JPH0141977Y2 - - Google Patents

Info

Publication number
JPH0141977Y2
JPH0141977Y2 JP17533484U JP17533484U JPH0141977Y2 JP H0141977 Y2 JPH0141977 Y2 JP H0141977Y2 JP 17533484 U JP17533484 U JP 17533484U JP 17533484 U JP17533484 U JP 17533484U JP H0141977 Y2 JPH0141977 Y2 JP H0141977Y2
Authority
JP
Japan
Prior art keywords
valve
head
flow rate
valve head
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17533484U
Other languages
Japanese (ja)
Other versions
JPS6189556U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17533484U priority Critical patent/JPH0141977Y2/ja
Publication of JPS6189556U publication Critical patent/JPS6189556U/ja
Application granted granted Critical
Publication of JPH0141977Y2 publication Critical patent/JPH0141977Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はたとえば自動車エンジンの2次空気供
給装置や排気ガス再循環装置等に用いられる流量
制御弁に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a flow control valve used, for example, in a secondary air supply device or an exhaust gas recirculation device of an automobile engine.

(従来技術) 従来、この種流量制御弁は、弁箱内にダイアフ
ラムによつてその両側に区画形成されるダイアフ
ラム室の一方又は双方に作動流体を供給し、該作
動流体の圧力によつて、ダイアフラムに連結され
た弁体を作動させ、該弁体を弁座に当接あるいは
離脱させることにより、流体の流量を制御するよ
うになつている。
(Prior Art) Conventionally, this type of flow control valve supplies working fluid to one or both of the diaphragm chambers defined on both sides by diaphragms in the valve box, and uses the pressure of the working fluid to The flow rate of the fluid is controlled by operating a valve element connected to the diaphragm and bringing the valve element into contact with or away from a valve seat.

(考案が解決しようとする問題点) しかし、斯かる従来例の場合には、例えば、作
動流体の圧力上昇によつて弁を開放させるように
するか閉鎖させるようにするかは、弁体と弁座の
相対位置、作動流体を供給するダイアフラム室の
位置、ダイアフラムを復帰させるバネの取付け位
置等によつて決まるため、要求される流量制御特
性に応じて、上記各部の構成を新たに設計して流
量制御弁を製造する必要があつた。たとえば、自
由状態ではバネによつて弁体を弁座に押圧して閉
弁しておき、ダイアフラム室に負圧を導入して弁
体を弁座から離脱させて流量を制御する構成とな
つている場合には、このままの構成では自由状態
で開弁状態の特性を持たせることはできない。自
由状態にて開弁状態とするためには、たとえばバ
ネとダイアフラム室とを弁座に対して互いに反対
側に配置し、バネの引張力によつて弁体を弁座か
ら離しておき、ダイアフラム室に負圧を導入する
ことによつてバネの引張力に坑して弁体を弁座に
向つて移動させるようにする必要があり、各部の
構成を全く変更しなければならない。
(Problem to be solved by the invention) However, in the case of such a conventional example, for example, whether the valve is opened or closed due to an increase in the pressure of the working fluid depends on the valve body. This is determined by the relative position of the valve seat, the position of the diaphragm chamber that supplies the working fluid, the mounting position of the spring that returns the diaphragm, etc., so the configuration of each of the above parts must be newly designed according to the required flow control characteristics. Therefore, it was necessary to manufacture a flow control valve. For example, in a free state, a spring presses the valve element against the valve seat to close the valve, and then negative pressure is introduced into the diaphragm chamber to separate the valve element from the valve seat and control the flow rate. In this case, it is not possible to provide the characteristics of the valve open state in the free state with the current configuration. In order to open the valve in the free state, for example, the spring and the diaphragm chamber are placed on opposite sides of the valve seat, and the tension of the spring keeps the valve body away from the valve seat. It is necessary to move the valve body toward the valve seat against the tension of the spring by introducing negative pressure into the chamber, and the configuration of each part must be completely changed.

また、作動流体の圧力が上昇した際、弁を閉鎖
して流量をゼロにし、さらに作動流体の圧力が上
昇した際、弁を開放するという複雑な流量制御特
性が要求される場合がある。たとえば自動車エン
ジンの2次空気供給装置や排気ガス再循環装置
(以下EGR装置という)に用いられる流量制御弁
においてこのような流量制御特性が要求される。
Further, when the pressure of the working fluid increases, the valve is closed to reduce the flow rate to zero, and when the pressure of the working fluid further increases, the valve is opened, which may require complicated flow control characteristics. For example, such flow control characteristics are required in flow control valves used in secondary air supply devices and exhaust gas recirculation devices (hereinafter referred to as EGR devices) of automobile engines.

すなわち、2次空気供給装置は排気ガス中の
CO,HCを排気系で酸化させるべく排気管内に2
次空気を供給するものであるが、この2次空気の
供給量は多ければよいというものではなく、多過
ぎると温度低下を招き、HC,COの酸化反応を阻
害することになる。また、最近は出力損失を低減
するべく2次空気の供給量をなるべく減らす傾向
にあり、比較的燃焼率がよく排気ガスが清浄な領
域においては2次空気をカツトし、高負荷域の必
要領域において再び供給して排気ガスの酸化を促
進させたい場合がある。
In other words, the secondary air supply device
2 in the exhaust pipe to oxidize CO and HC in the exhaust system.
However, the amount of secondary air supplied does not necessarily have to be large; if it is too large, the temperature will drop and the oxidation reaction of HC and CO will be inhibited. In addition, recently there has been a trend to reduce the amount of secondary air supplied as much as possible in order to reduce output loss, and in areas where the combustion rate is relatively high and the exhaust gas is clean, secondary air is cut off, and in areas where high load is required, In some cases, it may be necessary to supply the exhaust gas again to promote oxidation of the exhaust gas.

このような場合に、作動流体の負圧が上昇して
所定圧に達すると閉弁して流量をゼロにし、さら
に負圧が上昇すると開弁するというような流量特
性が要求される。
In such a case, flow characteristics are required such that when the negative pressure of the working fluid increases and reaches a predetermined pressure, the valve closes to reduce the flow rate to zero, and when the negative pressure further increases, the valve opens.

また、EGR装置の流量制御弁についても、や
はり吸気系の負圧で作動するように構成される。
Furthermore, the flow control valve of the EGR device is also configured to operate using negative pressure in the intake system.

EGR装置は不活性の排気ガスを燃焼室に再循
環させて燃焼温度を低くして排気ガス中のNOx
の量を減らすものであるが、排気ガスの量を増量
していくとNOxの量は減少していくものの燃焼
が不安定となり、燃費、HCがともに悪化する。
したがつて排気ガス量は運転条件に合わせて適切
な値に設定することが大切であり、たとえばある
負荷域の出力を改善するべく当該負荷域では排気
ガスの供給をカツトした方がいい場合もある。
EGR equipment recirculates inert exhaust gas into the combustion chamber to lower the combustion temperature and reduce NOx in the exhaust gas.
However, as the amount of exhaust gas is increased, although the amount of NOx decreases, combustion becomes unstable and both fuel efficiency and HC deteriorate.
Therefore, it is important to set the exhaust gas amount to an appropriate value according to the operating conditions.For example, in order to improve the output in a certain load range, it may be better to cut the exhaust gas supply in that load range. be.

このような場合にも作動流体の負圧が上昇して
所定圧に達すると流量がゼロとなり、さらに負圧
が上昇すると再度開弁するというような流量制御
特性が要求される。この場合には、弁体及び弁座
を2組設け、一方の組の弁体及び弁座は作動流体
の圧力上昇によつて閉鎖し、他方の組の弁体及び
弁座は作動流体の所定以上の圧力上昇によつて開
放するように、各弁体及び弁座の位置や弁体を作
動させる機構等を新たに設計しなければならな
い。
In such a case, flow control characteristics are required such that when the negative pressure of the working fluid increases and reaches a predetermined pressure, the flow rate becomes zero, and when the negative pressure increases further, the valve opens again. In this case, two sets of valve bodies and valve seats are provided, one set of valve bodies and valve seats closes when the pressure of the working fluid increases, and the other set of valve bodies and valve seats closes when the pressure of the working fluid increases. The positions of each valve element and valve seat, the mechanism for operating the valve element, etc. must be newly designed so that the valve element is opened by the above pressure increase.

このように、上記従来の流量制御弁は、要求さ
れる流量制御特性に応じて、その都度各部の構成
を新たに設計して製造しなければ、種々の流量制
御特性に対応することができず、コストが大幅に
高くなり、幅広い流量制御特性の要求には対応し
難いという問題点があつた。
In this way, the conventional flow control valves described above cannot accommodate various flow control characteristics unless the configuration of each part is newly designed and manufactured each time according to the required flow control characteristics. However, there were problems in that the cost was significantly high and it was difficult to meet the demands for a wide range of flow control characteristics.

本考案は、従来技術の斯かる問題点を解決する
ためになされたもので、その目的とするところ
は、1つの流量制御弁で種々の流量制御特性に対
応可能とすることによつて、目的とする流量制御
特性を有する流量制御弁を低コストにて提供でき
るようにすることにある。
The present invention was devised to solve the problems of the prior art, and its purpose is to make it possible to respond to various flow control characteristics with one flow control valve. It is an object of the present invention to provide a flow control valve having flow control characteristics as follows at low cost.

(問題点を解決するための手段) そこで、本考案は、上記の目的を達成するため
に、弁箱内に形成された流路に設けられ、互いに
平行且つ同軸状に配置された複数段の弁座と、前
記各弁座と協働して開閉弁しうる弁頭を備えた弁
体と、前記弁体に連結されて、該弁体の開閉弁ス
トロ−クを変更しうる弁体作動手段とより構成さ
れ、前記複数段の弁座にはそれぞれ同一径の開口
部を同軸的に貫通形成し、前記弁体作動手段によ
つて弁頭を各弁座の開口部に段階的に出し入れし
て開閉弁するもので、前記弁頭の外周には開口部
内に挿入した際に開口部内周面に密封状態にて密
接する環状の弾性体を備えて成ることを特徴とす
る。
(Means for Solving the Problems) Therefore, in order to achieve the above object, the present invention has a plurality of stages provided in the flow path formed in the valve box and arranged parallel and coaxially to each other. a valve body having a valve seat, a valve head capable of opening and closing the valve in cooperation with each of the valve seats, and a valve body actuator connected to the valve body and capable of changing the valve opening/closing stroke of the valve body. an opening of the same diameter is formed coaxially through each of the plurality of valve seats, and the valve head is moved in and out of the opening of each valve seat stepwise by the valve body operating means. The valve head is characterized in that the outer periphery of the valve head is provided with an annular elastic body that comes into close contact with the inner peripheral surface of the opening in a sealed state when inserted into the opening.

(実施例) 以下に本考案を図示の実施例に基づいて説明す
る。第1図及び第2図において、1は流量制御弁
本体であり、この流量制御弁本体1は上下に連結
された上部弁箱2及び下部弁箱3と、該上部弁箱
2に被着されたカバ−4とよりなつている。上記
下部弁箱3は、流入口5と流出口6とを備えてお
り、該下部弁箱3の流出口6側はT字形状に分枝
している。この下部弁箱3の流路7中には絞り弁
8が配置されていて、該絞り弁8は弁頭10付き
弁体9と二段に設けられた第一弁座11及び第二
弁座12とからなつている。
(Example) The present invention will be explained below based on the illustrated example. In FIGS. 1 and 2, 1 is a flow control valve main body, and this flow control valve main body 1 is attached to an upper valve case 2 and a lower valve case 3 that are connected vertically, and to the upper valve case 2. It is similar to cover 4. The lower valve box 3 includes an inlet 5 and an outlet 6, and the outlet 6 side of the lower valve box 3 branches into a T-shape. A throttle valve 8 is disposed in the flow path 7 of the lower valve box 3, and the throttle valve 8 includes a valve body 9 with a valve head 10, a first valve seat 11 and a second valve seat provided in two stages. It consists of 12.

上記絞り弁8の弁体9は弁軸13を備えてお
り、この弁軸13は軸受を兼ねた軸シ−ル14を
介して上部弁箱2の支持部15に支持されてい
る。この弁軸13の上端は、上部弁箱2とカバ−
4との間に挾着された弁体作動手段としてのダイ
アフラム16に、上下のセンタ−デイスク17,
18及びワツシヤ19,19を介して、ナツト2
0により締着されている。このダイアフラム16
とカバ−4によつてダイアフラム室21が形成さ
れており、カバ−4には作動流体をダイアフラム
室21に導入するための導入口22が設けられて
いる。また、上記下部センタ−デイスク18と上
部弁箱2の支持部15との間には圧縮スプリング
22が介装されており、該上部弁箱2には、ダイ
アフラム16の下面側を大気に開放する開放孔2
3が穿設されている。
The valve body 9 of the throttle valve 8 is provided with a valve stem 13, and the valve stem 13 is supported by a support portion 15 of the upper valve body 2 via a shaft seal 14 which also serves as a bearing. The upper end of this valve shaft 13 is connected to the upper valve box 2 and the cover.
Upper and lower center disks 17,
18 and washers 19, 19, nut 2
It is tightened by 0. This diaphragm 16
A diaphragm chamber 21 is formed by the cover 4 and the cover 4, and the cover 4 is provided with an inlet 22 for introducing working fluid into the diaphragm chamber 21. Further, a compression spring 22 is interposed between the lower center disk 18 and the support portion 15 of the upper valve box 2, and the lower surface side of the diaphragm 16 is opened to the atmosphere. Open hole 2
3 is drilled.

前記絞り弁8の第一弁座11及び第2弁座12
は、互いに平行に下部弁箱3の流出口6側に配置
され、その内周に同径の開口部24,25を同軸
状に備えている。また、前記弁体9の弁頭10
は、円錐体を上下に連結した形状の弁頭基体26
と、該弁頭基体26の外周に固着されたゴム等よ
りなる環状の弾性体27とよりなり、この弾性体
27は、各弁座11,12の開口部24,25内
周面に密封状態に弾接するように、該開口部2
4,25の径よりわずか大きく形成されている。
First valve seat 11 and second valve seat 12 of the throttle valve 8
are arranged parallel to each other on the outflow port 6 side of the lower valve box 3, and have coaxial openings 24 and 25 of the same diameter on their inner peripheries. Further, the valve head 10 of the valve body 9
The valve head base 26 has a shape in which conical bodies are connected vertically.
and an annular elastic body 27 made of rubber or the like fixed to the outer periphery of the valve head base 26. said opening 2 so as to come into elastic contact with
The diameter is slightly larger than that of 4 and 25.

以上の構成において、本考案に係る流量制御弁
は、次のように作動する。まず、弁体9の弁頭1
0を第3図に示すA位置にセツトした場合、すな
わち、ダイアフラム室21に作動流体の圧力を加
えない状態において、弁頭10がA位置に停止す
るように弁軸13の長さを調節した弁体9を用い
た場合について説明する。この状態において、ダ
イアフラム室21内に導入口22より導入される
作動流体のブ−スト圧を増加させてダイアフラム
16を下降させ、弁頭10を第3図に示すA位置
から第一弁座11に嵌合されたB位置まで移動さ
せると、流体の流量は次のように制御される。第
4図に示すように、上記弁頭10が押下げられた
始期の状態では流量が一定であるが、弁頭10が
第一弁座11に近づくと流量が徐々に減少し、弁
頭10の弾性体27が第一弁座11に当接した状
態で流量がゼロになる。
In the above configuration, the flow control valve according to the present invention operates as follows. First, the valve head 1 of the valve body 9
The length of the valve stem 13 was adjusted so that the valve head 10 would stop at the A position when the valve head 10 was set at the A position shown in FIG. A case where the valve body 9 is used will be explained. In this state, the boost pressure of the working fluid introduced from the inlet 22 into the diaphragm chamber 21 is increased to lower the diaphragm 16, and the valve head 10 is moved from the first valve seat 11 to the A position shown in FIG. When moved to position B where it is fitted, the flow rate of fluid is controlled as follows. As shown in FIG. 4, the flow rate is constant in the initial state when the valve head 10 is pushed down, but as the valve head 10 approaches the first valve seat 11, the flow rate gradually decreases, and the valve head 10 The flow rate becomes zero when the elastic body 27 is in contact with the first valve seat 11.

また、作動流体のブ−スト圧をさらに増加させ
て、弁頭を第3図に示すA位置から第一弁座11
に嵌合されたB位置へ、そしてさらに第一弁座1
1と第二弁座12の中間のC位置に移動させた場
合、流体の流量は次のように制御される。第5図
に示すように、流量は一定値から次第に減少し、
弁頭10が第一弁座11に当接した段階でゼロと
なり、該弁頭10が第一弁座11を抜けると流量
は次第に増加し一定値となる。ところで、弁頭1
0が第一弁座11と第二弁座12の間にある場合
には、該弁頭10と両弁座11,12との間隔が
小さいため、弁頭10が第一弁座11の上方にあ
つて、開放している場合の一定流量の方が、第一
弁座11と第二弁座12の間にあつて開放してい
る場合の一定流量に比べて、若干多くなつてい
る。
Further, the boost pressure of the working fluid is further increased, and the valve head is moved from the first valve seat 11 to the A position shown in FIG.
to the B position fitted with the first valve seat 1, and then
When the valve is moved to position C, which is between the valve seat 1 and the second valve seat 12, the flow rate of the fluid is controlled as follows. As shown in Figure 5, the flow rate gradually decreases from a constant value.
The flow rate becomes zero when the valve head 10 comes into contact with the first valve seat 11, and when the valve head 10 passes through the first valve seat 11, the flow rate gradually increases and becomes a constant value. By the way, bento 1
0 is between the first valve seat 11 and the second valve seat 12, the distance between the valve head 10 and both valve seats 11 and 12 is small, so the valve head 10 is located above the first valve seat 11. In this case, the constant flow rate when the valve is open is slightly larger than the constant flow rate when the valve is located between the first valve seat 11 and the second valve seat 12 and is open.

さらに、作動流体のブ−スト圧を増加させて、
弁頭10を第3図に示すA位置からC位置まで移
動させた後、作動流体のブ−スト圧を減少させ
て、弁頭10をC位置からB位置まで戻した場
合、流体の流量は次のように制御される。第6図
に示すように、流量が一定値から次第に減少して
ゼロとなつた後、流量が増加して一定値となり、
再び減少してゼロになる。
Furthermore, by increasing the boost pressure of the working fluid,
When the valve head 10 is moved from position A to position C shown in FIG. 3, and then the boost pressure of the working fluid is reduced and the valve head 10 is returned from position C to position B, the flow rate of the fluid is It is controlled as follows. As shown in Figure 6, the flow rate gradually decreases from a constant value to zero, then increases and reaches a constant value.
It decreases again to zero.

次に、弁体9を交換して弁頭10を第3図に示
すB位置にセツトした場合、すなわち、ダイアフ
ラム室21に作動流体の圧力を加えない状態にお
いて、弁頭10がB位置に停止するように弁軸1
3の長さを調節した弁体9を用いた場合について
説明する。この状態において、ダイアフラム室2
1内に導入口22より導入される作動流体のブ−
スト圧を増加させてダイアフラム16を下降さ
せ、弁頭10を第3図に示す第一弁座11に嵌合
されたB位置から、第一弁座11と第二弁座12
の中間位置まで移動させると、流体の流量は次の
ように制御される。第7図に示すように、上記弁
頭10が第一弁座11から離脱した状態で、流量
がゼロから次第に上昇し、該弁頭10が第一弁座
11から所定量離れると、流量が一定になる。
Next, when the valve body 9 is replaced and the valve head 10 is set at the B position shown in FIG. 3, that is, when the pressure of the working fluid is not applied to the diaphragm chamber 21, the valve head 10 stops at the B position. Valve stem 1
A case where the valve body 9 whose length is adjusted as shown in FIG. 3 is used will be explained. In this state, the diaphragm chamber 2
1 through the introduction port 22.
The diaphragm 16 is lowered by increasing the strike pressure, and the valve head 10 is moved from the B position shown in FIG.
When moved to an intermediate position, the fluid flow rate is controlled as follows. As shown in FIG. 7, with the valve head 10 detached from the first valve seat 11, the flow rate gradually increases from zero, and when the valve head 10 leaves the first valve seat 11 by a predetermined amount, the flow rate decreases. becomes constant.

また、作動流体のブ−スト圧をさらに上昇させ
て、弁頭10を第3図に示すB位置から第二弁座
12に嵌合されたD位置まで移動させると、流体
の流量は次のように制御される。第8図に示すよ
うに、流量はゼロから次第に増加して一定値とな
り、弁頭10が第二弁座12に近づくと減少し、
該弁頭10が第二弁座12に当接した段階で流量
がゼロとなる。
Further, when the boost pressure of the working fluid is further increased and the valve head 10 is moved from the B position shown in FIG. 3 to the D position where it is fitted into the second valve seat 12, the fluid flow rate is as follows. controlled as follows. As shown in FIG. 8, the flow rate gradually increases from zero to a constant value, and decreases as the valve head 10 approaches the second valve seat 12.
At the stage when the valve head 10 contacts the second valve seat 12, the flow rate becomes zero.

さらに、作動流体のブ−スト圧を増加させて、
弁頭10を第3図に示すB位置からE位置まで移
動させた場合、流体の流量は次のように制御され
る。第9図に示すように、流量がゼロから次第に
増加して一定値となつた後、流量は減少してゼロ
となり、弁頭10が第二弁座12から抜けて時点
で、流量がゼロから再び増加して行き、該弁頭1
0が第二弁座12から所定量離れた段階で流量が
一定となる。ところで、弁頭10が第一弁座11
と第二弁座12の間にある場合には、該弁頭10
と両弁座11,12との間隔が小さいため、弁頭
10が第一弁座11と第二弁座12との間にあつ
て開放している場合の一定流量の方が、第二弁座
12の下方にあつて開放している場合の一定流量
に比べて若干少なくなつている。
Furthermore, by increasing the boost pressure of the working fluid,
When the valve head 10 is moved from position B to position E shown in FIG. 3, the flow rate of fluid is controlled as follows. As shown in FIG. 9, after the flow rate gradually increases from zero and reaches a constant value, the flow rate decreases to zero, and when the valve head 10 comes out of the second valve seat 12, the flow rate changes from zero to zero. It increases again, and the valve head 1
0 is a predetermined amount away from the second valve seat 12, the flow rate becomes constant. By the way, the valve head 10 is the first valve seat 11
and the second valve seat 12, the valve head 10
Since the distance between the valve head 10 and both valve seats 11 and 12 is small, the constant flow rate when the valve head 10 is located between the first valve seat 11 and the second valve seat 12 and is open is better than the second valve seat 11 and the second valve seat 12. This is slightly lower than the constant flow rate when it is located below the seat 12 and is open.

第4図乃至第9図に示すものにあつては、流入
口5と流出口6の差圧が一定となつている。上記
実施例において、第4図乃至第6図に示す特性は
自由状態にて開弁状態の弁特性で、第7図乃至第
9図に示す弁特性は自由状態にて閉弁状態となる
弁特性である。このように弁頭10のセツト位置
を変えるだけで、常時開、常時閉の全く正反対の
特性の弁として用いることができる。
In the case shown in FIGS. 4 to 9, the differential pressure between the inlet 5 and the outlet 6 is constant. In the above embodiment, the characteristics shown in FIGS. 4 to 6 are the valve characteristics in the open state in the free state, and the valve characteristics shown in FIGS. 7 to 9 are the valve characteristics in the closed state in the free state. It is a characteristic. In this way, by simply changing the set position of the valve head 10, the valve can be used as a valve with the completely opposite characteristics of normally open and normally closed.

また、第5図および第6図、第8図および第9
図に示すようにストロ−ク途中で流量がゼロとな
る流量制御特性を持たせておけば、たとえば自動
車エンジンの2次空気供給量や、EGR装置の排
気ガス供給量を所定の領域にてカツトしたいよう
な場合の制御に利用することができる。
Also, Figures 5 and 6, Figures 8 and 9
As shown in the figure, if a flow rate control characteristic is provided in which the flow rate becomes zero in the middle of the stroke, for example, the amount of secondary air supplied to an automobile engine or the amount of exhaust gas supplied to an EGR device can be cut in a predetermined range. It can be used for control when desired.

なお、上記の説明では、弁体作動手段がダイア
フラム16からなる場合について説明したが、弁
体9を機械的あるいは電磁的作動手段によつて作
動させてもよい。
In the above description, a case has been described in which the valve body actuating means is composed of the diaphragm 16, but the valve body 9 may be actuated by mechanical or electromagnetic actuating means.

(考案の効果) 本考案は以上の構成及び作用よりなるもので、
複数段の弁座と、該各弁座と協働して開閉弁しう
る弁頭を備えた弁体とよりなるため、この弁頭の
セツト位置を自由状態で開弁位置あるいは閉弁位
置にしておくことにより、一つの弁でありながら
常時開、常時閉状態の両方の弁特性を得ることが
できる。
(Effects of the invention) The present invention consists of the above-mentioned structure and operation.
It consists of multiple stages of valve seats and a valve body equipped with a valve head that can open and close the valve in cooperation with each valve seat, so the valve head can be set in the open or closed position in its free state. By doing so, it is possible to obtain valve characteristics of both a normally open state and a normally closed state with a single valve.

また、開閉弁ストロ−ク(弁を開閉するための
弁体の移動量)を調節して弁頭を複数の弁座に対
して段階的に当接させることにより、一つの弁で
ありながら一方向のストロ−ク途中で流量がゼロ
となような複雑な流量制御特性を得ることも可能
である。したがつて、要求される流量特性毎に流
量制御弁を新たに設計して製造する必要がないの
で、低コストにて目的の流量制御特性を有する流
量制御弁を提供することができる。
In addition, by adjusting the on-off valve stroke (the amount of movement of the valve body to open and close the valve) and bringing the valve head into contact with multiple valve seats in stages, it is possible to make the valve head into contact with multiple valve seats in stages. It is also possible to obtain complex flow rate control characteristics such as zero flow rate midway through the stroke in the direction. Therefore, since it is not necessary to newly design and manufacture a flow control valve for each required flow rate characteristic, it is possible to provide a flow control valve having the desired flow rate control characteristic at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る流量制御弁の一実施例を
示す縦断面図、第2図は同要部の一部破断の縦断
面図、第3図は本考案の作動を示す説明図、第4
図乃至第9図は本考案に係る流量制御弁の流量制
御特性をそれぞれ示すグラフである。第4図は弁
頭を第3図中A位置からB位置まで移動させた場
合、第5図は弁頭を第3図中A位置からC位置ま
で移動させた場合、第6図は弁頭を第3図中A位
置からC位置まで移動させた後、B位置まで戻し
た場合、第7図は弁頭を第3図中B位置からC位
置まで移動させた場合、第8図は弁頭を第3図中
B位置からD位置まで移動させた場合、第9図は
弁頭を第3図中B位置からE位置まで移動させた
場合を示している。 符号の説明、2……上部弁箱、3……下部弁
箱、7……流路、9……弁体、12……第二弁
座、16……ダイアフラム(弁体作動手段)。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the flow control valve according to the present invention, FIG. 2 is a longitudinal cross-sectional view of a partially broken main part of the same, and FIG. 3 is an explanatory diagram showing the operation of the present invention. Fourth
9 to 9 are graphs each showing the flow rate control characteristics of the flow rate control valve according to the present invention. Figure 4 shows the case when the valve head is moved from position A to position B in Figure 3, Figure 5 shows the case when the valve head is moved from position A to position C in Figure 3, and Figure 6 shows the case when the valve head is moved from position A to position C in Figure 3. When the valve head is moved from position A to position C in Figure 3 and then returned to position B, Figure 7 shows the valve head moved from position B to position C in Figure 3, and Figure 8 shows the valve head when it is moved from position B to position C in Figure 3. When the valve head is moved from position B to position D in FIG. 3, FIG. 9 shows the case when the valve head is moved from position B to position E in FIG. Explanation of symbols, 2... Upper valve box, 3... Lower valve box, 7... Channel, 9... Valve body, 12... Second valve seat, 16... Diaphragm (valve body operating means).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 弁箱内に形成された流路に設けられ、互いに平
行且つ同軸状に配置された複数段の弁座と、前記
各弁座と協働して開閉弁しうる弁頭を備えた弁体
と、前記弁体に連結されて、該弁体の開閉弁スト
ロ−クを変更制御しうる弁体作動手段とよりな
り、前記複数段の弁座にはそれぞれ同一径の開口
部を同軸的に貫通形成し、前記弁体作動手段によ
つて弁頭を各弁座の開口部に段階的に出し入れし
て開閉弁するもので、前記弁頭の外周には開口部
内に挿入した際に開口部内周面に密封状態にて密
接する環状の弾性体を備えて成ることを特徴とす
る流量制御弁。
A valve body provided in a flow path formed in a valve box and provided with a plurality of stages of valve seats arranged parallel and coaxially with each other, and a valve head capable of opening and closing the valve in cooperation with each of the valve seats. , a valve body actuating means connected to the valve body and capable of changing and controlling the opening/closing stroke of the valve body, and each of the plurality of stages of valve seats has an opening coaxially penetrating with the same diameter. The valve head is opened and closed by moving the valve head in and out of the opening of each valve seat in stages by the valve body actuating means, and the outer periphery of the valve head has a shape that corresponds to the inner periphery of the opening when the valve head is inserted into the opening. A flow control valve characterized by comprising an annular elastic body that is in close contact with a surface in a sealed state.
JP17533484U 1984-11-19 1984-11-19 Expired JPH0141977Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17533484U JPH0141977Y2 (en) 1984-11-19 1984-11-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17533484U JPH0141977Y2 (en) 1984-11-19 1984-11-19

Publications (2)

Publication Number Publication Date
JPS6189556U JPS6189556U (en) 1986-06-11
JPH0141977Y2 true JPH0141977Y2 (en) 1989-12-11

Family

ID=30732940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17533484U Expired JPH0141977Y2 (en) 1984-11-19 1984-11-19

Country Status (1)

Country Link
JP (1) JPH0141977Y2 (en)

Also Published As

Publication number Publication date
JPS6189556U (en) 1986-06-11

Similar Documents

Publication Publication Date Title
US5713315A (en) Multiple step valve opening control system
US5779220A (en) Linear solenoid actuator for an exhaust gas recirculation valve
US6390078B1 (en) Two stage concentric EGR valves
JPH0141977Y2 (en)
US4040402A (en) Exhaust gas re-circulation system for an internal combustion engine
US4048967A (en) System for detoxicating exhaust gases
US4633845A (en) Vacuum control device
JPH1113558A (en) Exhaust circulation control valve for vehicular engine
US4158353A (en) Positive crank case ventilation valve and internal combustion engine including the same
JP2002081571A (en) Flow control valve
JPS601230Y2 (en) supercharged engine
JP3733597B2 (en) Exhaust gas recirculation device
US4213233A (en) Method of making a pilot operated valve positioner
JPH04292534A (en) Exhaust control device of internal combustion engine for vehicle
JPH07190238A (en) Idle air control valve
JPS6133249Y2 (en)
JPS6016765Y2 (en) Exhaust recirculation control device
JPH0450459A (en) Multistage opening and closing type negative pressure control valve for diesel power vehicle
JPH0422047Y2 (en)
JPS6036734Y2 (en) Secondary air supply control device in internal combustion engine
JPH08312470A (en) Flow control valve
JPS6233097Y2 (en)
JPH06307295A (en) Exhaust reflux device for diesel engine
JPS6263164A (en) Egr controller for internal combustion engine
JPS58222961A (en) Exhaust reflux control valve