JPH0144784B2 - - Google Patents

Info

Publication number
JPH0144784B2
JPH0144784B2 JP19448881A JP19448881A JPH0144784B2 JP H0144784 B2 JPH0144784 B2 JP H0144784B2 JP 19448881 A JP19448881 A JP 19448881A JP 19448881 A JP19448881 A JP 19448881A JP H0144784 B2 JPH0144784 B2 JP H0144784B2
Authority
JP
Japan
Prior art keywords
furnace
zinc
bath
carbon
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19448881A
Other languages
Japanese (ja)
Other versions
JPS5896872A (en
Inventor
Yoshio Shimozato
Shigeo Itano
Tetsuyoshi Wada
Kenichi Yanagi
Toshio Taguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19448881A priority Critical patent/JPS5896872A/en
Publication of JPS5896872A publication Critical patent/JPS5896872A/en
Publication of JPH0144784B2 publication Critical patent/JPH0144784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、例えば鋼帯に亜鉛メツキを施すため
の連続真空蒸着装置において、蒸着速度の応答性
が早く、メツキ性能の良い蒸着炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor deposition furnace that has a fast response to a vapor deposition rate and has good plating performance, in a continuous vacuum vapor deposition apparatus for galvanizing steel strips, for example.

鋼帯に連続的に亜鉛メツキ皮膜を形成する方法
として、従来の溶融亜鉛浴法や電気メツキ法の外
に、片面のみのメツキに対する有利性から真空蒸
着メツキ法が注目されている。従来の蒸着炉の形
式は第1図に示すように、炉の下部から加熱する
形式のものである。
As a method for continuously forming a galvanized film on a steel strip, in addition to the conventional molten zinc bath method and electroplating method, the vacuum evaporation plating method is attracting attention because of its advantage over plating only on one side. As shown in FIG. 1, a conventional vapor deposition furnace is one in which heating is performed from the bottom of the furnace.

第1図において、1は真空雰囲気中に収容され
た炉体で、この内部に溶融亜鉛7が保持されてい
る。天井3の一部に開口部6があり、ヒンジ5の
回りに回転駆動されるシヤツター4で覆われてい
る。炉の下方に加熱源のヒータ8が設置され、炉
体1とヒータ8は共に保温材9で覆われている。
In FIG. 1, 1 is a furnace housed in a vacuum atmosphere, and molten zinc 7 is held inside this furnace body. There is an opening 6 in a part of the ceiling 3, which is covered with a shutter 4 which is rotatably driven around a hinge 5. A heater 8 as a heating source is installed below the furnace, and both the furnace body 1 and the heater 8 are covered with a heat insulating material 9.

蒸着時にはシヤツター4が開いており、溶融亜
鉛7はヒータ8によつて炉体1の底板を通して加
熱され、蒸発して開口部6を通つて蒸着炉の上方
を走行する鋼帯10にメツキされる。溶融亜鉛
は、供給ダクト2から蒸発量と同じ量が連続的に
供給される。
During deposition, the shutter 4 is open, and the molten zinc 7 is heated by the heater 8 through the bottom plate of the furnace body 1, evaporated, and plated onto the steel strip 10 running above the deposition furnace through the opening 6. . Molten zinc is continuously supplied from the supply duct 2 in an amount equal to the amount of evaporation.

このような従来の蒸着部では下記のような欠点
があつた。
Such a conventional vapor deposition section has the following drawbacks.

(1) メツキプロセスラインでは、例えば供給され
る鋼帯の厚みが変つた場合、鋼帯にメツキすべ
き量すなわち単位面積あたりの目付量を瞬間的
に変化させたいことがあるが、従来の形式の蒸
着炉では、蒸着炉内の溶融亜鉛及び炉体自身の
熱容量が大きいために加熱源の加熱量を瞬間的
に変化させても亜鉛の蒸発速度の応答が遅く、
整定するまでに規格外の目付量をもつた製品が
大量にできてしまうという欠点がある。例えば
ライン速度30m/min、目付量70g/m2のライ
ンで計画している蒸着炉では整定するまでに6
分間程度かかると予想され、この間に180mの
製品が規格外となつてしまう。
(1) In the plating process line, for example, when the thickness of the supplied steel strip changes, it may be necessary to instantaneously change the amount to be plated on the steel strip, that is, the amount of coating per unit area. In the vapor deposition furnace, the heat capacity of the molten zinc in the vapor deposition furnace and the furnace body itself is large, so even if the heating amount of the heating source is changed instantaneously, the response of the evaporation rate of zinc is slow.
The disadvantage is that a large amount of products with a non-standard basis weight are produced before the process is settled. For example, in a deposition furnace planned for a line with a line speed of 30 m/min and a basis weight of 70 g/ m2 , it will take 6
It is expected that it will take about a minute, and during this time the 180m product will be out of specification.

(2) 下部から加熱されるため、亜鉛浴の下部で沸
騰によつて気泡が生じそれが液中を上方へ昇つ
て液面から出ていき、この時、液が飛散するい
わゆるスプラツシユが起こる。又、液面には酸
化皮膜が形成されやすく、膜ができていると、
その下方に気泡がたまりある程度以上の大きさ
になると膜を瞬間的に破壊するためスプラツシ
ユが大きくなる。スプラツシユが起こると鋼帯
に液滴がついて製品不良となる恐れがある。
(2) Since the zinc bath is heated from the bottom, bubbles are generated due to boiling at the bottom of the zinc bath, which rise upward through the liquid and exit from the liquid surface. At this time, a so-called splash occurs in which the liquid scatters. In addition, an oxide film is easily formed on the liquid surface, and if a film is formed,
If air bubbles accumulate below and reach a certain size, they will instantly destroy the film, resulting in a larger splash. When splash occurs, droplets may form on the steel strip, resulting in product defects.

本発明は前記欠点を解決し、応答速度の早い
加熱方法を実現するために為されたものでその
要旨とするところは加熱源のヒータを炉内の溶
融亜鉛の上方に設置し、かつ亜鉛浴中にカーボ
ンのブロツクを浮遊させたことを特徴とする蒸
着炉であり、応答性が早くかつスプラツシユを
防止した蒸着炉を実現することができるもので
ある。
The present invention has been made to solve the above-mentioned drawbacks and realize a heating method with a fast response speed. This is a vapor deposition furnace characterized by having carbon blocks suspended therein, and it is possible to realize a vapor deposition furnace that has quick response and prevents splash.

以下、本発明を第2図〜第6図に示した実施態
様について詳述する。
Hereinafter, the embodiments of the present invention shown in FIGS. 2 to 6 will be described in detail.

実施例 第2図に本発明の蒸着炉の一実施例を示す。第
2図において加熱源のヒータ8は炉内の溶融亜鉛
7の上方に設置され、亜鉛浴中にカーボンのブロ
ツク11が浮遊している。その他は第1図に示し
た従来の構造と同一であるので説明を省略する。
Embodiment FIG. 2 shows an embodiment of the vapor deposition furnace of the present invention. In FIG. 2, a heater 8 serving as a heating source is installed above molten zinc 7 in a furnace, and carbon blocks 11 are suspended in the zinc bath. The rest of the structure is the same as the conventional structure shown in FIG. 1, so a description thereof will be omitted.

第2図において、シヤツター4が開で、蒸着炉
上方に鋼帯10が例えば図中右方に走行している
状態のとき、溶融亜鉛7は上方のヒータ8から直
接加熱され、あるいはカーボンブロツク11を介
して加熱され蒸発して開口部6を通して鋼帯10
にメツキされる。
In FIG. 2, when the shutter 4 is open and the steel strip 10 is running above the vapor deposition furnace, for example to the right in the figure, the molten zinc 7 is directly heated by the heater 8 above or by the carbon block 11. The steel strip 10 is heated and evaporated through the opening 6.
It is marked by.

このような構成であるので、以下の効果が奏さ
れる。
With such a configuration, the following effects are achieved.

上方から単に加熱すると溶融亜鉛の表面の熱
吸収率は約0.1と非常に小さいため直接、上方
から輻射加熱する方法はヒータの温度が高温に
なりすぎるため実現困難であるが、カーボンの
ブロツクを液中に浮遊させると、カーボンの表
面の熱吸収率は約1.0と大きいため全体的な熱
吸収率を向上させることができるので上方から
加熱する方法が実現できる。
If simply heated from above, the heat absorption rate of the surface of molten zinc is very small, approximately 0.1, so direct radiation heating from above is difficult to achieve because the heater temperature becomes too high. When suspended in carbon, the heat absorption rate of the surface of carbon is as high as approximately 1.0, so the overall heat absorption rate can be improved, making it possible to heat the carbon from above.

本発明によれば亜鉛は上方から加熱されるた
めに表面層から蒸発してゆくので、加熱源から
の加熱量の変化に速やかに応答する。すなわち
整定するまでの時間が非常に短くなるため規格
外の製品の発生が少くなる。
According to the present invention, zinc is heated from above and evaporates from the surface layer, so it quickly responds to changes in the amount of heat from the heating source. In other words, the time required for stabilization becomes extremely short, and the occurrence of non-standard products is reduced.

同時に、カーボンブロツクは還元力があるた
め、亜鉛液面の酸化膜の形成を抑えるので、ス
プラツシユがおこりにくくなり、製品への液滴
の付着が防止される。
At the same time, since the carbon block has reducing power, it suppresses the formation of an oxide film on the surface of the zinc liquid, making splash less likely to occur and preventing droplets from adhering to the product.

従来の方法では亜鉛浴面550℃、炉底板600℃
程度になるため炉底に鋼板を使用した場合は腐
食速度が非常に大きく、工業的に利用するため
には鋼板ではなくセラミツクにする必要があつ
たが、本発明によれば、亜鉛浴面も炉底もほぼ
同温の550℃になるため鋼板が使用できるので
炉体製造費が廉価で済む。
In the conventional method, the zinc bath surface is 550℃ and the furnace bottom plate is 600℃.
If a steel plate was used for the bottom of the furnace, the corrosion rate would be very high, and for industrial use it would have been necessary to use ceramic instead of steel.However, according to the present invention, the zinc bath surface can also be used. Since the temperature at the bottom of the furnace is almost the same at 550°C, steel plates can be used, which reduces the manufacturing cost of the furnace body.

実施例 第3図に実施例を示す。第3図において、加
熱源のヒータ8は炉内の溶融亜鉛7の上方に設置
され、亜鉛浴中に、表面にカーボン12をコーテ
イングした亜鉛より比重の小さい物質でできたブ
ロツク11が浮遊している。その他は第1図に示
した従来の構造と同一である。
Example FIG. 3 shows an example. In FIG. 3, a heater 8 serving as a heating source is installed above molten zinc 7 in the furnace, and a block 11 made of a material with a specific gravity smaller than zinc and whose surface is coated with carbon 12 is floating in the zinc bath. There is. The rest of the structure is the same as the conventional structure shown in FIG.

これにより実施例と同じ作用、及び効果〜
を有する。
As a result, the same action and effect as in the example
has.

実施例 第4図に実施例を示す。第4図において、加
熱源のヒータ8は炉内の溶融亜鉛7の上方に設置
され、亜鉛浴中にカーボンペレツト11が浮遊し
ている。その他は第1図に示した従来の構造と同
一である。
Example FIG. 4 shows an example. In FIG. 4, a heater 8 serving as a heating source is installed above molten zinc 7 in a furnace, and carbon pellets 11 are suspended in the zinc bath. The rest of the structure is the same as the conventional structure shown in FIG.

これにより実施例と同じ作用及び、効果〜
を有し、更に、 単位面積あたりの蒸発レートに浴温には一定
の関係があり、全体の蒸発量が一定のときペレ
ツトを浮かべると蒸発面積が減少して浴温が上
昇する。この関係を利用して、浴中に浮かべる
ペレツトの数を操作することによつて容易に希
望する浴温を得ることができる。効果を奏す
る。
As a result, the same action and effect as in the example
Furthermore, there is a certain relationship between the evaporation rate per unit area and the bath temperature, so when the total evaporation amount is constant and a pellet is floated, the evaporation area decreases and the bath temperature increases. Using this relationship, the desired bath temperature can be easily obtained by controlling the number of pellets floating in the bath. be effective.

実施例 第5図に実施例を示す。第5図Aにおいて加
熱源のヒータ8は炉内の浴融亜鉛上方に設置さ
れ、亜鉛浴中にカーボンの井桁11(第5図Bは
井桁の平面図である)が浮遊している。その他は
第1図に示した従来の構造と同一である。
Example FIG. 5 shows an example. In FIG. 5A, a heater 8 serving as a heating source is installed above a bath of molten zinc in a furnace, and a carbon parallel cross 11 (FIG. 5B is a plan view of the parallel cross) is floating in the zinc bath. The rest of the structure is the same as the conventional structure shown in FIG.

これにより実施例と同じ作用及び、効果以外
に更に、 カーボン井桁の表面積が大きいため、カーボ
ンと溶融亜鉛との間の熱伝達が向上する。効果
を奏する。
As a result, in addition to the same functions and effects as those of the embodiment, since the surface area of the carbon parallel girder is large, the heat transfer between the carbon and the molten zinc is improved. be effective.

実施例 1 構 造 第6図に実施例を示す。第6図において加
熱源のヒータ8は炉内の溶融亜鉛7の上方に設
置され、亜鉛浴中に、比重が亜鉛より小さくハ
ニカム状の、あるいは多くの孔のあいたブロツ
ク11が浮遊している。その他は第1図に示し
た従来の構造と同一である。
Example 1 Structure An example is shown in FIG. In FIG. 6, a heater 8 serving as a heating source is installed above molten zinc 7 in a furnace, and a honeycomb-shaped block 11 having a specific gravity smaller than that of zinc or having many holes is floating in the zinc bath. The rest of the structure is the same as the conventional structure shown in FIG.

第7図、第8図はブロツク11の形状の例を
示し、Aは側面図、Bは平面図である。以上、
説明した本発明の真空蒸着部の構成によつて奏
される効果をまとめると以下のようになる。
7 and 8 show examples of the shape of the block 11, with A being a side view and B being a plan view. that's all,
The effects achieved by the configuration of the vacuum evaporation section of the present invention described above are summarized as follows.

上方から単に加熱すると溶融亜鉛の表面の
吸収率は約0.1と非常に小さいため、直接上
方から輻射加熱する方法は、ヒータの温度が
高温になりすぎるため、実現困難であるが、
ハニカム状の、あるいは多くの孔のあいたカ
ーボンのブロツクを液中に浮遊させると、キ
ヤビテイ効果によつてブロツク表面のみかけ
の黒度(熱の吸収率と結果的には同じ)が大
きくなり、形状を適切に選べば吸収率を1.0
に近くすることができ、これによつて全体的
に熱吸収率を向上させることができるので上
方からの加熱する方法が採用できる。
If simply heated from above, the absorption rate of the surface of molten zinc is very small at approximately 0.1, so direct radiant heating from above is difficult to implement because the heater temperature becomes too high.
When a honeycomb-shaped or many-pored carbon block is suspended in a liquid, the apparent blackness (which is the same as the heat absorption rate) of the block surface increases due to the cavity effect, and the shape of the block increases. If you choose appropriately, you can increase the absorption rate to 1.0.
Since this can improve the overall heat absorption rate, a method of heating from above can be adopted.

本発明によれば亜鉛は上方から加熱される
ために表面層から蒸発してゆくので、加熱源
からの加熱量の変化に速やかに応答する。例
えばライン速度30m/min、目付量70g/m2
のラインで整定時間は30秒〜1分程度であ
る。すなわち整定するまでの時間が非常に短
くなるため規格外の製品の発生が少くなる。
According to the present invention, zinc is heated from above and evaporates from the surface layer, so it quickly responds to changes in the amount of heat from the heating source. For example, line speed 30m/min, area weight 70g/m 2
The settling time for this line is about 30 seconds to 1 minute. In other words, the time required for stabilization becomes extremely short, and the occurrence of non-standard products is reduced.

単位面積あたりの蒸発レートと浴温には一
定の関係があり、全体の蒸発量が一定のとき
ブロツクを浮かべると蒸発面積が減少するた
め浴温が上昇してしまうが、本発明は一定の
蒸発面積を保持して浴温が必要以上に上昇す
るのを防ぎながら、見かけの吸収率を向上さ
せることができる。
There is a certain relationship between the evaporation rate per unit area and the bath temperature, and if the block is floated when the total evaporation amount is constant, the evaporation area will decrease and the bath temperature will rise. The apparent absorption rate can be improved while maintaining the area and preventing the bath temperature from increasing more than necessary.

従来の方法では亜鉛浴面550℃、炉底板600
℃程度になるため炉底に鋼板を使用した場合
は腐食速度が非常に大きく、工業的に利用す
るためには鋼板では無くセラミツクにする必
要があつたが、本発明による方法では亜鉛浴
面も炉底もほぼ同温の550℃になるため鋼板
が使用できるので廉価で済む。
In the conventional method, the zinc bath surface is 550℃ and the furnace bottom plate is 600℃.
℃, so if a steel plate was used for the bottom of the furnace, the corrosion rate would be very high.For industrial use, it would have been necessary to use ceramic instead of steel plate.However, with the method of the present invention, the zinc bath surface can also be used. The temperature at the bottom of the furnace is almost the same at 550°C, so steel plates can be used and the cost is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の真空蒸着部の構成を示す図、第
2図〜第6図は本発明の真空蒸着部の実施態様を
示す図、第7,8図は、第2図〜第6図以外のカ
ーボンブロツクの形状を示す図である。
FIG. 1 is a diagram showing the configuration of a conventional vacuum evaporation section, FIGS. 2 to 6 are diagrams showing embodiments of the vacuum evaporation section of the present invention, and FIGS. 7 and 8 are diagrams shown in FIGS. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 真空蒸着部において、炉内上方に加熱源ヒー
タを設置し、浴中にはカーボンのブロツクを浮遊
させてなることを特徴とする真空蒸着部。
1. A vacuum evaporation section characterized in that a heating source heater is installed above the furnace, and blocks of carbon are suspended in the bath.
JP19448881A 1981-12-04 1981-12-04 Vacuum deposition device Granted JPS5896872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19448881A JPS5896872A (en) 1981-12-04 1981-12-04 Vacuum deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19448881A JPS5896872A (en) 1981-12-04 1981-12-04 Vacuum deposition device

Publications (2)

Publication Number Publication Date
JPS5896872A JPS5896872A (en) 1983-06-09
JPH0144784B2 true JPH0144784B2 (en) 1989-09-29

Family

ID=16325359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19448881A Granted JPS5896872A (en) 1981-12-04 1981-12-04 Vacuum deposition device

Country Status (1)

Country Link
JP (1) JPS5896872A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017001910A1 (en) * 2015-06-29 2017-01-05 Flisom Ag Evaporation crucible with floater
CN109518136B (en) * 2019-01-24 2020-11-27 成都京东方光电科技有限公司 Evaporation structure, evaporation system and use method of evaporation structure

Also Published As

Publication number Publication date
JPS5896872A (en) 1983-06-09

Similar Documents

Publication Publication Date Title
US4649857A (en) Thin-film forming device
JPH0144784B2 (en)
JPH029106B2 (en)
ES8507434A1 (en) Process for producing coated flat glass
JP2008231484A (en) Continuous hot dip galvanization apparatus
CA1126593A (en) Coating of metal strip on one side with molten metal
US3407053A (en) Process for manufacturing glass in fine granular form
US3331702A (en) Iridizing method
SU629870A3 (en) Sheet glass treating device
JPS6124464B2 (en)
JPH03188250A (en) Molten metal dipping vessel used for continuous hot-dipping
JPH03211263A (en) Equipment for producing hot dip galvanized steel sheet
JPS633949B2 (en)
JPH027396B2 (en)
JP3114572B2 (en) Method for controlling alloying of galvannealed steel sheet
KR0116791Y1 (en) Evaporator for resistance heating vacuum deposition
JPS6157905B2 (en)
JPS57210972A (en) Formation of film
KR200177885Y1 (en) Ash removing apparatus in snout
JPH03277756A (en) Method for suppressing generation of foreign matter in snout of galvanizing device and snout device
JPH01225758A (en) Apparatus for producing minimized spangle steel sheet
JP3423607B2 (en) Electrodeposition equipment
JPS5884971A (en) Vacuum plating device
JPH09324261A (en) Vacuum deposition device and method for controlling film thickness therefor
JPS583957A (en) Zinc hot dipping device