JPH0143828B2 - - Google Patents

Info

Publication number
JPH0143828B2
JPH0143828B2 JP54046769A JP4676979A JPH0143828B2 JP H0143828 B2 JPH0143828 B2 JP H0143828B2 JP 54046769 A JP54046769 A JP 54046769A JP 4676979 A JP4676979 A JP 4676979A JP H0143828 B2 JPH0143828 B2 JP H0143828B2
Authority
JP
Japan
Prior art keywords
alloy
atomic
alloys
formula
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54046769A
Other languages
Japanese (ja)
Other versions
JPS54148122A (en
Inventor
Eberetsuto Raboosukii Furetsudo
Rii Uorutaa Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS54148122A publication Critical patent/JPS54148122A/en
Publication of JPH0143828B2 publication Critical patent/JPH0143828B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一般に合金技術に関するもので、更
に詳しく言えば、特異な組合せの物理的および磁
気的性質を有する新規な非晶質合金並びにそれか
ら製造されたリボンやその他の有用な製品に関す
る。 当業者にとつて公知の通り、飽和磁化の強さが
大きい非晶質合金は、配電変圧器が電力変圧器の
ごとき電気機器において使用すれば有利である。
しかしながら、かかる合金は上記のごとき目的に
とつて必要な延性および安定性に欠けている。た
とえば、鉄含量の大きいFe80B20合金は、15700〜
16100ガウスの4πMsを有するが、約340℃では2
時間以内に結晶化を開始し、しかも電気機器の柔
軟なリボンとして製造することが極めて困難であ
る。他方、それに比べて安定性がやや大きくかつ
上記のごとき目的にとつて十分な延性を有する非
晶質合金も従来公知であつたが、それらは飽和磁
化の強さがあまりに小さい。 さて、後述のごとき新規な着想に基づく本発明
によれば、非晶質金属において所望の磁気的性質
および物理的性質にいずれかを選ばなければなら
ないという従来の欠点が排除できる。換言すれ
ば、優れた磁気的性質および高温安定性を有しか
つ電気機器の構成用として使用するのに十分な延
性を持つたリボンの形で非晶質金属を得ることが
本発明によつて可能となるのである。その上、発
電、送電および電力利用の全般における非晶質金
属の有用性という点から見て特に有利な上記のご
とき組合せの性質は、それの代償として何らの欠
点をも生じることなしに達成されるのである。 かかる新規な結果は、非晶質合金の飽和磁化の
強さが、合金中のガラス形成成分に由来する有効
電子の数によつて左右されるという知見に基づく
ものである。それはまた、かかる合金中に含まれ
るガラス形成元素の種類が多くなるに従つて、そ
の安定性が向上するという観察結果にも基づいて
いる。すなわち、二元合金Fe80B20は延性の大き
い非晶質リボンとして製造するのが困難であるけ
れども、新たなガラス形成元素を少量だけ添加す
れば、同じ条件下で延性の大きいリボンを製造し
得ることが判明したのである。 更にまた、ホウ素よりも有効電子数の多いケイ
素をFe80B20に添加すれば4πMsが減小するとは言
え、延性の改善は大きく、しかも飽和磁化の強さ
はほんの僅かしか低下しないことも判明した。そ
の上、80〜84(原子)%の鉄を含有する合金にお
いて、ホウ素の一部をケイ素で置換した場合には
高温下での結晶化傾向に対する安定性が実質的に
向上する。更に本発明の一般的な着想に従えば、
リン、アルミニウム、炭素、そしてまた硫黄のご
とき元素を特定の条件下で個別にもしくは組合わ
せてケイ素と併用することによつても、上記のご
とき新規な結果および利益が得られるのである。
いずれの場合にせよ、ガラス形成元素の添加は、
合金の鉄含量を約80(原子)%未満に低下させる
ことなしに行わねばならない。同様に、本発明の
合金中における最小ケイ素含量は約1(原子)%
である。リンおよび硫黄の最大含量は、個別に使
用するにせよ組合わせて使用するにせよ、0.5(原
子)%を越えてはならない。このような範囲を逸
脱した場合には、所望の磁気的および物理的性質
の1つまたは幾つかが実質的に低下することにな
る。 簡単に言えば、本発明は80〜84(原子)%の鉄、
12〜15(原子)%のホウ素、および1〜8(原子)
%のケイ素を含有する鉄−ホウ素−ケイ素の非晶
質合金に関するもので、その結果としてかかる合
金は延性、高温安定性および飽和磁束密度をはじ
めとする特異な組合せの物理的および磁気的性質
を有している。 本発明はまた、たとえば電動機、発電機、変圧
器またはその他の電気機器の電磁部品の構成用と
して適した上記のごとき新規な合金のリボンにも
関する。 本発明の新規な合金を製造するためには、粉末
状の合金成分を所望の比率で混合し、次いで得ら
れた混合物を融解して、溶融合金としてから所望
寸法のリボンに成形すればよい。かかる成形作業
に際しては、非晶質合金を得るのに十分な速度で
冷却が行われる。 合金間における融点の違いに応じて本発明合金
の融解および成形作業のために必要な条件は変わ
るけれども、記載のごとき手順および設備を用い
て合金の製造および加工を行えば一貫して満足す
べき結果を得ることができる。すなわち、合金の
製造に際して上記のごとき組成範囲を厳格に守り
さえすれば、本発明の結果は実質的な日常作業に
おいても再現可能なのである。 当業者が本発明を一層明確に理解し得るよう、
本発明の実施例並びに本発明の組成範囲外の非晶
質合金に関する比較例を以下に示す。 参考例 1 式Fe80B20で表わされる合金を、高速で回転す
る冷却ロールまたは冷却ドラムの表面上に流すこ
とにより、約0.0025cmの厚さおよび約0.13cmの幅
を有するリボンを製造した。 こうして得られたリボンが非晶質であること
は、X線回折分折、差動走査熱量分析、並びに磁
気的および物理的性質の測定によつて確認した。
延性の大きさは、平行板の間における単純曲げ試
験に際して破断が起こつた時の曲率半径を測定す
ることによつて決定した。上記リボンの断片に対
し、精製窒素ガス中において100〜400℃の温度下
で、2時間の焼なましを施した。かかる2時間の
焼なまし中で保磁力が急激に増大した時の温度を
結晶化温度と見なした。飽和磁束密度およびキユ
リー温度は、「アプライド・フイジツクス
(Applied Physics)」第29巻330頁(1976年)お
よび「スクリプタ・メタラージカ(Scripta
Metallurgica)」第11巻367頁(1977年)に記載
のごとき通常の磁気誘導技術によつて求めた。こ
れらの試験の結果は、下記実施例2〜7中に記載
のごとくにして製造したリボンに関する試験の結
果と共に第1表中に示す。 参考例 2 式Fe40Ni40P14B6で表わされる合金のリボンを
実施例1の場合と同様にして製造しかつ試験した
ところ、第1表中に示すような結果が得られた。 参考例 3 式Fe40Ni40B20で表わされる非晶質合金のリボ
ンを実施例1の場合と同様にして製造しかつ試験
したところ、第1表中に示すような結果が得られ
た。 参考例 4 式Fe84.5B15P0.5cm2表わされる合金のリボンを実
施例1の場合と同様にして製造しかつ試験したと
ころ、第1表中に示すような結果が得られた。 実施例 1 式Fe84B15Si1で表わされる合金のリボンを実施
例1の場合と同様にして製造しかつ試験したとこ
ろ、第1表中に示すような結果が得られた。 実施例 2 実施例1の場合と同じ物理的規格を満足するよ
うな式Fe80B16Si4で表わされる合金のリボンを製
造しかつ安定性について試験したところ、第1表
中に示すような結果が得られた。 参考例 5 式Fe84B16で表わされる合金のリボンを製造し
かつ安定性について試験したところ、第1表中に
示すような結果が得られた。 実施例 3 最後に、実施例1の場合と同じ物理的規格を満
足するような式Fe80B12Si8で表わされる合金のリ
ボンを製造しかつ安定性について試験したとこ
ろ、第1表中に示すような結果が得られた。
FIELD OF THE INVENTION This invention relates generally to alloy technology and, more particularly, to novel amorphous alloys with unique combinations of physical and magnetic properties and ribbons and other useful products made therefrom. As is known to those skilled in the art, amorphous alloys with high saturation magnetization strengths are advantageous for use in electrical equipment such as distribution transformers and power transformers.
However, such alloys lack the necessary ductility and stability for these purposes. For example, Fe 80 B 20 alloy with high iron content is 15700 ~
It has 4πM s of 16100 Gauss, but at about 340°C 2
It is extremely difficult to initiate crystallization within a short period of time and to manufacture it as a flexible ribbon for electrical equipment. On the other hand, amorphous alloys have been known which have slightly greater stability and sufficient ductility for the above purposes, but their saturation magnetization strength is too low. Now, according to the present invention based on a novel idea as described below, the conventional drawback of having to choose between desired magnetic properties and physical properties in an amorphous metal can be eliminated. In other words, the present invention provides an amorphous metal in the form of a ribbon that has excellent magnetic properties and high temperature stability and is ductile enough to be used in the construction of electrical equipment. It becomes possible. Moreover, the properties of the combination described above, which are particularly advantageous in terms of the usefulness of amorphous metals in power generation, transmission and power utilization in general, can be achieved without any drawbacks. It is. These novel results are based on the finding that the strength of the saturation magnetization of amorphous alloys depends on the number of available electrons derived from glass-forming components in the alloy. It is also based on the observation that the greater the variety of glass-forming elements contained in such an alloy, the greater its stability. That is, although the binary alloy Fe 80 B 20 is difficult to produce as a highly ductile amorphous ribbon, it is possible to produce a highly ductile ribbon under the same conditions by adding small amounts of new glass-forming elements. It turns out that you can get it. Furthermore, although adding silicon, which has a larger number of effective electrons than boron, to Fe 80 B 20 reduces 4πM s , the ductility is greatly improved, and the strength of saturation magnetization is only slightly reduced. found. Moreover, in alloys containing 80-84 (atomic) percent iron, the stability against crystallization tendencies at high temperatures is substantially improved when some of the boron is replaced by silicon. Further according to the general idea of the invention:
The use of elements such as phosphorus, aluminum, carbon, and also sulfur, individually or in combination with silicon under certain conditions, can also provide novel results and benefits such as those described above.
In any case, the addition of glass-forming elements
This must be done without reducing the iron content of the alloy below about 80 (atomic) percent. Similarly, the minimum silicon content in the alloys of the present invention is about 1 (atomic)%.
It is. The maximum content of phosphorus and sulfur, whether used individually or in combination, must not exceed 0.5 (atomic) %. Any deviation from such ranges will result in a substantial reduction in one or more of the desired magnetic and physical properties. Briefly, the present invention contains 80-84 (atomic)% iron,
12-15 (atomic)% boron, and 1-8 (atomic)
% silicon, such that such alloys exhibit a unique combination of physical and magnetic properties, including ductility, high temperature stability, and saturation magnetic flux density. have. The invention also relates to ribbons of novel alloys as described above, which are suitable, for example, for the construction of electromagnetic components of electric motors, generators, transformers or other electrical equipment. To produce the novel alloys of the present invention, the powdered alloy components can be mixed in the desired proportions, and the resulting mixture can then be melted into a molten alloy which can then be formed into ribbons of the desired dimensions. During such forming operations, cooling occurs at a rate sufficient to obtain an amorphous alloy. Depending on the differences in melting points between the alloys, the conditions required for melting and forming the alloys of the invention will vary, but should be consistently satisfied when the alloys are manufactured and processed using procedures and equipment as described. You can get results. That is, as long as the above composition range is strictly observed during the production of the alloy, the results of the present invention can be reproduced even in practical daily operations. In order for those skilled in the art to understand the present invention more clearly,
Examples of the present invention and comparative examples regarding amorphous alloys outside the composition range of the present invention are shown below. Reference Example 1 A ribbon having a thickness of about 0.0025 cm and a width of about 0.13 cm was produced by flowing an alloy of the formula Fe 80 B 20 onto the surface of a rapidly rotating cooling roll or drum. The amorphous nature of the ribbon thus obtained was confirmed by X-ray diffraction analysis, differential scanning calorimetry, and measurements of magnetic and physical properties.
The magnitude of ductility was determined by measuring the radius of curvature at which fracture occurred during a simple bending test between parallel plates. The ribbon pieces were annealed in purified nitrogen gas at a temperature of 100 to 400° C. for 2 hours. The temperature at which the coercive force rapidly increased during the 2-hour annealing was regarded as the crystallization temperature. The saturation magnetic flux density and the Kyrie temperature are described in Applied Physics, Vol. 29, p. 330 (1976) and Scripta Metallurgica (1976).
Metallurgica, Vol. 11, p. 367 (1977). The results of these tests are shown in Table 1 along with the results of tests on ribbons made as described in Examples 2-7 below. Reference Example 2 A ribbon of an alloy represented by the formula Fe 40 Ni 40 P 14 B 6 was produced and tested in the same manner as in Example 1, and the results shown in Table 1 were obtained. Reference Example 3 A ribbon of an amorphous alloy represented by the formula Fe 40 Ni 40 B 20 was produced and tested in the same manner as in Example 1, and the results shown in Table 1 were obtained. Reference Example 4 A ribbon of an alloy having the formula Fe 84.5 B 15 P 0.5 cm 2 was produced and tested in the same manner as in Example 1, and the results shown in Table 1 were obtained. Example 1 Ribbons of an alloy of the formula Fe 84 B 15 Si 1 were produced and tested as in Example 1, with the results shown in Table 1. Example 2 Ribbons of an alloy of the formula Fe 80 B 16 Si 4 satisfying the same physical specifications as in Example 1 were prepared and tested for stability, resulting in the results shown in Table 1. The results were obtained. Reference Example 5 Ribbons of an alloy of the formula Fe 84 B 16 were produced and tested for stability, with the results shown in Table 1. Example 3 Finally, ribbons of an alloy of the formula Fe 80 B 12 Si 8 satisfying the same physical specifications as in Example 1 were manufactured and tested for stability, as shown in Table 1. The results shown are obtained.

【表】 上記の試験に際して得られた表中のデータから
わかる通り、脆化が起こる温度TBは三元合金
Fe84B15Si1について最も高く、また少量のリンの
含有によつて、脆化温度は顕著に低下する。ただ
1種のメタロイドを含有する合金の延性は、2種
のメタロイドを含有する合金の延性より大きく、
また試験群中ではFe84B15Si1およびFe84.5B15P0.5
の延性が最大である。合金の脆化および結晶化に
対する安定性は、2種のメタロイドを含有する合
金において最大となり、またただ1種のメタロイ
ドを含有する合金において最小となる。試験群中
で2種のメタロイドを含有する合金の飽和磁束密
度は、Fe80B20の最大値にほぼ匹敵している。な
お、Fe80B16Si4およびFe80B12Si8の両合金は、高
温における結晶化傾向に対する安定性が特に優れ
ている。
[Table] As can be seen from the data in the table obtained during the above test, the temperature T B at which embrittlement occurs is
The embrittlement temperature is highest for Fe 84 B 15 Si 1 and is significantly lowered by the inclusion of a small amount of phosphorus. The ductility of alloys containing only one metalloid is greater than the ductility of alloys containing two metalloids;
Also in the test group, Fe 84 B 15 Si 1 and Fe 84.5 B 15 P 0.5
has the greatest ductility. The stability of the alloy against embrittlement and crystallization is greatest in alloys containing two metalloids and least in alloys containing only one metalloid. The saturation magnetic flux density of the alloys containing two metalloids in the test group is approximately comparable to the maximum value of Fe 80 B 20 . Note that both the Fe 80 B 16 Si 4 and Fe 80 B 12 Si 8 alloys have particularly excellent stability against crystallization tendency at high temperatures.

Claims (1)

【特許請求の範囲】 1 80〜84(原子)%の鉄、12〜15(原子)%のホ
ウ素および1〜8(原子)%のケイ素を含有し、
延性、高温安定性および飽和磁束密度を組合せた
特異な性質を有する鉄−ホウ素−ケイ素非晶質合
金。 2 式Fe80B12Si8で表わされる特許請求の範囲第
1項記載の合金。 3 式Fe84B15Si1で表わされる特許請求の範囲第
1項記載の合金。 4 式Fe80B16Si4で表わされる延性、高温安定性
および飽和磁束密度を組合せた特異な性質を有す
る鉄−ホウ素−ケイ素非晶質合金。 5 80〜84(原子)%の鉄、12〜15(原子)%のホ
ウ素、および1〜8(原子)%のケイ素を含有し、
延性、高温安定性および飽和磁束密度を組合せた
特異な性質を有する鉄−ホウ素−ケイ素非晶質合
金から製造されたリボン。 6 式Fe84B15Si1で表わされる特許請求の範囲第
5項記載のリボン。
[Claims] 1 Contains 80-84 (atomic)% iron, 12-15 (atomic)% boron and 1-8 (atomic)% silicon,
An iron-boron-silicon amorphous alloy with a unique combination of ductility, high temperature stability and saturation magnetic flux density. 2. An alloy according to claim 1 having the formula Fe 80 B 12 Si 8 . 3. An alloy according to claim 1 having the formula Fe 84 B 15 Si 1 . 4. An iron-boron-silicon amorphous alloy having a unique combination of ductility, high temperature stability and saturation magnetic flux density, represented by the formula Fe 80 B 16 Si 4 . 5 Contains 80-84 (atomic)% iron, 12-15 (atomic)% boron, and 1-8 (atomic)% silicon,
A ribbon made from an iron-boron-silicon amorphous alloy that has unique properties that combine ductility, high temperature stability, and saturation magnetic flux density. 6. Ribbon according to claim 5, having the formula Fe 84 B 15 Si 1 .
JP4676979A 1978-04-20 1979-04-18 Amorphous alloy Granted JPS54148122A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US89848278A 1978-04-20 1978-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2288635A Division JPH03264654A (en) 1978-04-20 1990-10-29 Use of glass-like alloy

Publications (2)

Publication Number Publication Date
JPS54148122A JPS54148122A (en) 1979-11-20
JPH0143828B2 true JPH0143828B2 (en) 1989-09-22

Family

ID=25409526

Family Applications (2)

Application Number Title Priority Date Filing Date
JP4676979A Granted JPS54148122A (en) 1978-04-20 1979-04-18 Amorphous alloy
JP2288635A Pending JPH03264654A (en) 1978-04-20 1990-10-29 Use of glass-like alloy

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2288635A Pending JPH03264654A (en) 1978-04-20 1990-10-29 Use of glass-like alloy

Country Status (8)

Country Link
JP (2) JPS54148122A (en)
BR (1) BR7902477A (en)
DE (1) DE2915737A1 (en)
ES (1) ES8202371A1 (en)
FR (1) FR2423547B1 (en)
GB (1) GB2023173B (en)
IT (1) IT1113381B (en)
PH (1) PH14433A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2038358B (en) * 1978-11-29 1982-12-08 Gen Electric Amorphous fe-b-si alloys
US4219355A (en) * 1979-05-25 1980-08-26 Allied Chemical Corporation Iron-metalloid amorphous alloys for electromagnetic devices
DE3173283D1 (en) * 1980-04-17 1986-02-06 Tsuyoshi Masumoto Amorphous metal filaments and process for producing the same
DE3124581A1 (en) * 1980-09-26 1982-05-19 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt SOLAR CELL ARRANGEMENT
YU96681A (en) * 1980-10-22 1983-12-31 Allegheny Ludlum Steel Device for casting metal bands
DE3165416D1 (en) * 1980-12-29 1984-09-13 Allied Corp Amorphous metal alloys having enhanced ac magnetic properties
US6296948B1 (en) * 1981-02-17 2001-10-02 Ati Properties, Inc. Amorphous metal alloy strip and method of making such strip
JPS6034620B2 (en) * 1981-03-06 1985-08-09 新日本製鐵株式会社 Amorphous alloy with extremely low iron loss and good thermal stability
JPS57161031A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy
JPS57161030A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy
US4434411A (en) 1982-03-10 1984-02-28 Allied Corporation Temperature-sensitive switch
US4937043A (en) * 1984-02-02 1990-06-26 Armco Inc. Boron alloy
US5035755A (en) * 1984-05-23 1991-07-30 Allied-Signal Inc. Amorphous metal alloys having enhanced AC magnetic properties at elevated temperatures
BR9105953A (en) * 1990-02-13 1992-10-13 Allied Signal Inc AMORFA METAL ALLOY ESSENTIALLY CONSISTING OF IRON, BORON AND SILICON
US7744703B2 (en) 2005-04-08 2010-06-29 Nippon Steel Corporation Fe-based amorphous alloy strip
CN105358727A (en) 2013-07-30 2016-02-24 杰富意钢铁株式会社 Thin amorphous iron alloy strip
JP6478061B2 (en) 2016-04-04 2019-03-06 Jfeスチール株式会社 Amorphous alloy ribbon
CN115369335A (en) * 2022-08-19 2022-11-22 潍柴动力股份有限公司 Iron-based amorphous alloy and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313198A (en) * 1976-07-23 1978-02-06 Toyota Motor Co Ltd Metallic magneticccore member
JPS5357119A (en) * 1976-11-05 1978-05-24 Tohoku Daigaku Kinzoku Zairyo Amorphous alloy excellent in heat resistance and strength
JPS53133505A (en) * 1977-04-27 1978-11-21 Matsushita Electric Ind Co Ltd Noncrystalline alloy material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856513A (en) * 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles
JPS5173920A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
US4052201A (en) * 1975-06-26 1977-10-04 Allied Chemical Corporation Amorphous alloys with improved resistance to embrittlement upon heat treatment
US4030892A (en) * 1976-03-02 1977-06-21 Allied Chemical Corporation Flexible electromagnetic shield comprising interlaced glassy alloy filaments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313198A (en) * 1976-07-23 1978-02-06 Toyota Motor Co Ltd Metallic magneticccore member
JPS5357119A (en) * 1976-11-05 1978-05-24 Tohoku Daigaku Kinzoku Zairyo Amorphous alloy excellent in heat resistance and strength
JPS53133505A (en) * 1977-04-27 1978-11-21 Matsushita Electric Ind Co Ltd Noncrystalline alloy material

Also Published As

Publication number Publication date
IT1113381B (en) 1986-01-20
ES479803A0 (en) 1980-08-16
DE2915737A1 (en) 1979-11-08
FR2423547B1 (en) 1985-09-20
PH14433A (en) 1981-07-16
ES8202371A1 (en) 1980-08-16
GB2023173A (en) 1979-12-28
JPS54148122A (en) 1979-11-20
JPH03264654A (en) 1991-11-25
DE2915737C2 (en) 1990-07-05
IT7922007A0 (en) 1979-04-19
GB2023173B (en) 1982-06-23
BR7902477A (en) 1979-11-20
FR2423547A1 (en) 1979-11-16

Similar Documents

Publication Publication Date Title
JPH0143828B2 (en)
KR840001259B1 (en) Amorphous metal alloys having enchanced magnetic properties
US5370749A (en) Amorphous metal alloy strip
KR101014396B1 (en) Thin ribbon of amorphous iron alloy
US4249969A (en) Method of enhancing the magnetic properties of an Fea Bb Sic d amorphous alloy
US4300950A (en) Amorphous metal alloys and ribbons thereof
US4226619A (en) Amorphous alloy with high magnetic induction at room temperature
EP0035644B1 (en) Magnetic amorphous metal alloys
EP0055327B1 (en) Amorphous metal alloys having enhanced ac magnetic properties
JP2778719B2 (en) Iron-based amorphous magnetic alloy containing cobalt
JPS6362579B2 (en)
JPH05503962A (en) Amorphous FE-B-SI alloy exhibits improved AC magnetism and handling suitability
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
CN102383070B (en) Additive for B-Si containing iron-based amorphous alloy and nanocrystalline alloy
JPH04329846A (en) Manufacture of fe base amorphous alloy
EP0104380A1 (en) Iron-boron solid solution alloys having high saturation magnetization and low magnetostriction
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
EP0074640A1 (en) Low-loss amorphous alloy
CN110468353B (en) High-saturation magnetic induction intensity iron-based amorphous alloy and preparation method thereof
JPS5842751A (en) Amorphous iron alloy having small iron loss and undergoing very slight change in magnetic characteristic due to aging
CA1145161A (en) Amorphous metal alloys and ribbons thereof
JPS5928561A (en) Non-magnetic steel high in volume electric resistivity
JPS6274049A (en) High permeability amorphous alloy
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPS6293339A (en) Amorphous alloy excellent in embrittlement-resisting property