JPH0143847B2 - - Google Patents

Info

Publication number
JPH0143847B2
JPH0143847B2 JP11958082A JP11958082A JPH0143847B2 JP H0143847 B2 JPH0143847 B2 JP H0143847B2 JP 11958082 A JP11958082 A JP 11958082A JP 11958082 A JP11958082 A JP 11958082A JP H0143847 B2 JPH0143847 B2 JP H0143847B2
Authority
JP
Japan
Prior art keywords
thrust bearing
thrust
bearing member
groove
shaft body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11958082A
Other languages
Japanese (ja)
Other versions
JPS5913113A (en
Inventor
Hiromi Sugi
Kyosaburo Furumura
Hiromitsu Asai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP11958082A priority Critical patent/JPS5913113A/en
Publication of JPS5913113A publication Critical patent/JPS5913113A/en
Publication of JPH0143847B2 publication Critical patent/JPH0143847B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 この発明は、動圧形スラスト軸受に関し、とく
に、スラスト受部材を有する軸体を、スラスト軸
受部材を有するハウジングの内周に配設し、スラ
スト軸受部材とスラスト受部材との少なくとも一
方に動圧発生用のみぞを設けた動圧形スラスト軸
受において、スラスト軸受部材とスラスト受部材
との少なくとも一方には動圧発生用のみぞの流出
端側に環状凸部が突設され、スラスト軸受すき間
から環状凸部を通つて流出する潤滑剤の循環通路
を設けることにより、軸体の浮上量(軸方向変位
量)を安定させ、大きいスラスト負荷能力が得ら
れるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dynamic pressure type thrust bearing, and in particular, a shaft body having a thrust bearing member is disposed on the inner periphery of a housing having a thrust bearing member, and the thrust bearing member and the thrust bearing member are connected to each other. In a hydrodynamic type thrust bearing in which at least one of the thrust bearing member and the thrust receiving member is provided with a groove for generating dynamic pressure, an annular protrusion protrudes on the outflow end side of the groove for generating dynamic pressure. By providing a circulation path for the lubricant that flows out from the thrust bearing gap through the annular convex part, the floating height (axial displacement amount) of the shaft body is stabilized, and a large thrust load capacity can be obtained. It is something.

従来、この種の動圧形スラスト軸受として第1
図および第2図に示すものが知られている。両図
において、符号1は軸体、2はスラスト受部材、
3はハウジング4のスラスト軸受部をそれぞれ示
し、第1図のスラスト軸受部3のスラスト受面5
には、スパイラル状のみぞ6を形成され、第2図
のスラスト軸受部3のスラスト受面5には、ヘリ
ングボーン状のみぞ6が形成されている。
Conventionally, it was the first hydrodynamic thrust bearing of this type.
What is shown in FIG. 2 and FIG. 2 is known. In both figures, numeral 1 is a shaft body, 2 is a thrust receiving member,
3 indicates the thrust bearing portion of the housing 4, and the thrust bearing surface 5 of the thrust bearing portion 3 in FIG.
A spiral groove 6 is formed in the thrust bearing surface 5 of the thrust bearing portion 3 shown in FIG.

上記の軸体1が回転すると、みぞ6のポンピン
グ作用による動圧が発生して、潤滑剤がスラスト
軸受部3のスラスト受面5とスラスト受部材2の
スラスト端面7との間のスラスト軸受すき間8に
流入し、これにより軸体1が浮上してスラスト荷
重を支持する。
When the above-mentioned shaft body 1 rotates, dynamic pressure is generated due to the pumping action of the groove 6, and the lubricant is applied to the thrust bearing gap between the thrust bearing surface 5 of the thrust bearing part 3 and the thrust end surface 7 of the thrust bearing member 2. 8, which causes the shaft body 1 to float and support the thrust load.

上記の軸受をフラツトモータ等に使用する場合
は、軸体1に固定したロータとハウジング4に固
定したステータとが軸方向の微小すき間を隔てて
平面で対向しているので、ロータとステータとの
相対変位、すなわち軸体1の浮上量を小さくして
安定させる必要がある。
When the above bearing is used in a flat motor etc., the rotor fixed to the shaft body 1 and the stator fixed to the housing 4 face each other on a plane with a small gap in the axial direction. It is necessary to stabilize the displacement, that is, the flying height of the shaft body 1 by reducing it.

しかし、スラスト軸受部3に動圧発生用のみぞ
6のみが設けられている従来の軸受では、軸体1
の停止時と回転時とにおける軸方向の位置が大き
く変化し、スラスト荷重が変化した場合や周囲温
度により油やグリース等の潤滑剤の粘度が変化し
た場合には軸体の浮上量に大きな変動が生ずるた
め、軸方向の位置が安定しないという欠点があ
る。とくに、第1図の軸受では、スラスト軸受部
3の内周縁から軸体1との間のすき間を通つて潤
滑剤が漏出するので、潤滑剤の圧力上昇が妨げら
れてスラスト負荷能力が低下する欠点がある。さ
らに、第1図および第2図の軸受の両者とも、ス
ラスト受部材2のスラスト端面7が、スラスト軸
受部3のスラスト受面5に大きな面積で接触して
いるため、起動トルクが大きい欠点がある。
However, in a conventional bearing in which only the groove 6 for generating dynamic pressure is provided in the thrust bearing part 3, the shaft body 1
If the axial position changes significantly between when the shaft is stopped and when it rotates, and if the thrust load changes or if the viscosity of lubricant such as oil or grease changes due to ambient temperature, the flying height of the shaft will change significantly. Since this occurs, there is a drawback that the axial position is unstable. In particular, in the bearing shown in FIG. 1, the lubricant leaks through the gap between the inner peripheral edge of the thrust bearing part 3 and the shaft body 1, which prevents the pressure of the lubricant from increasing and reduces the thrust load capacity. There are drawbacks. Furthermore, in both of the bearings shown in FIG. 1 and FIG. 2, the thrust end face 7 of the thrust bearing member 2 is in contact with the thrust bearing surface 5 of the thrust bearing part 3 over a large area, so the starting torque is large. be.

この発明は、上記の欠点を除去するためになさ
れたものであり、この発明の目的は、軸体の浮上
量が安定する動圧形スラスト軸受を提供すること
にあり、また、この発明の目的は、起動トルクが
小さく、大きいスラスト負荷能力が得られる動圧
形スラスト軸受を提供することにある。
This invention was made to eliminate the above-mentioned drawbacks, and an object of the invention is to provide a hydrodynamic thrust bearing in which the flying height of the shaft body is stable; The object of the present invention is to provide a dynamic pressure type thrust bearing that has a small starting torque and a large thrust load capacity.

すなわち、この発明は、図示する実施例のよう
に、スラスト軸受部材15を有するハウジング1
0の内周にスラスト受部材30を有する軸体40
を配設し、スラスト軸受部材15に設けたスラス
ト受面16とスラスト受部材30に設けたスラス
ト端面32とが対向し、スラスト受面16とスラ
スト端面32との少なくとも一方に動圧発生用の
みぞ20を設けた動圧形スラスト軸受において、
前記スラスト受面16とスラスト端面32との少
なくとも一方には動圧発生用のみぞ20の流出端
側に沿つて環状凸部18が同心状に突設され、軸
体40の停止時に前記環状凸部18を介してスラ
スト軸受部材15とスラスト受部材30とを接触
させ、軸体40の回転時にスラスト軸受すき間3
4から環状凸部18を通つて流出する潤滑剤をス
ラスト軸受すき間34に還流させる循環通路を設
けたことを特徴とする動圧形スラスト軸受に係
る。以下、この発明の実施例について、図面を参
照して説明する。
That is, the present invention provides a housing 1 having a thrust bearing member 15 as in the illustrated embodiment.
A shaft body 40 having a thrust receiving member 30 on the inner circumference of
The thrust receiving surface 16 provided on the thrust bearing member 15 and the thrust end surface 32 provided on the thrust receiving member 30 face each other, and at least one of the thrust receiving surface 16 and the thrust end surface 32 has a structure for generating dynamic pressure. In a hydrodynamic thrust bearing with grooves 20,
At least one of the thrust receiving surface 16 and the thrust end surface 32 is provided with an annular protrusion 18 concentrically protruding along the outflow end side of the groove 20 for generating dynamic pressure. The thrust bearing member 15 and the thrust bearing member 30 are brought into contact via the portion 18, and the thrust bearing clearance 3 is closed when the shaft body 40 rotates.
The present invention relates to a dynamic pressure type thrust bearing characterized in that a circulation passage is provided for circulating lubricant flowing out from the lubricant 4 through the annular convex portion 18 into the thrust bearing gap 34. Embodiments of the present invention will be described below with reference to the drawings.

第3図は、この発明の第1実施例である。ハウ
ジング部材9には、同一中心軸線を有する小径の
円筒穴11と大径の円筒穴12とが、それぞれ上
下方向に開口して設けられている。小径の円筒孔
11には、円筒状体のスリーブ13を嵌合して固
定し、大径の円筒孔12には、スラスト軸受部材
15を嵌合し、該円筒孔12の底面に密着させて
固定してある。ハウジング10はハウジング部材
9とスリーブ13とスラスト軸受部材15とから
構成され、スリーブ13は、その内周面にラジア
ル内面14が形成されたラジアル軸受部材であ
る。スラスト軸受部材15は、前記スリーブ13
と同一の内径を有する円盤状体であり、スラスト
受面16には、内周縁に沿つて環状凸部18を同
心状に設け、該環状凸部18の外側縁からスラス
ト受面16の外周縁までの間にスパイラル状の動
圧発生用のみぞ20が設けてある(同図b参照)。
この環状凸部18のスラスト受面16からの高さ
は、数10μmを限定として適宜選定する。また、
スラスト軸受部材15の底面には、半径方向に連
通溝21を設け、該連通溝21を外周面の軸方向
に設けた流通溝22に連通させてある。この連通
溝21と流通溝22とは、図示実施例のように1
組に限らず、複数組として設けてもよい。
FIG. 3 shows a first embodiment of the invention. The housing member 9 is provided with a small-diameter cylindrical hole 11 and a large-diameter cylindrical hole 12 having the same central axis and opening in the vertical direction, respectively. A cylindrical sleeve 13 is fitted and fixed in the small diameter cylindrical hole 11, and a thrust bearing member 15 is fitted in the large diameter cylindrical hole 12 and brought into close contact with the bottom surface of the cylindrical hole 12. It is fixed. The housing 10 is composed of a housing member 9, a sleeve 13, and a thrust bearing member 15, and the sleeve 13 is a radial bearing member having a radial inner surface 14 formed on its inner peripheral surface. The thrust bearing member 15 includes the sleeve 13
The thrust receiving surface 16 is provided with an annular convex portion 18 concentrically along the inner circumferential edge, and extends from the outer edge of the annular convex portion 18 to the outer circumferential edge of the thrust receiving surface 16. A spiral groove 20 for generating dynamic pressure is provided between the two ends (see b in the same figure).
The height of this annular convex portion 18 from the thrust receiving surface 16 is appropriately selected with a limit of several tens of micrometers. Also,
A communication groove 21 is provided in the bottom surface of the thrust bearing member 15 in the radial direction, and the communication groove 21 is communicated with a communication groove 22 provided in the axial direction on the outer peripheral surface. The communication groove 21 and the circulation groove 22 are connected to one another as in the illustrated embodiment.
It is not limited to one set, but may be provided as a plurality of sets.

上記のハウジング10のスリーブ13およびス
ラスト軸受部材15には、スラスト受部材30を
一体に成形した軸体40を、スラスト受部材30
を大径の円筒穴12内に配置して貫通させてあ
る。スラスト受部材30には、前記スラスト軸受
部材15のスラスト受面16に対向する平面状の
スラスト端面32が形成され、軸体40の停止時
においては、スラスト端面32は、前記スラスト
軸受部材15の環状凸部18の上端面に接触し
て、スラスト軸受部材15のスラスト受面16と
の間にスラスト軸受すき間34を形成している。
また、軸体40には、スリーブ13のラジアル内
面14に対向するラジアル外面44が形成され、
スリーブ13のラジアル内面14との間に、ラジ
アル軸受すき間46を形成している。軸体40の
ラジアル外面44には、頂部がスラスト軸受部材
15側に偏位した非対称のヘリングボーン状のみ
ぞ50が設けてある。
The sleeve 13 and the thrust bearing member 15 of the housing 10 are provided with a shaft body 40 integrally molded with the thrust bearing member 30.
is arranged in a large diameter cylindrical hole 12 and penetrated therethrough. The thrust bearing member 30 is formed with a planar thrust end face 32 that faces the thrust bearing surface 16 of the thrust bearing member 15. When the shaft body 40 is stopped, the thrust end face 32 is formed on the thrust bearing member 15. A thrust bearing gap 34 is formed between the annular convex portion 18 and the thrust bearing surface 16 of the thrust bearing member 15 by contacting the upper end surface of the annular convex portion 18 .
Further, the shaft body 40 is formed with a radial outer surface 44 that faces the radial inner surface 14 of the sleeve 13,
A radial bearing gap 46 is formed between the sleeve 13 and the radial inner surface 14 . The radial outer surface 44 of the shaft body 40 is provided with an asymmetric herringbone-shaped groove 50 whose top portion is deviated toward the thrust bearing member 15 side.

上記の構成により、ハウジング10のスリーブ
13およびスラスト軸受部材15を介してそれぞ
れ半径方向および軸方向に支持された軸体40が
回転すると、スラスト軸受部材15のスラスト受
面16に設けてあるスパイラル状のみぞ20のポ
ンピング作用による動圧が発生して、スラスト軸
受すき間34に潤滑剤(この実施例では油、グリ
ースまたは空気等の気体)が半径方向内側に向つ
て流入する。軸体40の回転初期においては、ス
ラスト受部材30がスラスト軸受部材15の環状
凸部18の上端面に接触して、スラスト軸受すき
間34に流入した潤滑剤の流出を遮断しているた
め、軸体40の回転が進行するにつれて潤滑剤の
圧力が上昇して環状凸部18における圧力が最も
高くなる。このようにして、潤滑剤の圧力が一定
の高さに上昇した時点で、スラスト受部材30に
上向きの力が作用して軸体40が浮上する。軸体
40の浮上によつて、スラスト受部材30と環状
凸部18との間にすき間hができると、潤滑剤
が、環状凸部18を超えてスラスト軸受部材15
と軸体40との間のすき間48に流出するように
なるから、潤滑剤の圧力は低下する。潤滑剤が環
状凸部18を超えて流出しても、軸体40のラジ
アル外面44には、非対称のヘリングボーン状の
みぞ50が設けてあり、このみぞ50による動圧
がラジアル軸受すき間46に発生しているから、
ハウジング10の外部に漏出することはなく、ス
ラスト軸受部材15の連通溝21と流通溝22と
を経て再びスラスト軸受すき間34に流入する。
このように、スラスト軸受部材15と軸体40と
の間のすき間48と、スラスト軸受部材15の連
通溝21と、流通溝22とを相互に連通させて、
潤滑剤の循環通路を形成し、環状凸部18を超え
て流出した潤滑剤をスラスト軸受部材15の周り
を循環させることにより、潤滑剤の圧力を一定に
保持することができるから、軸体40が浮上した
ときのスラスト受部材30とスラスト軸受部材1
5の環状凸部18との間には、常時一定のすき間
hが維持されて軸体40の浮上量が安定し、一定
のスラスト負荷能力が得られるとともに、軸体4
0の浮上量も小さくなる。
With the above configuration, when the shaft body 40 supported in the radial direction and the axial direction via the sleeve 13 and the thrust bearing member 15 of the housing 10 rotates, the spiral shape provided on the thrust bearing surface 16 of the thrust bearing member 15 rotates. Dynamic pressure is generated by the pumping action of the groove 20, and the lubricant (in this embodiment, a gas such as oil, grease, or air) flows radially inward into the thrust bearing gap 34. In the initial stage of rotation of the shaft body 40, the thrust bearing member 30 contacts the upper end surface of the annular convex portion 18 of the thrust bearing member 15 and blocks the outflow of the lubricant that has flowed into the thrust bearing gap 34. As the rotation of the body 40 progresses, the pressure of the lubricant increases and the pressure at the annular convex portion 18 becomes the highest. In this way, when the pressure of the lubricant increases to a certain level, an upward force acts on the thrust receiving member 30, causing the shaft body 40 to float. When a gap h is created between the thrust bearing member 30 and the annular convex portion 18 due to the floating of the shaft body 40, the lubricant passes over the annular convex portion 18 and flows into the thrust bearing member 15.
Since the lubricant flows into the gap 48 between the lubricant and the shaft 40, the pressure of the lubricant decreases. Even if the lubricant flows out beyond the annular convex portion 18, the radial outer surface 44 of the shaft body 40 is provided with an asymmetric herringbone-shaped groove 50, and the dynamic pressure due to this groove 50 is applied to the radial bearing clearance 46. Because it is occurring,
It does not leak out of the housing 10, but flows into the thrust bearing gap 34 again through the communication groove 21 and the circulation groove 22 of the thrust bearing member 15.
In this way, the gap 48 between the thrust bearing member 15 and the shaft body 40, the communication groove 21 of the thrust bearing member 15, and the circulation groove 22 are made to communicate with each other,
By forming a lubricant circulation passage and circulating the lubricant that has flowed out beyond the annular convex portion 18 around the thrust bearing member 15, the pressure of the lubricant can be kept constant. Thrust bearing member 30 and thrust bearing member 1 when floating
A constant gap h is always maintained between the shaft body 40 and the annular convex portion 18 of the shaft body 40, the flying height of the shaft body 40 is stabilized, and a constant thrust load capacity is obtained.
The flying height at 0 also becomes smaller.

なお、スラスト軸受部材15の内径寸法をスリ
ーブ13の内径寸法よりも大きくしてもよい。
Note that the inner diameter of the thrust bearing member 15 may be larger than the inner diameter of the sleeve 13.

第4図は、第3図で説明した第1実施例の変形
例である。この変形例では、スラスト軸受部材1
5のスラスト受面16にヘリングボーン状の動圧
発生用のみぞ20を設け、該みぞ20の頂部(流
出端側)に2条の環状凸部18を適宜の間隔をお
いて隣接させて設けてある。この環状凸部18の
間の凹部に軸方向の循環孔23を設け、該循環孔
23を底部の半径方向に設けた連通溝21に連通
させ、連通溝21は外周面の軸方向に設けた流通
溝22に連通させてある。また、ハウジング10
の小径の円筒穴11は、その内周面をラジアル内
面として軸体40を貫通させ、軸体40のラジア
ル外面44には、スパイラル状のみぞ50が設け
てある。
FIG. 4 shows a modification of the first embodiment explained in FIG. In this modification, the thrust bearing member 1
A herringbone-shaped groove 20 for generating dynamic pressure is provided in the thrust receiving surface 16 of 5, and two annular protrusions 18 are provided adjacently at an appropriate interval at the top of the groove 20 (outflow end side). There is. An axial circulation hole 23 is provided in the recess between the annular protrusions 18, and the circulation hole 23 is communicated with a communication groove 21 provided in the radial direction of the bottom, and the communication groove 21 is provided in the axial direction on the outer peripheral surface. It is communicated with the flow groove 22. In addition, housing 10
The small-diameter cylindrical hole 11 passes through the shaft body 40 with its inner peripheral surface serving as a radial inner surface, and a spiral groove 50 is provided in the radial outer surface 44 of the shaft body 40.

上記構成の軸受において、軸体40が回転する
と、ヘリングボーン状のみぞ20の動圧によつて
スラスト軸受すき間34に流入した潤滑剤は、み
ぞ20の頂部において最も高い圧力に上昇する。
これにより、軸体40が浮上し、スラスト受部材
30と環状凸部18との間にすき間hができる
と、潤滑剤が環状凸部18を超えて循環孔23に
流出するので、その後は圧力が上昇することはな
く、一定のすき間hが維持された平衡状態とな
り、軸体40の浮上量が安定する。循環孔23に
流出した潤滑剤は、スラスト軸受部材15の連通
溝21から分岐してスラスト軸受部材15と軸体
40との間のすき間48と流通溝22とを経てス
ラスト軸受すき間34に還流する。スラスト軸受
部材15と軸体40との間のすき間48に流出し
た潤滑剤は、軸体40のラジアル外面44に設け
たスパイラル状のみぞ50の動圧によつて、外部
への漏出が挿止される。
In the bearing configured as described above, when the shaft body 40 rotates, the lubricant flowing into the thrust bearing gap 34 due to the dynamic pressure in the herringbone-shaped groove 20 rises to the highest pressure at the top of the groove 20.
As a result, when the shaft body 40 floats and a gap h is created between the thrust receiving member 30 and the annular protrusion 18, the lubricant flows out into the circulation hole 23 over the annular protrusion 18. does not rise, resulting in an equilibrium state in which a constant gap h is maintained, and the flying height of the shaft body 40 is stabilized. The lubricant flowing into the circulation hole 23 branches from the communication groove 21 of the thrust bearing member 15, passes through the gap 48 between the thrust bearing member 15 and the shaft body 40, and the circulation groove 22, and then flows back into the thrust bearing gap 34. . The lubricant leaking into the gap 48 between the thrust bearing member 15 and the shaft body 40 is prevented from leaking to the outside by the dynamic pressure of the spiral groove 50 provided on the radial outer surface 44 of the shaft body 40. be done.

なお、循環孔23から連通溝21を通つて連通
溝22に通ずる循環通路と、循環孔23から連通
溝21を通つてスラスト軸受部材と軸体との間の
すき間48に通ずる循環通路とを別々に設けても
よい。
Note that the circulation passage from the circulation hole 23 to the communication groove 22 through the communication groove 21 and the circulation passage from the circulation hole 23 to the gap 48 between the thrust bearing member and the shaft body through the communication groove 21 are separated. may be provided.

第5図は、この発明の第2実施例である。この
実施例では、ハウジング部材9の円筒穴11の下
端を溝形断面のラジアル軸受部材13で閉塞し
て、軸体40のラジアル外面44側の端部を密閉
し、軸体40のラジアル外面44には、上下対称
のヘリングボーン状のみぞ50を設けている。ス
ラスト軸受部材15の構成は、第3図の場合と同
一であるから同一部分には同一符号を付して示
す。軸体40の回転時における潤滑剤は、第3図
の実施例と同一の循環通路を経て還流する。
FIG. 5 shows a second embodiment of the invention. In this embodiment, the lower end of the cylindrical hole 11 of the housing member 9 is closed with the radial bearing member 13 having a groove-shaped cross section, the end on the radial outer surface 44 side of the shaft body 40 is sealed, and the radial outer surface 44 of the shaft body 40 is sealed. is provided with a vertically symmetrical herringbone-shaped groove 50. The configuration of the thrust bearing member 15 is the same as that shown in FIG. 3, so the same parts are designated by the same reference numerals. When the shaft body 40 rotates, the lubricant flows back through the same circulation path as in the embodiment shown in FIG.

第6図は、第5図の実施例の変形例であり、軸
体40のラジアル外面44部分を小径に成形し
て、軸67に別体のスラスト受部材30を固着し
た場合を示し、軸体40のラジアル外面44には
動圧発生用のみぞを設けないで、ハウジング10
の円筒孔11に直接挿入してある。
FIG. 6 shows a modification of the embodiment shown in FIG. 5, in which the radial outer surface 44 portion of the shaft body 40 is formed to have a small diameter, and a separate thrust receiving member 30 is fixed to the shaft 67. The housing 10 is not provided with a groove for generating dynamic pressure on the radial outer surface 44 of the body 40.
It is directly inserted into the cylindrical hole 11 of.

上記第3図ないし第5図の実施例においては、
軸体40のラジアル外面44に動圧発生用のみぞ
50が設けてあるが、このみぞ50は、ハウジン
グ10側に設けることもできる。
In the embodiments shown in FIGS. 3 to 5 above,
A groove 50 for generating dynamic pressure is provided on the radial outer surface 44 of the shaft body 40, but this groove 50 may also be provided on the housing 10 side.

なお、スラスト軸受部材15の内径寸法を円筒
孔11の内径寸法より小さくし、スラスト軸受部
材15のラジアル内面と、スラスト軸受部材15
のラジアル内面に対向する軸体40のラジアル外
面との少なくとも一方にヘリングボーン状のみぞ
又はスパイラル状のみぞを形成してもよい。
Note that the inner diameter of the thrust bearing member 15 is made smaller than the inner diameter of the cylindrical hole 11, so that the radial inner surface of the thrust bearing member 15 and the thrust bearing member 15
A herringbone groove or a spiral groove may be formed in at least one of the radial inner surface of the shaft body 40 and the opposing radial outer surface of the shaft body 40 .

第7図は、この発明をスピンドルユニツトに適
用した場合を示す第3実施例である。このスピン
ドルユニツトは、ラジアル軸受部60aとスラス
ト軸受部60bとを一体に成形した動圧軸受部材
60とラジアル軸受部材62とを、それぞれハウ
ング部材9の上下両側に嵌着して、軸体40の上
方のラジアル外面44aを動圧軸受部材60のラ
ジアル軸受部60aにより、下方のラジアル外面
44bをラジアル軸受部材62によりそれぞれ半
径方向に支持している。軸体40の上方のラジア
ル外面44aには上下非対称のヘリングボーン状
のみぞ50aが設けられ、また下方のラジアル外
面44bには、上下対称のヘリングボーン状のみ
ぞ50bが設けてある。ハウジング10の両側端
部には、磁性流体シール65を設け、ハウジング
10内に封入された油、グリース等の潤滑剤の漏
出を防止している。
FIG. 7 shows a third embodiment in which the present invention is applied to a spindle unit. In this spindle unit, a hydrodynamic bearing member 60 and a radial bearing member 62, which are integrally molded with a radial bearing part 60a and a thrust bearing part 60b, are fitted to the upper and lower sides of the housing member 9, respectively, and the shaft body 40 is The upper radial outer surface 44a is supported in the radial direction by a radial bearing portion 60a of the dynamic pressure bearing member 60, and the lower radial outer surface 44b is supported in the radial direction by a radial bearing member 62. The upper radial outer surface 44a of the shaft body 40 is provided with a vertically asymmetrical herringbone-shaped groove 50a, and the lower radial outer surface 44b is provided with a vertically symmetrical herringbone-shaped groove 50b. Magnetic fluid seals 65 are provided at both ends of the housing 10 to prevent leakage of lubricants such as oil and grease sealed within the housing 10.

上記の動圧軸受部材60のスラスト軸受部60
bのスラスト受面には、前記第3図の実施例と同
様にスパイラル状の動圧発生用のみぞ20と環状
凸部18とが設けてある。
Thrust bearing portion 60 of the above hydrodynamic bearing member 60
The thrust receiving surface b is provided with a spiral groove 20 for generating dynamic pressure and an annular convex portion 18, similar to the embodiment shown in FIG.

動圧軸受部材60のスラスト軸受部60bと対
向するスラスト受部材30は、軸67と一体に成
形されているが、このスラスト受部材30には、
軸67との接合部に軸方向の循環孔35が設けて
ある。
The thrust bearing member 30, which faces the thrust bearing portion 60b of the hydrodynamic bearing member 60, is integrally formed with the shaft 67.
An axial circulation hole 35 is provided at the joint with the shaft 67.

上記構成の軸受において、軸体40が回転して
スラスト軸受すき間に34流入した潤滑剤の圧力
が上昇し、スラスト受部材30とスラスト軸受部
60bの環状凸部18との間にすき間ができて軸
体40が浮上すると、環状凸部18を超えて流出
した潤滑剤は、スラスト受部材30の循環孔35
に流出し、該循環孔35からスラスト受部材30
の反スラスト端面とハウジング10との間のすき
間を経て、スラスト受部材30の外周面とハウジ
ング10との間のすき間を通り、スラスト軸受す
き間34に還流して一定の圧力を保持する。
In the bearing configured as described above, as the shaft body 40 rotates, the pressure of the lubricant flowing into the thrust bearing gap 34 increases, and a gap is created between the thrust bearing member 30 and the annular convex portion 18 of the thrust bearing portion 60b. When the shaft body 40 floats, the lubricant flowing out beyond the annular convex portion 18 flows into the circulation hole 35 of the thrust receiving member 30.
from the circulation hole 35 to the thrust receiving member 30.
It passes through the gap between the anti-thrust end surface of the thrust bearing member 30 and the housing 10, passes through the gap between the outer peripheral surface of the thrust bearing member 30 and the housing 10, and returns to the thrust bearing gap 34 to maintain a constant pressure.

なお潤滑剤として空気を使用し、上方の磁性流
体シール65を省略すると、軸体40の回転時に
スラスト軸受すき間34から環状凸部18を通つ
て流出する潤滑剤が循環孔35から外部に排出さ
れる。
Note that when air is used as the lubricant and the upper magnetic fluid seal 65 is omitted, the lubricant flowing out from the thrust bearing gap 34 through the annular convex portion 18 when the shaft body 40 rotates is discharged to the outside from the circulation hole 35. Ru.

第8図は、第7図の実施例の変形例であり、軸
67が大径部41と小径部42とからなり、スラ
スト受部材30を軸67の小径部42に嵌合して
固着した場合における潤滑剤の循環通路を示した
ものである。スラスト受部材30の内周面の軸方
向に循環孔35を設け、該循環孔35の中間位置
とスラスト受部材30の外周面との間に半径方向
の連通孔36が設けてある。このようにすると、
循環孔35に流入した潤滑剤が連通孔36を経て
スラスト受部材30の外周面に流出するから、潤
滑剤の流出方向を第7図のように軸方向ではな
く、半径方向に規制することができる。したがつ
て、ハウジング10の両側端部、とくに、スラス
ト受部材30側の端部を容易に密封できる。ハウ
ジング10の両側端部にシール体65を固定し、
このシール体65と対向する軸体40の外周面に
は、スパイラル状のみぞ51a,51bが設けて
ある。
FIG. 8 shows a modification of the embodiment shown in FIG. 7, in which the shaft 67 consists of a large diameter portion 41 and a small diameter portion 42, and the thrust receiving member 30 is fitted and fixed to the small diameter portion 42 of the shaft 67. This figure shows the lubricant circulation path in this case. A circulation hole 35 is provided in the axial direction of the inner peripheral surface of the thrust receiving member 30, and a radial communication hole 36 is provided between an intermediate position of the circulation hole 35 and the outer peripheral surface of the thrust receiving member 30. In this way,
Since the lubricant that has flowed into the circulation hole 35 flows out to the outer circumferential surface of the thrust receiving member 30 through the communication hole 36, the direction of the lubricant flow can be restricted to the radial direction rather than the axial direction as shown in FIG. can. Therefore, both ends of the housing 10, especially the end on the thrust receiving member 30 side, can be easily sealed. Seal bodies 65 are fixed to both ends of the housing 10,
Spiral grooves 51a and 51b are provided on the outer peripheral surface of the shaft body 40 facing the seal body 65.

第7図および第8図の実施例においては、動圧
軸受部材を一体形のものとして構成しているか
ら、軸受の組立が簡単にできるだけでなく、動圧
軸受部材を合成樹脂製とする場合においては、ス
ラスト軸受部とラジアル軸受部との双方に同時加
工により動圧発生用のみぞを設けることができ、
成形加工もきわめて容易になる。
In the embodiments shown in FIGS. 7 and 8, since the hydrodynamic bearing member is constructed as an integral piece, it is not only possible to assemble the bearing easily, but also when the hydrodynamic bearing member is made of synthetic resin. In this case, grooves for generating dynamic pressure can be provided in both the thrust bearing part and the radial bearing part by simultaneous machining.
Molding processing also becomes extremely easy.

前記第3図ないし第8図の各実施例において、
軸体を回転させる場合に限らず、ハウジングを回
転させるようにしてもよい。
In each of the embodiments shown in FIGS. 3 to 8,
In addition to rotating the shaft, the housing may also be rotated.

またハウジング10をハウジング部材9とスリ
ーブ13とスラスト軸受部材15とから構成しな
いで、ハウジング10を一つの部材から構成して
もよく、複数の部材から構成してもよい。
Moreover, the housing 10 may not be composed of the housing member 9, the sleeve 13, and the thrust bearing member 15, but may be composed of one member, or may be composed of a plurality of members.

さらに、動圧形スラスト軸受を縦形でなく、横
形でも倒置しても使用できる。
Furthermore, the dynamic pressure type thrust bearing can be used not only vertically but also horizontally or upside down.

第9図ないし第13図は、この発明をフロツピ
ーデイスク駆動用モータ(フラツトモータ)の軸
受に適用した使用例である。
9 to 13 show examples of use of the present invention in a bearing of a floppy disk drive motor (flat motor).

第9図は、第1使用例を示し、同図において、
符号40は軸体、70は軸体40に固着された回
転盤、72は回転盤の頭部、74は固定盤、75
は固定盤74に固着されたハウジング部材、13
は軸体40を半径方向に支持するスリーブ、15
は回転盤70を軸方向に支持するスラスト軸受部
材、76はシール体、78はロータ、80はステ
ータをそれぞれ示す。
FIG. 9 shows a first usage example, in which:
40 is a shaft body, 70 is a rotary disk fixed to the shaft body 40, 72 is a head of the rotary disk, 74 is a fixed plate, 75
13 is a housing member fixed to a fixed platen 74;
15 is a sleeve that supports the shaft body 40 in the radial direction;
, a thrust bearing member that supports the rotary disk 70 in the axial direction, 76 a seal body, 78 a rotor, and 80 a stator, respectively.

第10図は、第9図のハウジング部材75、ス
リーブ13およびスラスト軸受部材15を拡大し
て示したものである。スリーブ13の内周面に
は、ヘリングボーン状の動圧発生用のみぞ50が
設けられている。スラスト軸受部材15のスラス
ト受面16には、内周縁に環状凸部18を設け、
外周線にはスパイラル状の動圧発生用のみぞ20
が設けてある。このみぞ20は、トルクを小さく
する必要からスラスト受面16の全面でなく、外
周縁に近接した一部分にのみ狭い幅で設ける。ま
た、スラスト軸受部材15の内周面の軸方向に循
環溝24を設け、該循環溝24を底面の半径方向
に設けた連通溝21を介して外周面の軸方向に設
けた流通溝22に連通させてある。
FIG. 10 is an enlarged view of the housing member 75, sleeve 13, and thrust bearing member 15 shown in FIG. The inner peripheral surface of the sleeve 13 is provided with a herringbone-shaped groove 50 for generating dynamic pressure. The thrust bearing surface 16 of the thrust bearing member 15 is provided with an annular convex portion 18 on the inner peripheral edge.
There is a spiral groove 20 on the outer circumference for generating dynamic pressure.
is provided. This groove 20 is provided with a narrow width not on the entire surface of the thrust receiving surface 16 but only on a portion close to the outer peripheral edge in order to reduce the torque. Further, a circulation groove 24 is provided in the axial direction on the inner peripheral surface of the thrust bearing member 15, and the circulation groove 24 is connected to the circulation groove 22 provided in the axial direction on the outer peripheral surface via the communication groove 21 provided in the radial direction on the bottom surface. It has been communicated.

第11図および第12図は、それぞれ第10図
の第1変形例および第2変形例である。
11 and 12 are a first modification and a second modification of FIG. 10, respectively.

第11図は、スラスト軸受部材15のスラスト
受面16の外周縁の一部に設けたスパイラル状の
みぞ20の内側縁に沿つて環状凸部18を設け、
該環状凸部18の内側に循環孔23を設けて該循
環孔23を連通溝21を介して流通溝22に連通
させた場合を示し、第12図は、スラスト軸受部
材15のスラスト受面16の外周縁の一部にヘリ
ングボーン状のみぞ20を設け、該みぞ20の頂
部に2条の環状凸部18をそれぞれ設け、該環状
凸部18の間に設けた循環孔23aとみぞ20の
内側に設けた循環孔23bと流通溝22とをそれ
ぞれ連通溝21に連通させた場合を示す。
In FIG. 11, an annular convex portion 18 is provided along the inner edge of a spiral groove 20 provided on a part of the outer peripheral edge of the thrust bearing surface 16 of the thrust bearing member 15,
A case is shown in which a circulation hole 23 is provided inside the annular convex portion 18 and the circulation hole 23 is communicated with the circulation groove 22 via the communication groove 21. FIG. A herringbone-shaped groove 20 is provided in a part of the outer peripheral edge of the groove 20, two annular protrusions 18 are provided at the top of the groove 20, and a circulation hole 23a provided between the annular protrusions 18 and the groove 20 are provided. A case is shown in which the circulation hole 23b and the circulation groove 22 provided on the inside are respectively communicated with the communication groove 21.

第13図は、第2使用例を示し、軸体40のラ
ジアル外面側部を固定盤74に貫通して、スラス
ト軸受部材15を倒置形とした場合である。符号
13はスリーブ、30は軸体40に固着されたス
ラスト受部材、70はスラスト受部材30に固着
された回転盤、72は軸体40の上端に固着され
た頭部、75は固定盤74に固着されたハウジン
グ部材、78はロータ、80はスラータをそれぞ
れ示す。スラスト軸受部材15の構成は前記第3
図の場合と同様であり、軸体40のラジアル外面
には非対称のヘリングボーン状のみぞ50が設け
てある。
FIG. 13 shows a second usage example, in which the radial outer surface side of the shaft body 40 penetrates the fixed platen 74, and the thrust bearing member 15 is made into an inverted type. 13 is a sleeve, 30 is a thrust receiving member fixed to the shaft body 40, 70 is a rotary disk fixed to the thrust receiving member 30, 72 is a head fixed to the upper end of the shaft body 40, and 75 is a fixed plate 74. 78 is a rotor, and 80 is a sluter, respectively. The structure of the thrust bearing member 15 is the same as that of the third
Similar to the case shown in the figure, the radial outer surface of the shaft body 40 is provided with an asymmetrical herringbone-shaped groove 50.

上記第9図ないし第13図の軸受において、軸
体40が回転したときの軸体40の浮上および潤
滑剤の循環の作動は、前述した第3図ないし第6
図の場合と同様であるが、とくにこのようなフラ
ツトモータにこの発明を適用することにより、回
転盤70がスラスト軸受部材15の環状凸部18
との間の微少すき間に油膜または気体膜を形成し
て、スラスト軸受部材15のスラスト受面16に
対して平行状態を保持して回転するから、スラス
ト軸受部材15のスラスト受面16がスリーブ1
3のラジアル内面14に対して正確に垂直になる
ようにしておけば、回転盤70のアキシアル振れ
が小さくなり、これによつて、回転盤70の頭部
72の側面におけるラジアル振れを小さくするこ
とができ、きわめて高い回転精度を安定して得る
ことが可能となる。
In the bearings shown in FIGS. 9 to 13 above, the floating of the shaft 40 and the circulation of lubricant when the shaft 40 rotates are similar to those shown in FIGS. 3 to 6 described above.
Although it is similar to the case shown in the figure, by applying the present invention to such a flat motor in particular, the rotary disk 70 can be attached to the annular convex portion 18 of the thrust bearing member 15.
The thrust bearing surface 16 of the thrust bearing member 15 rotates while maintaining a parallel state to the thrust bearing surface 16 of the thrust bearing member 15 by forming an oil film or a gas film in a minute gap between the sleeve 1 and the sleeve 1.
3, the axial runout of the rotary disk 70 can be reduced, thereby reducing the radial vibration on the side surface of the head 72 of the rotary disk 70. This makes it possible to stably obtain extremely high rotational accuracy.

第14図はこの発明の応用例であるが、スラス
ト軸受すき間34から環状凸部18を通つて流出
する潤滑剤の循環通路がなく、またラジアル外面
44に動圧発生用のみぞがない。なお図示の実施
例の他の個所は第3図の実施例とほぼ同様に構成
されている。
FIG. 14 shows an application example of the present invention, but there is no circulation path for lubricant flowing out from the thrust bearing gap 34 through the annular convex portion 18, and there is no groove in the radial outer surface 44 for generating dynamic pressure. The other parts of the illustrated embodiment are constructed almost the same as the embodiment shown in FIG.

従つて潤滑剤として空気を使用すると、軸体4
0の回転時にスラスト軸受すき間34から環状凸
部18を通つて流出する潤滑剤がラジアル内面1
4とラジアル外面44との間のすき間から外部に
排出される。
Therefore, if air is used as a lubricant, the shaft 4
The lubricant flowing out from the thrust bearing gap 34 through the annular convex portion 18 during the rotation of 0 is the radial inner surface 1.
4 and the radial outer surface 44.

以上、説明したところから明らかなように、こ
の発明は、スラスト軸受部材のスラスト受面とス
ラスト受部材に設けたスラスト端面との少なくと
も一方に形成された動圧発生用のみぞの流出端側
に環状凸部を突設して、該環状凸部を介してスラ
スト軸受部材とスラスト受部材とを接触させ、軸
体の回転時においてスラスト軸受すき間に流入し
た潤滑剤の圧力を環状凸部により上昇させて軸体
を軸方向に変位させ、環状凸部を通つて流出した
潤滑剤を循環通路を経て還流させる構成としてい
る。したがつて、この発明によれば、スラスト軸
受すき間の潤滑剤の圧力が、スラスト受部材とス
ラスト軸受部材との間のすき間によつて調整され
るから一定であり、軸体の軸方向変位が安定し、
一定のスラスト負荷能力が得られる。
As is clear from the above description, the present invention provides a groove for generating dynamic pressure formed on at least one of the thrust receiving surface of the thrust bearing member and the thrust end surface provided on the thrust receiving member. An annular projection is provided to bring the thrust bearing member into contact with the thrust receiving member through the annular projection, and the pressure of the lubricant flowing into the thrust bearing gap when the shaft rotates is increased by the annular projection. The lubricant flowing out through the annular convex portion is circulated through the circulation passage by displacing the shaft body in the axial direction. Therefore, according to the present invention, the pressure of the lubricant in the thrust bearing gap is constant because it is adjusted by the gap between the thrust bearing member and the thrust bearing member, and the axial displacement of the shaft body is stable,
A constant thrust load capacity is obtained.

また、この発明によれば、軸体が回転して軸方
向に変位した時点から潤滑剤の還流が始まり、潤
滑剤の圧力が調整されるので軸体の軸方向変位を
小さくすることができ、さらに、周囲温度により
潤滑剤の粘度が変化した場合でも、軸体の軸方向
変位が変動することはない。また、スラスト負荷
能力が高いとともに、潤滑剤の漏出もない。
Further, according to the present invention, the reflux of the lubricant starts from the moment the shaft body rotates and is displaced in the axial direction, and the pressure of the lubricant is adjusted, so that the axial displacement of the shaft body can be reduced. Furthermore, even if the viscosity of the lubricant changes due to ambient temperature, the axial displacement of the shaft body will not change. In addition, the thrust load capacity is high and there is no leakage of lubricant.

また、この発明によれば、軸体の停止時には、
スラスト受部材とスラスト軸受部材とが環状凸部
を介して接触し、接触面積が小さいから起動トル
クを小さくすることができる。
Further, according to this invention, when the shaft body is stopped,
The thrust receiving member and the thrust bearing member are in contact with each other via the annular convex portion, and since the contact area is small, the starting torque can be reduced.

さらに、スラスト軸受部材の動圧発生用のみぞ
と環状凸部とは、プレスまたはモールデイングに
より一体成形することができるから、簡易な工程
で安価な生産が可能となる。
Furthermore, since the groove for generating dynamic pressure and the annular convex portion of the thrust bearing member can be integrally formed by pressing or molding, it is possible to produce the thrust bearing member at a low cost with a simple process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ従来の動圧形
スラスト軸受を示し、第1図aおよび第2図aは
その断面図、第1図bおよび第2図bはスラスト
受面の平面図、第3図はこの発明の第1実施例を
示し、同図aはその断面図、同図bはスラスト受
面の平面図、第4図はこの発明の第1実施例の変
形例を示し、同図aはその断面図、同図bはスラ
スト受面の平面図、第5図はこの発明の第2実施
例を示す断面図、第6図はこの発明の第2実施例
の変形例を示す断面図、第7図はこの発明の第3
実施例を示す断面図、第8図はこの発明の第3実
施例の変形例を示す断面図、第9図はこの発明の
第1使用例を示す断面図、第10図aは第9図の
要部拡大断面図、第10図bはその平面図、第1
1図および第12図はそれぞれこの発明の第1使
用例の第1変形例および第2変形例を示し、第1
1図aおよび第12図aはその断面図、第11図
bおよび第12図bはその平面図、第13図はこ
の発明の第2使用例を示す断面図、第14図はこ
の発明の応用例を示す断面図である。 図中、10はハウジング、14はラジアル内
面、15はスラスト軸受部材、16はスラスト受
面、18は環状凸部、20は動圧発生用のみぞ、
21は連通溝、22は流通溝、23は循環孔、3
0はスラスト受部材、32はスラスト端面、34
はスラスト軸受すき間、35は循環孔、36は連
通孔、40は軸体、44はラジアル外面、48は
スラスト軸受部材と軸体との間のすき間である。
Figures 1 and 2 respectively show conventional dynamic pressure type thrust bearings, Figures 1a and 2a are cross-sectional views thereof, and Figures 1b and 2b are plan views of the thrust bearing surface. , FIG. 3 shows a first embodiment of the present invention, FIG. 3A shows a cross-sectional view thereof, FIG. , Figure a is a cross-sectional view thereof, Figure b is a plan view of the thrust receiving surface, Figure 5 is a cross-sectional view showing the second embodiment of the present invention, and Figure 6 is a modification of the second embodiment of the present invention. FIG. 7 is a sectional view showing the third embodiment of the present invention.
8 is a sectional view showing a modification of the third embodiment of the invention, FIG. 9 is a sectional view showing the first usage example of the invention, and FIG. 10a is FIG. Figure 10b is an enlarged sectional view of the main part of
1 and 12 respectively show a first modification and a second modification of the first usage example of the present invention.
1a and 12a are sectional views thereof, FIGS. 11b and 12b are plan views thereof, FIG. 13 is a sectional view showing a second usage example of the present invention, and FIG. 14 is a sectional view of the present invention. It is a sectional view showing an example of application. In the figure, 10 is a housing, 14 is a radial inner surface, 15 is a thrust bearing member, 16 is a thrust bearing surface, 18 is an annular convex portion, 20 is a groove for generating dynamic pressure,
21 is a communication groove, 22 is a circulation groove, 23 is a circulation hole, 3
0 is a thrust receiving member, 32 is a thrust end face, 34
35 is a thrust bearing gap, 35 is a circulation hole, 36 is a communication hole, 40 is a shaft body, 44 is a radial outer surface, and 48 is a gap between the thrust bearing member and the shaft body.

Claims (1)

【特許請求の範囲】 1 スラスト軸受部材を有するハウジングの内周
にスラスト受部材を有する軸体を配設し、スラス
ト軸受部材に設けたスラスト受面とスラスト受部
材に設けたスラスト端面とが対向し、スラスト受
面とスラスト端面との少なくとも一方に動圧発生
用のみぞを設けた動圧形スラスト軸受において、
前記スラスト受面とスラスト端面との少なくとも
一方には動圧発生用のみぞの流出端側に沿つて環
状凸部が同心状に突設され、軸体の停止時に前記
環状凸部を介してスラスト軸受部材とスラスト受
部材とを接触させ、軸体の回転時にスラスト軸受
すき間から環状凸部を通つて流出する潤滑剤をス
ラスト軸受すき間に還流させる循環通路を設けた
ことを特徴とする動圧形スラスト軸受。 2 スラスト受面にスパイラル状のみぞを形成
し、スラスト受面の内周縁に環状凸部を設け、ス
ラスト軸受部材と軸体との間のすき間と、スラス
ト軸受部材の底面の半径方向に設けた連通溝およ
び外周面の軸方向に設けた流通溝とにより潤滑剤
の循環通路が形成されている特許請求の範囲第1
項記載の動圧形スラスト軸受。 3 スラスト受面にヘリングボーン状のみぞを形
成し、該みぞの頂部に2条の環状凸部を隣接して
設け、スラスト軸受部材と軸体との間のすき間
と、環状凸部相互間の凹部に軸方向に設けた循環
孔と、スラスト軸受部材の底面の半径方向に設け
た連通溝および外周面の軸方向に設けた流通溝と
により潤滑剤の循環通路が形成されている特許請
求の範囲第1項記載の動圧形スラスト軸受。 4 スラスト受面にスパイラル状のみぞを形成
し、スラスト受面の内周縁に環状凸部を設け、ス
ラスト受部材の軸との接合部の軸方向に設けた循
環孔と、スラスト受部材の反スラスト端面および
外周面とハウジングとの間のすき間とにより潤滑
剤の循環通路が形成されている特許請求の範囲第
1項記載の動圧形スラスト軸受。 5 スラスト受面にスパイラル状のみぞを形成
し、スラスト受面の内周縁に環状凸部を設け、ス
ラスト受部材の軸との接合部の軸方向に設けた循
環孔と、該循環孔とスラスト受部材の外周面との
間に設けた連通孔とにより潤滑剤の循環通路が形
成されている特許請求の範囲第1項記載の動圧形
スラスト軸受。 6 軸体のラジアル外面側部がハウジングを貫通
し、ハウジングのラジアル内面と軸体のラジアル
外面との少なくとも一方に、スラスト軸受部材側
に頂部が偏位した非対称のヘリングボーン状のみ
ぞが形成されている特許請求の範囲第1項ないし
第5項の何れかに記載の動圧形スラスト軸受。
[Claims] 1. A shaft body having a thrust bearing member is disposed on the inner periphery of a housing having a thrust bearing member, and a thrust bearing surface provided on the thrust bearing member and a thrust end face provided on the thrust bearing member are opposed to each other. However, in a dynamic pressure type thrust bearing in which a groove for generating dynamic pressure is provided on at least one of the thrust receiving surface and the thrust end surface,
At least one of the thrust receiving surface and the thrust end face has an annular protrusion protruding concentrically along the outflow end side of the groove for generating dynamic pressure, and when the shaft body is stopped, the thrust is generated through the annular protrusion. A dynamic pressure type characterized in that a bearing member and a thrust bearing member are brought into contact with each other, and a circulation passage is provided in which the lubricant that flows out from the thrust bearing gap through the annular convex portion when the shaft body rotates is returned to the thrust bearing gap. Thrust bearing. 2 A spiral groove is formed on the thrust bearing surface, an annular convex portion is provided on the inner peripheral edge of the thrust bearing surface, and an annular convex portion is provided in the gap between the thrust bearing member and the shaft body and in the radial direction of the bottom surface of the thrust bearing member. Claim 1, wherein a lubricant circulation passage is formed by the communication groove and the circulation groove provided in the axial direction on the outer peripheral surface.
Dynamic pressure type thrust bearing as described in . 3 A herringbone-shaped groove is formed on the thrust bearing surface, and two annular protrusions are provided adjacent to each other at the top of the groove to reduce the gap between the thrust bearing member and the shaft body and between the annular protrusions. A lubricant circulation passage is formed by a circulation hole provided in the axial direction in the recess, a communication groove provided in the radial direction on the bottom surface of the thrust bearing member, and a circulation groove provided in the axial direction on the outer peripheral surface. A hydrodynamic thrust bearing as described in Range 1. 4 A spiral groove is formed on the thrust receiving surface, an annular convex portion is provided on the inner peripheral edge of the thrust receiving surface, and a circulation hole is provided in the axial direction of the joint with the shaft of the thrust receiving member, and 2. The dynamic pressure type thrust bearing according to claim 1, wherein a lubricant circulation passage is formed by a gap between the thrust end face, the outer peripheral surface, and the housing. 5 A spiral groove is formed on the thrust receiving surface, an annular convex portion is provided on the inner peripheral edge of the thrust receiving surface, a circulation hole is provided in the axial direction of the joint with the shaft of the thrust receiving member, and the circulation hole and the thrust 2. The dynamic pressure type thrust bearing according to claim 1, wherein a lubricant circulation passage is formed by a communication hole provided between the receiving member and the outer circumferential surface of the receiving member. 6. The radial outer surface side of the shaft body passes through the housing, and an asymmetric herringbone-shaped groove is formed on at least one of the radial inner surface of the housing and the radial outer surface of the shaft body, the top of which is deviated toward the thrust bearing member. A dynamic pressure type thrust bearing according to any one of claims 1 to 5.
JP11958082A 1982-07-09 1982-07-09 Dynamic-pressure thrust bearing Granted JPS5913113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11958082A JPS5913113A (en) 1982-07-09 1982-07-09 Dynamic-pressure thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11958082A JPS5913113A (en) 1982-07-09 1982-07-09 Dynamic-pressure thrust bearing

Publications (2)

Publication Number Publication Date
JPS5913113A JPS5913113A (en) 1984-01-23
JPH0143847B2 true JPH0143847B2 (en) 1989-09-22

Family

ID=14764869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11958082A Granted JPS5913113A (en) 1982-07-09 1982-07-09 Dynamic-pressure thrust bearing

Country Status (1)

Country Link
JP (1) JPS5913113A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194021A (en) * 1986-02-17 1987-08-26 Ebara Res Co Ltd Spiral group bearing
JPH01238712A (en) * 1988-03-16 1989-09-22 Canon Inc Rotation device
JPH085369Y2 (en) * 1988-06-27 1996-02-14 光洋精工株式会社 Thrust hydrodynamic bearing
DE3900729A1 (en) * 1989-01-12 1990-07-19 Philips Patentverwaltung TURNING ANODE TUBE WITH A SLIDING BEARING, ESPECIALLY A SPIRAL GROOVE BEARING
KR100467363B1 (en) * 2001-04-16 2005-01-24 머신나우 주식회사 Sliding Bearing using Leaf Springs
JP4846470B2 (en) * 2005-07-20 2011-12-28 Ntn株式会社 DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME

Also Published As

Publication number Publication date
JPS5913113A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
US6456458B1 (en) Disk-drive motor rotating on a magnetically counterbalanced single hydrodynamic thrust bearing
US6034454A (en) Motor
US5847479A (en) Self-pressure-balanced hydrodynamic bearing spindle motor
JP3665549B2 (en) Thrust dynamic pressure bearing and spindle motor provided with the same
US5634724A (en) Hydrodynamic bearing for spindle motor having high inertial load
US6854889B2 (en) Hydrodynamic pressure bearing, spindle motor in which it is utilized, and disk-drive device furnished with the spindle motor
US7048444B2 (en) Fluid lubricated bearing device
US7604411B2 (en) Fluid lubricated bearing device
US6793394B2 (en) Hydrodynamic bearing device
US20030002757A1 (en) Dynamic bearing device and motor having the same
US20060120643A1 (en) Fluid lubricated bearing device
US7524113B2 (en) Hydrodynamic bearing device
JP2004270820A (en) Fluid dynamic-pressure bearing, spindle motor and recording disk driver
US7940492B2 (en) Hydrodynamic bearing device, spindle motor, and recording and reproducing apparatus
US7237955B2 (en) Hydrodynamic bearing and disc rotation apparatus using the same
JPH0143847B2 (en)
US7237956B2 (en) Hydrodynamic bearing and disc rotation apparatus using the same
JP2005016556A (en) Conical dynamic pressure bearing device, and recording disk drive device having the same
JP2006112614A (en) Dynamic pressure bearing device
JPH033805B2 (en)
JP3842499B2 (en) Hydrodynamic bearing unit
JP2000352416A (en) Dynamic pressure type bearing unit and its manufacture
KR100517085B1 (en) Fluid dynamic bearing motor
JP3828464B2 (en) Spindle motor and disk drive device having the same
JPH10299763A (en) Spindle motor for dynamic bearing