果しか得られていないのみ
ならず、これは可燃性であると共に耐候性に乏し
いと云う実用上致命的な欠点を有している。
From a technical standpoint, organic materials such as Styrofoam have shown some effectiveness, but not only are they far from practical, but they are also flammable and have poor weather resistance. It has the fatal drawback of being insufficient in practical terms.

本発明者は、これらの点に鑑み、低音域におけ
る騒音を効果的に減じ、且実用的である吸音材を
見出すことを目的として種々研究、検討した結
果、特定な物性を持たせた無機多孔体を用いるこ
とにより、前記目的を達成し得ることを見出し
た。
In view of these points, the present inventor conducted various research and examinations with the aim of finding a practical sound absorbing material that can effectively reduce noise in the low frequency range. It has been found that the above object can be achieved by using the human body.

かくして本発明は、平均細孔径10〜5000μの連
続気孔を有し、且通気性が1〜40cm3・cm/cm2
sec・cmH2Oを有する無機多孔体から成る吸音材
を提供するにある。
Thus, the present invention has continuous pores with an average pore diameter of 10 to 5000μ, and has an air permeability of 1 to 40cm 3 cm/cm 2
The object of the present invention is to provide a sound absorbing material made of an inorganic porous material having sec.cmH 2 O.

本発明において、平均細孔径が前記範囲に満た
ない場合には、実用上十分な吸音特性が得られ
ず、逆に前記範囲を超える場合には、機械的強度
が著しく低下するのみなず、低音域における吸音
特性も低下してくるので不適当である。
In the present invention, if the average pore diameter is less than the above range, practically sufficient sound absorption properties cannot be obtained, whereas if it exceeds the above range, not only the mechanical strength is significantly reduced, but also the This is unsuitable because the sound absorption characteristics in the sound range will also deteriorate.

又、通気度が上記範囲に満たない場合には、実
用上十分な吸音特性が得られず、逆に前記範囲を
超える場合には、機械的強度が著しく低下するの
みならず、吸音特性、特に低音域における吸音性
能が低下してくるので不適当である。
In addition, if the air permeability is less than the above range, practically sufficient sound absorption properties will not be obtained, whereas if it exceeds the above range, not only will the mechanical strength be markedly reduced, but the sound absorption properties, especially This is unsuitable because the sound absorption performance in the low frequency range deteriorates.

又、本発明における吸音材は、これが有する気
孔が連続気孔であることが必要であり、これは前
記通気度と密接な関係を有している。
Further, the sound absorbing material in the present invention needs to have continuous pores, and this has a close relationship with the air permeability.

本発明における連続気孔とは、吸音材の気体入
口側からその出口側に対し、直線的に気孔が設け
られていることを含むものではあるが、吸音材内
において気孔が迷路のようになつて連通している
方が遥かに効果的であり、その具体的形状は種々
採用し得る。
Continuous pores in the present invention include pores provided linearly from the gas inlet side of the sound-absorbing material to its outlet side, but the pores may be arranged in a maze-like manner within the sound-absorbing material. It is far more effective to have communication, and various specific shapes can be adopted.

そして、これら平均細孔径及び通気度の範囲か
ら、平均細孔径100〜1000μ、通気度が2〜10
cm3・cm/cm2・sec・cmH2Oを採用する場合には、
低周波域での騒音をよく吸収し、又強度も十分に
なし得るので特に好ましい。
From these average pore diameter and air permeability ranges, the average pore diameter is 100 to 1000μ, and the air permeability is 2 to 10.
When adopting cm 3・cm/cm 2・sec・cmH 2 O,
It is particularly preferred because it absorbs noise well in the low frequency range and has sufficient strength.

次に本発明に用いられる無機多孔体としては例
えば、ポルトランドセメント、スラグセメント、
アルミナセメント、ローマンセメント、天然セメ
ント、マグネシアセメント等のセメント類、石
灰、石膏及びこれらの混合物等の水硬性材料、或
は珪酸質、アルミナ質、シリカアルミナ質、マグ
ネシア質、石灰質、ムライト質等の焼結材料等を
挙げることができ、これらには所望により本発明
の所期の目的を阻害しない範囲(最大10重量%)
において適宜な有効物を混入せしめることも出来
る。例えば、この様な有機物の混入により、成形
を容易にせしめることや、成形体の脆さを改良せ
しめたり、又、多孔体を製造し易くせしめること
が可能となる。
Next, examples of inorganic porous materials used in the present invention include portland cement, slag cement,
Cement such as alumina cement, Roman cement, natural cement, magnesia cement, hydraulic materials such as lime, gypsum, and mixtures thereof, or silicic acid, alumina, silica-alumina, magnesia, calcareous, mullite, etc. Examples include sintered materials, etc., and these may be added, if desired, within a range (up to 10% by weight) that does not impede the intended purpose of the present invention.
Appropriate effective substances can also be mixed in. For example, by incorporating such an organic substance, it is possible to facilitate molding, improve the brittleness of a molded body, and make it easier to manufacture a porous body.

これらの無機材料を多孔体にせしめる手段とし
ては、種々の方法が採用される。例えば、過酸化
水素やアルミニウム等の発泡剤を用いセメント等
の水硬性材料の凝結が起る前に内部にガスを発生
させ、これが多孔体を形成せしめる手段や、カゼ
イン、にかわ、アルブミン、高分子界面活性剤、
加水分解タン白等の起泡剤を、起泡機を用いて安
定性の高い泡を形成せしめておき、ここに水硬性
材料を混ぜこむ手段や、樹脂酸塩等を用い、水硬
性材料と練り混ぜ中に安定な気泡を発生させ、こ
れを内部にまき込む手段、或はポリスチレンやス
ポンジ等の切り屑や、ひも状物等の有機造孔材料
を無機材料中に混ぜ、無機材料を該造孔材料の融
解乃至は燃焼温度以上に昇温し(かかる温度は一
般に無機材料の焼結温度付近で十分である)、造
孔材料の座を孔として残す手段等が適宜採用され
る。
Various methods can be used to make these inorganic materials porous. For example, there are methods in which a blowing agent such as hydrogen peroxide or aluminum is used to generate gas inside a hydraulic material such as cement before it sets, and this forms a porous material, casein, glue, albumin, polymers, etc. surfactant,
A foaming agent such as hydrolyzed protein is used to form a highly stable foam using a foaming machine, and then a hydraulic material is mixed into the foam, or a resin acid salt is used to form a highly stable foam. A method of generating stable air bubbles during kneading and entraining them inside the inorganic material, or mixing an organic pore-forming material such as polystyrene, sponge chips, or string-like material into the inorganic material. A method of raising the temperature above the melting or combustion temperature of the pore-forming material (generally, a temperature near the sintering temperature of an inorganic material is sufficient) and leaving the seats of the pore-forming material as pores is appropriately employed.

発泡剤や起泡剤を用いる方法においては、その
混入量と撹拌のし方、特に撹拌速度によつて細孔
径や通気度がほぼ決定される。又、有機造孔材料
を採用する場合には、かかる材料のサイズや無機
材料中への配し方等により、同じく上記物性をほ
ぼ決定し得る。
In a method using a blowing agent or foaming agent, the pore diameter and air permeability are almost determined by the amount of the foaming agent mixed and the stirring method, especially the stirring speed. Furthermore, when an organic pore-forming material is employed, the above-mentioned physical properties can be similarly determined by the size of the material, how it is arranged in the inorganic material, etc.

次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.

普通ポルトランドセメント100重量部、黒曜石
パーライト(容量0.2Kg/、0.2〜5mmφ)40重
量部、発泡スチロール屑(ρ=0.03)1.5重量部、
加水分解タン白1.5重量部をオムニミキサーを用
いて撹拌し、発泡せしめ、これを平板が形成出来
る箱状型に鋳込んだ。そして凝結終了後、50℃で
3時間蒸気養生せしめ、次いで80℃に1時間保持
せしめることにより発泡スチロール屑を溶融せし
め、連続気孔を形成せしめた。
100 parts by weight of ordinary Portland cement, 40 parts by weight of obsidian pearlite (capacity 0.2Kg/, 0.2~5mmφ), 1.5 parts by weight of styrofoam scraps (ρ=0.03),
1.5 parts by weight of hydrolyzed protein was stirred using an omnimixer to foam, and the foam was cast into a box-shaped mold capable of forming a flat plate. After the condensation was completed, it was steam-cured at 50°C for 3 hours and then maintained at 80°C for 1 hour to melt the foamed polystyrene waste and form continuous pores.

得られた多孔体の物性は、平均細孔径420μ、
通気度2.3cm3・cm/cm2・sec.cmH2O、圧縮強度32
Kg/cm2、嵩比重0.54であつた。
The physical properties of the obtained porous body were as follows: average pore diameter of 420 μ;
Air permeability 2.3cm 3 cm/cm 2 sec.cmH 2 O, compressive strength 32
Kg/cm 2 and bulk specific gravity was 0.54.

又、吸音特性は、JISA1409に示された残響室
法によつて測定した結果は次の通りであつた。
The sound absorption properties were measured using the reverberation room method specified in JISA1409, and the results were as follows.

吸音率 12.5Hz 0.42 160 0.58 200 0.75 250 0.80 315 0.83 400 0.90 500 0.96 630 0.96 800 0.95 1000 0.93 1250 0.92 1600 0.88 2000 0.85 2500 0.81 3150 0.76 4000 0.69 Sound absorption coefficient 12.5Hz 0.42 160 0.58 200 0.75 250 0.80 315 0.83 400 0.90 500 0.96 630 0.96 800 0.95 1000 0.93 1250 0.92 1600 0.88 2000 0.85 2500 0.81 3150 0.76 4000 0.69

Claims (1)

【特許請求の範囲】 1 平均細孔径10〜5000μの連続気孔を有し、且
通気度が1〜40cm3・cm/cm2・sec・cmH2Oを有す
る無機多孔体から成る吸音材。 2 無機多孔体の構成材料は、無機水硬性材料又
は無機焼結材料である請求の範囲1の吸音材。 3 無機水硬性材料はセメント類、石灰、石膏で
ある請求の範囲2の吸音材。 4 無機焼結材料は、珪酸質、アルミナ質、シリ
カアルミナ質、マグネシア質、石灰質、ムライト
質である請求の範囲2の吸音材。
[Scope of Claims] 1. A sound absorbing material made of an inorganic porous material having continuous pores with an average pore diameter of 10 to 5000 μm and an air permeability of 1 to 40 cm 3 cm/cm 2 cm H 2 O. 2. The sound absorbing material according to claim 1, wherein the constituent material of the inorganic porous body is an inorganic hydraulic material or an inorganic sintered material. 3. The sound absorbing material according to claim 2, wherein the inorganic hydraulic material is cement, lime, or gypsum. 4. The sound absorbing material according to claim 2, wherein the inorganic sintered material is silicic acid, alumina, silica alumina, magnesia, calcareous, or mullite.
JP16207681A 1981-10-13 1981-10-13 Sound absorbing material Granted JPS5864291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16207681A JPS5864291A (en) 1981-10-13 1981-10-13 Sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16207681A JPS5864291A (en) 1981-10-13 1981-10-13 Sound absorbing material

Publications (2)

Publication Number Publication Date
JPS5864291A JPS5864291A (en) 1983-04-16
JPH0147430B2 true JPH0147430B2 (en) 1989-10-13

Family

ID=15747623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16207681A Granted JPS5864291A (en) 1981-10-13 1981-10-13 Sound absorbing material

Country Status (1)

Country Link
JP (1) JPS5864291A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769705B2 (en) * 1984-10-09 1995-07-31 旭硝子株式会社 Sound absorbing material
DE4300330A1 (en) * 1992-01-09 1994-03-03 Lothar Dipl Ing Kaden Light concrete for road construction - contains sintered polystyrene foam particles to reduce surface smoothness and the formation of surface ice
FR2712282B1 (en) * 1993-11-08 1996-11-15 Achille Zanon Light concrete manufacturing process.
JP2007099533A (en) * 2005-09-30 2007-04-19 Kurabo Ind Ltd Porous ceramic-made sound absorbing material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433329A (en) * 1977-08-19 1979-03-12 Matsushita Electric Works Ltd Foundation material and making method thereof
JPS5461222A (en) * 1977-10-24 1979-05-17 Bridgestone Tire Co Ltd Sound absorbing perlite board
JPS5585709A (en) * 1978-12-22 1980-06-28 Ngk Insulators Ltd Sound isolating wall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433329A (en) * 1977-08-19 1979-03-12 Matsushita Electric Works Ltd Foundation material and making method thereof
JPS5461222A (en) * 1977-10-24 1979-05-17 Bridgestone Tire Co Ltd Sound absorbing perlite board
JPS5585709A (en) * 1978-12-22 1980-06-28 Ngk Insulators Ltd Sound isolating wall

Also Published As

Publication number Publication date
JPS5864291A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
CN107265965B (en) Aerogel foam concrete building block and preparation method thereof
CN102918000A (en) Thermal insulation material and method for making the same
EP0678488A2 (en) Process for preparing solidified material containing coal ash
WO2002032833A1 (en) Porous, sound absorbing ceramic moldings and method for production thereof
JP6681272B2 (en) Composition and non-combustible material
Degefu et al. The dependence of thermophysical and hygroscopic properties of macro-porous geopolymers on Si/Al
JPH0147430B2 (en)
CN108911689A (en) A kind of sound-absorbing material
CN108373340A (en) A kind of preparation method of the compound precast concrete wall of sound-insulating
CN108863235A (en) Foam concrete self-heat preservation outer wall building block
JP2002293601A (en) Production process of lightweight mortar material
JPH08277178A (en) Inorganic laminated body
JP5513789B2 (en) Insulation
JPH0147429B2 (en)
KR0181779B1 (en) Method for producing a lightweight bubble acoustic-absorptive block of a rigid type
JP2007131488A (en) Calcium silicate hydrate solidification product and its synthesis method
JP3801673B2 (en) Porous sound absorbing material
JP3887463B2 (en) Method for producing lightweight cellular concrete
JP2889473B2 (en) Sound-absorbing molded article and method for producing the same
JPH08217523A (en) Inorganic sound absorbing board
TW397718B (en) The sintered body of continuous through holes using industrial waste and unused resources as major raw materials
JPH09132481A (en) Inorganic laminate
JPH08283082A (en) Porous ceramic and sound absorbing body using the same
JP2891904B2 (en) Multi-layer lightweight sound absorbing material
JPH10251078A (en) Production of sound absorption material and sound absorption material