JPH0147223B2 - - Google Patents

Info

Publication number
JPH0147223B2
JPH0147223B2 JP56167014A JP16701481A JPH0147223B2 JP H0147223 B2 JPH0147223 B2 JP H0147223B2 JP 56167014 A JP56167014 A JP 56167014A JP 16701481 A JP16701481 A JP 16701481A JP H0147223 B2 JPH0147223 B2 JP H0147223B2
Authority
JP
Japan
Prior art keywords
catalyst
platinum
aqueous solution
impregnated
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56167014A
Other languages
Japanese (ja)
Other versions
JPS5870837A (en
Inventor
Goji Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP56167014A priority Critical patent/JPS5870837A/en
Publication of JPS5870837A publication Critical patent/JPS5870837A/en
Publication of JPH0147223B2 publication Critical patent/JPH0147223B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタノール改質用白金触媒の製造方法に
関するものである。 従来白金触媒はメタノール改質用等に広く使用
されており、通常少くとも表面が活性アルミナか
ら成る担体を、そのまままたは助触媒を含有させ
た後、白金化合物、例えば塩化白金酸の水溶液ま
たはこれにチオ硫酸アンモニウムを添加した溶液
に浸漬し、担体に白金化合物を含浸し、乾燥し、
空気、水素域いは水蒸気雰囲気中で450〜600℃の
温度で焼成することにより製造されている。 このような製造方法で得られた白金触媒は、白
金の触媒としての有効性および白金の担持効率を
考慮して白金の担持量は通常0.1〜1.0重量%であ
り、この触媒をメタノール改質用触媒として用い
る場合には、低温活性が不充分である。このため
担体に多量の白金を担持させ活性を向上させるこ
とが提案されている。然しこのように多量の白金
を担持した触媒を製造する場合には、白金の担持
効率が悪くなるだけでなく、白金の分散状態がよ
くなくなり、このためメタノールの改質反応に対
して、担持させた白金が有効に作用していないと
いう問題点があつた。 本発明者は、このような従来の問題点を解決す
べく種々研究を行つた結果、担体に白金化合物を
含浸、乾燥し、次いで焼成し、更に例えば水素化
ホウ素ナトリウム(SBH)水溶液、ヒドラジン
水溶液またはホルマリンに浸漬するようにして還
元剤と接触させ、あるいは逆に還元剤と接触して
還元した後焼成することにより二段階で白金化合
物を還元することにより、予期せぬことには白金
の分散状態および結晶の微細化が達成され、白金
の担持量を増すことなく活性を向上させることが
でき前記問題点が解決されることを確かめ本発明
を達成するに至つた。 従つて本発明は少くとも表面が活性アルミナか
ら成る担体に白金化合物を含浸し、これら白金化
合物を焼成および還元剤により二段階の還元を行
うことを特徴とするメタノール改質用白金触媒の
製造方法に関するものである。 本発明の方法においては、先ず担体に白金化合
物を含浸して白金化合物を担体に担持させるが、
この方法は白金触媒の製造方法において従来用い
られている方法なら如何なる方法でもよい。そし
て得られた白金化合物を担持した担持体を前述の
ように二段階に還元する。還元剤を用いて還元す
る場合には焼成後の担体又は白金化合物を担持し
た担体をSBH水溶液、ヒドラジン水溶液または
ホルマリンに浸漬し、乾燥する。このようにして
得られた白金触媒は同量の白金量を担持した触媒
より活性が著しく向上する。この理由は二段階の
還元処理を行うことにより担体上の白金の結晶が
処理前より細かくなり、メタノールの改質反応に
対して白金が一層有効につかわれるようになつた
ためと考えられる。 本発明を次の実施例、比較例および試験例につ
き説明する。 実施例 1 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に、該粒子1当り白金3gを
含む塩化白金酸水溶液にチオ硫酸アンモニウムを
Pt:S=1:2となるように添加した溶液を流
動含浸法により含浸させ、次いで空気中において
自然乾燥した後、これを電磁波振動通気乾燥機に
セツトし、触媒粒子1当り100℃の熱風を2N
m3/minで下方より通気しつつ、2450MHzの電磁
波で出力7KWにて加熱し、5分間で完全に乾燥
し、含水率を1%にした。しかる後この乾燥した
触媒粒子を水蒸気中500℃で2時間加熱処理し、
冷却後さらにヒドラジン1重量%水溶液に浸漬さ
せた後乾燥することにより触媒を製造し、触媒A
とした。触媒の白金担持量は0.4重量%であつた。 比較例 1 実施例において含浸済アルミナ粒子を電磁波振
動通気乾燥機にセツトし、同様の条件下で完全に
乾燥した。しかる後実施例1と同様に加熱処理
し、ヒドラジン水溶液に浸漬せずに触媒を製造
し、触媒Bとした。 実施例 2 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に、該粒子1当り白金3.0g
を含む塩化白金酸水溶液にチオ硫酸アンモニウム
をPt:S=1:2となるように添加した溶液を
流動含浸法により含浸させ、実施例1と同様な方
法で乾燥、加熱処理を行ない、さらに水素化ホウ
素ナトリウム(SBH)0.1重量%水溶液に浸漬し
た後乾燥し、触媒を製造し、触媒Cとした。 又、同量の担体に同量の塩化白金酸とチオ硫酸
アンモニウムを含む溶液を含浸した後、SBH0.1
重量%水溶液で処理してから水蒸気中500℃で2
時間加熱処理して触媒を製造し、触媒C′とした。
触媒の白金担持量は触媒C、C′共に0.4重量%で
あつた。 比較例 2 実施例2における含浸済アルミナ粒子を比較例
1と同様な方法で加熱処理し、SBH0.1重量%水
溶液による還元を行わずに触媒を製造し、触媒D
とした。 同様に塩化白金酸とチオ硫酸アンモニウムの水
溶液に浸漬した担体を焼成することなくSBH0.1
重量%水溶液に浸漬した後、乾燥し、触媒を製造
し、触媒D′とした。 実施例 3 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に、アルミナ粒子1当り塩化
バナジウム〔VCl4〕31.5g溶した水溶液にを流動
含浸法により含浸させ500℃で6時間空気焼成を
行い担体にバナジウムの酸化物を金属バナジウム
量として1重量%になるように担持させた。しか
る後実施例2と同様な方法で含浸、乾燥、熱処
理、浸漬、乾燥を行い触媒を製造し、触媒Eとし
た。 比較例 3 実施例3の含浸済アルミナ粒子を比較例1と同
様な方法で加熱処理し、SBH0.1重量%水溶液に
浸漬処理することなく触媒を製造し、触媒Fとし
た。 実施例 4 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に、アルミナ粒子1当り塩化
マンガン〔MnCl2・4H2O〕31.0g溶した水溶液
を流動含浸法により含浸させ、500℃で6時間空
気焼成を行い担体にマンガンの酸化物を金属マン
ガン量として1重量%になるように担持させた。
しかる後乾燥させ、実施例2と同様な方法で白金
の含浸、乾燥、熱処理を行い、さらにホルマリン
1重量%水溶液に浸漬した後、乾燥を行い触媒を
製造し、触媒G′とした。 比較例 4 実施例4における含浸済アルミナ粒子を比較例
1と同様な方法で加熱処理し、ホルマリン1重量
%水溶液に浸漬せずに触媒を製造し、触媒Hとし
た。 実施例 5 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に、アルミナ粒子1当り硝酸
イツトリウム〔Y(NO32・6H2O〕28.1g溶した
水溶液を流動含浸法で含浸させ、500℃で6時間
空気焼成を行つて担体にイツトリウムの酸化物を
金属イツトリウムとして1重量%付着させた。し
かる後実施例2と同様な方法で、白金の含長、乾
燥、熱処理およびSBE0.1重量%水溶液への浸漬、
乾燥を行い、触媒を製造し、触媒Iとした。 比較例 5 実施例5における含浸済アルミナ粒子を比較例
を比較例1と同様な方法で加熱処理し、SBH0.1
重量%水溶液に浸漬せずに触媒を製造し、触媒J
とした。 実施例 6 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に、アルミナ粒子1当り硝酸
ジルコニル〔ZrO(NO32・2H2O〕128g溶した
水溶液を流動含浸法で含浸させ、500℃で6時間
空気焼成を行つてジルコニウムの酸化物を金属ジ
ルコニウム換算で1重量%付着させた。しかる後
実施例2と同様な方法で白金の含浸、乾燥、熱処
理、SBH0.1重量%水溶液への浸漬、乾燥を行い
触媒を製造し、触媒Kとした。 比較例 6 実施例6における含浸済アルミナ粒子を比較例
2と同様な方法で加熱処理し、SBH0.1重量%水
溶液に浸漬せずに触媒を製造し、触媒Lとした。 実施例 7 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に、アルミナ粒子1当り硝酸
プラセオジム〔Pr(NO33〕20.5g溶した水溶液
を流動含浸法で含浸させ、500℃で6時間空気焼
成を行つてプラセオジムの酸化物を金属プラセオ
ジム量として1重量%付着するようにした。しか
る後実施例2と同様な方法で白金の含浸、乾燥、
熱処理を行い、さらにSBH0.1重量%水溶液に浸
漬した後、乾燥して触媒を製造し、触媒Mとし
た。 比較例 7 実施例7において含浸済アルミナ粒子を比較例
2と同様な方法で加熱処理し、SBH0.1重量%水
溶液に浸漬せずに触媒を製造し、触媒Nとした。 実施例 8 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)にアルミナ粒子1当り硝酸ネ
オジム〔Nd(NO3)〕15.1g溶した水溶液を流動
含浸法で含浸させ、500℃で6時間空気焼成を行
つてネオジムの酸化物を金属ネオジム量として1
重量%付着させた。しかる後実施例2と同様な方
法で白金の含浸、乾燥、熱処理を行い、さらにヒ
ドラジン1重量%水溶液に浸漬した後、乾燥し、
触媒を製造し、触媒Oとした。 比較例 8 実施例8において含浸済アルミナ粒子を比較例
2と同様の方法で加熱処理し、ヒドラジン1重量
%水溶液に浸漬せずに触媒を製造し、触媒Pとし
た。 実施例 9 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に、アルミナ粒子1当り硝酸
ランタン〔La(NO33・6H2O〕21.3g溶した水溶
液を流動含浸法で含浸させ、500℃で6時間空気
焼成を行つてランタンの酸化物を金属ランタン量
として1重量%となるよう付着させた。しかる
後、実施例2と同様な方法で、白金の含浸、乾
燥、熱処理を行い、さらにSHB0.1重量%水溶液
に浸漬した後乾燥し、触媒を製造し、触媒Qとし
た。 比較例 9 実施例9において含浸済アルミナ粒子を比較例
2と同様な方法で加熱処理し、SHB0.1重量%水
溶液に浸漬せずに触媒を製造し、触媒Rとした。 実施例 10 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に、アルミナ粒子1当り硝酸
セリウム〔Ce(NO33・6H2O〕21.0g溶した水溶
液を流動含浸法で含浸させ、500℃で6時間空気
焼成を行つて担体にセリウムの酸化物を金属セリ
ウム量として1重量%となるよう付着させた。し
かる後、実施例2と同様な方法で、白金の含浸、
乾燥、熱処理を行い、さらにSHB0.1重量%水溶
液に浸漬した後、乾燥し、触媒を製造し、触媒S
とした。 比較例 10 実施例10において含浸済アルミナ粒子を比較例
2と同様な方法で加熱処理し、SHB0.1重量%水
溶液に浸漬せずに触媒を製造し、触媒Tとした。 実施例 11 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に実施例9と同様にして硝酸ラ
ンタンを流動含浸法により含浸し、500℃で6時
間空気焼成を行つてランタンの酸化物を金属ラン
タン量として1重量%となるよう付着させた。し
かる後実施例2と同様な方法で白金の含浸、乾
燥、熱処理を行い、さらにヒドラジン1重量%水
溶液に浸漬した後、乾燥し、触媒を製造し、触媒
Uとした。 比較例 11 実施例11において含浸済アルミナ粒子を比較例
2と同様な方法で加熱処理し、ヒドラジン1重量
%水溶液に浸漬せずに触媒を製造し、触媒Vとし
た。 実施例 12 フランス国ローヌプーラン社製の活性アルミナ
粒子(粒径3mm)に実施例10と同様に硝酸セリウ
ムを流動含浸法で含浸させ、500℃で6時間空気
焼成を行つて担体にセリウムの酸化物を金属セリ
ウム量として1重量%となるよう付着させた。し
かる後、実施例2と同様な方法で、白金の含浸、
乾燥、熱処理を行い、さらにヒドラジン1重量%
水溶液に浸漬した後、乾燥し、触媒を製造し、触
媒Wとした。 比較例 12 実施例12において含浸済アルミナ粒子を比較例
2と同様な方法で加熱処理し、ヒドラジン1重量
%水溶液に浸漬せずに触媒を製造し、触媒Xとし
た。 試験例 (1) 実施例1〜12、比較例1〜12でつくつた触媒
A〜Xにつき、次の方法により貴金属表面積を
測定し、得た結果を第1表に示す。表面積は
COの吸着法により測定した。
The present invention relates to a method for producing a platinum catalyst for methanol reforming. Conventionally, platinum catalysts have been widely used for methanol reforming, etc., and usually a carrier consisting of at least activated alumina on the surface is used as it is or after containing a co-catalyst, and then treated with a platinum compound such as an aqueous solution of chloroplatinic acid or an aqueous solution of chloroplatinic acid. The carrier is immersed in a solution containing ammonium thiosulfate, impregnated with a platinum compound, and dried.
It is manufactured by firing at a temperature of 450 to 600°C in an air, hydrogen, or steam atmosphere. The platinum catalyst obtained by such a production method usually has a supported amount of platinum of 0.1 to 1.0% by weight, considering the effectiveness of platinum as a catalyst and the platinum supporting efficiency, and this catalyst is used for methanol reforming. When used as a catalyst, low-temperature activity is insufficient. For this reason, it has been proposed to improve the activity by supporting a large amount of platinum on the carrier. However, when producing a catalyst with such a large amount of platinum supported, not only the platinum supporting efficiency deteriorates, but also the platinum dispersion state becomes poor. There was a problem that the platinum used was not working effectively. As a result of conducting various studies to solve these conventional problems, the present inventor impregnated a carrier with a platinum compound, dried it, then baked it, and further developed a solution of, for example, a sodium borohydride (SBH) aqueous solution or a hydrazine aqueous solution. Alternatively, by reducing the platinum compound in two steps by contacting it with a reducing agent by immersing it in formalin, or conversely by contacting it with a reducing agent, reducing it, and then firing it, the platinum compound can be unexpectedly dispersed. The present invention was accomplished by confirming that the state and crystals were made finer, the activity was improved without increasing the amount of platinum supported, and the above-mentioned problems were solved. Therefore, the present invention provides a method for producing a platinum catalyst for methanol reforming, which comprises impregnating a carrier whose surface is made of activated alumina with a platinum compound, and performing two-step reduction of these platinum compounds by calcination and a reducing agent. It is related to. In the method of the present invention, first, a carrier is impregnated with a platinum compound to support the platinum compound on the carrier.
This method may be any method conventionally used in the production of platinum catalysts. The platinum compound-supported support thus obtained is reduced in two stages as described above. In the case of reduction using a reducing agent, the carrier after firing or the carrier supporting a platinum compound is immersed in an aqueous SBH solution, an aqueous hydrazine solution, or formalin, and then dried. The platinum catalyst thus obtained has significantly improved activity compared to a catalyst carrying the same amount of platinum. The reason for this is thought to be that by carrying out the two-step reduction treatment, the platinum crystals on the carrier became finer than before the treatment, and platinum became more effectively used in the methanol reforming reaction. The present invention will be illustrated with reference to the following Examples, Comparative Examples and Test Examples. Example 1 Ammonium thiosulfate was added to an aqueous chloroplatinic acid solution containing 3 g of platinum per particle to activated alumina particles (particle size: 3 mm) manufactured by Rhone-Poulenc, France.
A solution added so that Pt:S=1:2 was impregnated by a fluidized impregnation method, and then air-dried naturally in the air. This was then set in an electromagnetic vibration aeration dryer, and hot air of 100°C was blasted per catalyst particle. 2N
While ventilating from below at m 3 /min, it was heated with 2450 MHz electromagnetic waves at an output of 7 KW, completely drying in 5 minutes, and the moisture content was reduced to 1%. Thereafter, the dried catalyst particles were heat-treated in steam at 500°C for 2 hours.
After cooling, the catalyst was further immersed in a 1% by weight aqueous solution of hydrazine and then dried to produce catalyst A.
And so. The amount of platinum supported on the catalyst was 0.4% by weight. Comparative Example 1 The impregnated alumina particles in the example were set in an electromagnetic vibration aeration dryer and completely dried under the same conditions. Thereafter, the catalyst was heat-treated in the same manner as in Example 1 to produce a catalyst without immersing it in an aqueous hydrazine solution, which was designated as Catalyst B. Example 2 3.0 g of platinum was added to activated alumina particles (particle size: 3 mm) manufactured by Rhone-Poulenc, France.
A solution of ammonium thiosulfate added to a chloroplatinic acid aqueous solution containing Pt:S=1:2 was impregnated by a fluidized impregnation method, dried and heat treated in the same manner as in Example 1, and further hydrogenated. A catalyst was produced by immersing it in a 0.1% by weight aqueous solution of sodium boron (SBH) and then drying it, which was designated as Catalyst C. In addition, after impregnating the same amount of carrier with a solution containing the same amount of chloroplatinic acid and ammonium thiosulfate, SBH0.1
After treatment with a wt% aqueous solution, 2
A catalyst was produced by heat treatment for a period of time and designated as catalyst C'.
The amount of platinum supported on the catalysts was 0.4% by weight for both catalysts C and C'. Comparative Example 2 The impregnated alumina particles in Example 2 were heat-treated in the same manner as in Comparative Example 1, and a catalyst was produced without reduction with a 0.1% by weight aqueous solution of SBH.
And so. Similarly, the carrier immersed in an aqueous solution of chloroplatinic acid and ammonium thiosulfate was SBH0.1 without calcination.
After being immersed in a wt % aqueous solution, it was dried to produce a catalyst, designated as catalyst D'. Example 3 Activated alumina particles (particle size: 3 mm) manufactured by Rhone-Poulenc in France were impregnated with an aqueous solution containing 31.5 g of vanadium chloride [VCl 4 ] per alumina particle using a fluidized impregnation method, and air-calcined at 500°C for 6 hours. This was carried out to make the carrier support a vanadium oxide in an amount of 1% by weight as metal vanadium. Thereafter, impregnation, drying, heat treatment, immersion, and drying were carried out in the same manner as in Example 2 to produce a catalyst, which was designated as Catalyst E. Comparative Example 3 The impregnated alumina particles of Example 3 were heat-treated in the same manner as in Comparative Example 1 to produce a catalyst without immersion treatment in a 0.1% by weight SBH aqueous solution, which was designated as Catalyst F. Example 4 Activated alumina particles (particle size: 3 mm) manufactured by Rhône-Poulenc, France, were impregnated with an aqueous solution containing 31.0 g of manganese chloride [MnCl 2 4H 2 O] per alumina particle using a fluidized impregnation method, and the mixture was heated at 500°C. Air calcination was performed for 6 hours to allow the carrier to support manganese oxide in an amount of 1% by weight as metallic manganese.
Thereafter, it was dried, impregnated with platinum, dried and heat treated in the same manner as in Example 2, further immersed in a 1% by weight formalin aqueous solution and dried to produce a catalyst, which was designated as Catalyst G'. Comparative Example 4 The impregnated alumina particles in Example 4 were heat-treated in the same manner as in Comparative Example 1 to produce a catalyst without immersing it in a 1% by weight formalin aqueous solution, which was designated as Catalyst H. Example 5 Activated alumina particles (particle size: 3 mm) manufactured by Rhone-Poulenc in France were impregnated with an aqueous solution containing 28.1 g of yttrium nitrate [Y(NO 3 ) 2.6H 2 O] per alumina particle using a fluidized impregnation method. Air firing was performed at 500° C. for 6 hours to deposit 1% by weight of yttrium oxide on the carrier as metallic yttrium. Thereafter, in the same manner as in Example 2, the platinum content was determined, dried, heat treated, and immersed in a 0.1% by weight SBE aqueous solution.
Drying was performed to produce a catalyst, designated as Catalyst I. Comparative Example 5 The impregnated alumina particles in Example 5 were heat-treated in the same manner as in Comparative Example 1 to obtain a SBH of 0.1
Catalyst J was produced without immersion in a wt% aqueous solution.
And so. Example 6 Activated alumina particles (particle size: 3 mm) manufactured by Rhone-Poulenc, France, were impregnated with an aqueous solution containing 128 g of zirconyl nitrate [ ZrO (NO 3 ) 2.2H 2 O] per alumina particle using a fluidized impregnation method. Air firing was performed at 500° C. for 6 hours to deposit 1% by weight of zirconium oxide in terms of metallic zirconium. Thereafter, in the same manner as in Example 2, platinum impregnation, drying, heat treatment, immersion in a 0.1% by weight aqueous solution of SBH, and drying were performed to produce a catalyst, which was designated as Catalyst K. Comparative Example 6 The impregnated alumina particles in Example 6 were heat-treated in the same manner as in Comparative Example 2 to produce a catalyst without immersing it in a 0.1 wt % SBH aqueous solution, which was designated as Catalyst L. Example 7 Activated alumina particles (particle size: 3 mm) manufactured by Rhône-Poulenc, France, were impregnated with an aqueous solution containing 20.5 g of praseodymium nitrate [Pr(NO 3 ) 3 ] per alumina particle using a fluidized impregnation method, and the mixture was heated at 500°C. Air firing was performed for 6 hours to deposit praseodymium oxide in an amount of 1% by weight as metal praseodymium. After that, platinum impregnation, drying, and the same method as in Example 2 were carried out.
After heat treatment, the catalyst was further immersed in a 0.1% by weight aqueous solution of SBH, and then dried to produce a catalyst, which was designated as Catalyst M. Comparative Example 7 In Example 7, the impregnated alumina particles were heat-treated in the same manner as in Comparative Example 2 to produce a catalyst without immersing it in a 0.1% by weight aqueous solution of SBH, which was designated as Catalyst N. Example 8 Activated alumina particles (particle size: 3 mm) manufactured by Rhone-Poulenc, France, were impregnated with an aqueous solution containing 15.1 g of neodymium nitrate [Nd (NO 3 )] per alumina particle using a fluidized impregnation method, and the mixture was heated at 500°C for 6 hours. Perform air firing to reduce neodymium oxide to 1 as metallic neodymium amount.
% by weight was deposited. Thereafter, impregnation with platinum, drying, and heat treatment were performed in the same manner as in Example 2, and further immersion in a 1% by weight aqueous solution of hydrazine, followed by drying.
A catalyst was produced and designated as catalyst O. Comparative Example 8 In Example 8, the impregnated alumina particles were heat-treated in the same manner as in Comparative Example 2 to produce a catalyst without immersing it in a 1% by weight hydrazine aqueous solution, which was designated as Catalyst P. Example 9 Activated alumina particles (particle size: 3 mm) manufactured by Rhone-Poulenc in France were impregnated with an aqueous solution containing 21.3 g of lanthanum nitrate [La(NO 3 ) 3 6H 2 O] per alumina particle using a fluidized impregnation method. Air firing was performed at 500° C. for 6 hours to deposit lanthanum oxide in an amount of 1% by weight of lanthanum metal. Thereafter, platinum impregnation, drying, and heat treatment were performed in the same manner as in Example 2, followed by immersion in a 0.1% by weight SHB aqueous solution and drying to produce a catalyst, which was designated as Catalyst Q. Comparative Example 9 In Example 9, the impregnated alumina particles were heat-treated in the same manner as in Comparative Example 2 to produce a catalyst without immersing it in a 0.1% by weight SHB aqueous solution, which was designated as Catalyst R. Example 10 Activated alumina particles (particle size: 3 mm) manufactured by Rhone-Poulenc in France were impregnated with an aqueous solution containing 21.0 g of cerium nitrate [Ce(NO 3 ) 3.6H 2 O] per alumina particle using a fluidized impregnation method. , air firing was performed at 500° C. for 6 hours to deposit cerium oxide on the carrier so that the amount of metallic cerium was 1% by weight. After that, in the same manner as in Example 2, impregnation with platinum,
Drying, heat treatment, further immersion in SHB0.1% by weight aqueous solution, drying to produce catalyst, catalyst S
And so. Comparative Example 10 In Example 10, the impregnated alumina particles were heat-treated in the same manner as in Comparative Example 2 to produce a catalyst without immersing it in a 0.1% by weight SHB aqueous solution, which was designated as Catalyst T. Example 11 Activated alumina particles (particle size: 3 mm) manufactured by Rhone-Poulenc, France were impregnated with lanthanum nitrate by the fluidized impregnation method in the same manner as in Example 9, and air-calcined at 500°C for 6 hours to obtain lanthanum oxide. was deposited so that the amount of lanthanum metal was 1% by weight. Thereafter, it was impregnated with platinum, dried, and heat treated in the same manner as in Example 2, and then immersed in a 1% by weight aqueous solution of hydrazine and dried to produce a catalyst, which was designated as Catalyst U. Comparative Example 11 In Example 11, the impregnated alumina particles were heat-treated in the same manner as in Comparative Example 2 to produce a catalyst without immersing it in a 1% by weight aqueous hydrazine solution, which was designated as Catalyst V. Example 12 Activated alumina particles (particle size: 3 mm) manufactured by Rhone Poulenc, France were impregnated with cerium nitrate using the fluidized impregnation method in the same manner as in Example 10, and air-calcined at 500°C for 6 hours to oxidize cerium on the carrier. The material was deposited so that the amount of metallic cerium was 1% by weight. After that, in the same manner as in Example 2, impregnation with platinum,
After drying and heat treatment, add 1% by weight of hydrazine.
After immersing it in an aqueous solution, it was dried to produce a catalyst, which was designated as Catalyst W. Comparative Example 12 In Example 12, the impregnated alumina particles were heat-treated in the same manner as in Comparative Example 2 to produce a catalyst without immersing it in a 1% by weight aqueous hydrazine solution, which was designated as Catalyst X. Test Example (1) The noble metal surface areas of catalysts A to X prepared in Examples 1 to 12 and Comparative Examples 1 to 12 were measured by the following method, and the results are shown in Table 1. The surface area is
Measured by CO adsorption method.

【表】【table】

【表】 (2) 次に触媒A〜Xにつき耐久前の活性および触
媒を電気炉中400℃で200時間空気雰囲気にて加
熱耐久後の活性を評価し、得た結果を第2表に
示す。改質ガスの組成分析はガスクロマトグラ
フによつて行なつた。 即ち工業用メタノール100%を蒸発器(エバ
ポレータ)を用い触媒床温度を310℃としその
時のメタノールの分解率(H2濃度)をガスク
ロマトグラフによつて測定した。評価触媒量10
ml、評価空間速度2100hr-1である。
[Table] (2) Next, the activity of Catalysts A to X before durability was evaluated, and the activity after durability of heating the catalysts in an electric furnace at 400℃ for 200 hours in an air atmosphere was evaluated, and the obtained results are shown in Table 2. . Compositional analysis of the reformed gas was performed using a gas chromatograph. That is, 100% industrial methanol was used in an evaporator at a catalyst bed temperature of 310° C., and the decomposition rate (H 2 concentration) of methanol at that time was measured using a gas chromatograph. Evaluation catalyst amount 10
ml, and the estimated space velocity is 2100hr -1 .

【表】【table】

【表】 また第1図に触媒A、Bのメタノール改質性
能を水素濃度で示し、第2図に触媒Q、Rのメ
タノール改質性能を水素濃度で示す。第1図に
おいて線1は触媒Aの耐久前の性能、線2は触
媒Bの耐久前の性能、線3は触媒Aの耐久後の
性能、線4は触媒Bの耐久後の性能を示し、第
2図において線5は触媒Qの耐久前の性能、線
6は触媒Rの耐久前の性能、線7は触媒Qの耐
久後の性能、線8は触媒Rの耐久後の性能を示
す。 以上の(1)および(2)の試験結果より本発明の方法
で得られた触媒A、C、C′、E、G、I、K、
M、O、Q、S、U、WはSBH、ヒドラジンま
たはホルマリンによる還元処理を行つていない比
較例の触媒B、D、D′、F、H、J、L、N、
P、R、T、V、Xより白金の分散がよく、メタ
ノール改質性能が著しく向上していることがわか
る。また触媒C、C′、D、D′に関する第1表およ
び第2表の結果から加熱焼成後還元剤で還元処理
した本発明の方法でつくつた触媒Cは、還元剤で
還元処理後加熱処理した触媒C′よりも性能が良
く、これら触媒C、C′は加熱焼成を行わず還元剤
のみで還元処理した触媒D′および加熱焼成のみ
を行つた比較例の触媒Dより白金の分散およびメ
タノール改質性能が優れていることがわかる。
[Table] Fig. 1 shows the methanol reforming performance of catalysts A and B in terms of hydrogen concentration, and Fig. 2 shows the methanol reforming performance of catalysts Q and R in terms of hydrogen concentration. In FIG. 1, line 1 shows the performance of catalyst A before durability, line 2 shows the performance of catalyst B before durability, line 3 shows the performance of catalyst A after durability, and line 4 shows the performance of catalyst B after durability. In FIG. 2, line 5 shows the performance of catalyst Q before durability, line 6 shows the performance of catalyst R before durability, line 7 shows the performance of catalyst Q after durability, and line 8 shows the performance of catalyst R after durability. From the test results of (1) and (2) above, catalysts A, C, C', E, G, I, K,
M, O, Q, S, U, W are SBH, comparative example catalysts B, D, D', F, H, J, L, N, which were not subjected to reduction treatment with hydrazine or formalin.
It can be seen that the dispersion of platinum is better than that of P, R, T, V, and X, and the methanol reforming performance is significantly improved. Furthermore, from the results of Tables 1 and 2 regarding catalysts C, C', D, and D', catalyst C produced by the method of the present invention, which was heat-calcined and then reduced with a reducing agent, was heat-treated after being reduced with a reducing agent. Catalysts C and C' had better performance than Catalyst C', which was treated with a reducing agent without heating and calcination, and Catalyst D, a comparative example, which was heated and calcinated only, with platinum dispersion and methanol. It can be seen that the reforming performance is excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は触媒AおよびBの耐久前および耐久後
の性能を水素濃度により表わした線図、第2図は
触媒QおよびRの同様の線図である。
FIG. 1 is a diagram showing the performance of catalysts A and B before and after durability in terms of hydrogen concentration, and FIG. 2 is a similar diagram of catalysts Q and R.

Claims (1)

【特許請求の範囲】 1 少くとも表面が活性アルミナから成る担体に
白金化合物を含浸し、次いで焼成および還元剤と
接触させることによる二段階の還元を行うことを
特徴とするメタノール改質用白金触媒の製造方
法。 2 還元は先に焼成してから還元剤と接触させる
ようにすることを特徴とする特許請求の範囲第1
項記載のメタノール改質用白金触媒の製造方法。
[Claims] 1. A platinum catalyst for methanol reforming, characterized in that a carrier whose surface is at least made of activated alumina is impregnated with a platinum compound, and then reduced in two stages by calcination and contact with a reducing agent. manufacturing method. 2. Claim 1, characterized in that the reduction is performed by first firing and then contacting with a reducing agent.
A method for producing a platinum catalyst for methanol reforming as described in .
JP56167014A 1981-10-21 1981-10-21 Preparation of platinum catalyst Granted JPS5870837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56167014A JPS5870837A (en) 1981-10-21 1981-10-21 Preparation of platinum catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56167014A JPS5870837A (en) 1981-10-21 1981-10-21 Preparation of platinum catalyst

Publications (2)

Publication Number Publication Date
JPS5870837A JPS5870837A (en) 1983-04-27
JPH0147223B2 true JPH0147223B2 (en) 1989-10-12

Family

ID=15841781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167014A Granted JPS5870837A (en) 1981-10-21 1981-10-21 Preparation of platinum catalyst

Country Status (1)

Country Link
JP (1) JPS5870837A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893262A1 (en) * 2005-11-14 2007-05-18 Inst Francais Du Petrole PROCESS FOR SYNTHESIS IN THE PRESENCE OF CATALYST REDUCER BASED ON ANISOTROPIC METAL NANOPARTICLES.

Also Published As

Publication number Publication date
JPS5870837A (en) 1983-04-27

Similar Documents

Publication Publication Date Title
US4499205A (en) High activity catalyst for reforming of methanol and process of preparing same
EP0306945B1 (en) Oxidation of carbon monoxide and catalyst therefor
EP0222497A2 (en) Method of simultaneous oxidation of carbon monoxide and unburned fuel in methanol-fueled vehicle exhaust
JPH04141233A (en) Electrode catalyst
JPS58174237A (en) Reforming catalyst of methanol
US3887740A (en) Process for depositing oxide coatings
JPS59199042A (en) Catalyst for reforming methanol
EP0330627A1 (en) Process for alloying metals on supports
JPS593216B2 (en) Catalyst for exhaust gas treatment
EP1972371A1 (en) Exhaust gas emission control catalyst
HU188289B (en) Method for producing catalyst for hetereogeneous catalysis
US3882050A (en) Method of depositing a noble metal on a surface of a nickel support
JPH0312936B2 (en)
JPH0147223B2 (en)
EP0418573B1 (en) Process for treating new or aged graphite powder to improve its effectiveness as a support for metal catalysts
JP4697506B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0871418A (en) Catalyst carrier for purification of exhaust gas and catalyst for purification of exhaust gas
US3896048A (en) Catalyst composition
JP3080738B2 (en) Manufacturing method of platinum-based supported catalyst
JPS6050490B2 (en) Method for manufacturing palladium catalyst
CN113634249B (en) High-temperature stable catalytic combustion catalyst and preparation method thereof
JP3131630B2 (en) Method for oxidizing and removing carbon fine particles in diesel engine exhaust gas and catalyst used therefor
JPS6099340A (en) Catalyst for treating exhaust gas
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JP2961249B2 (en) Method for oxidizing and removing carbon fine particles in exhaust gas of diesel engine and catalyst used therefor