JPH0141675B2 - - Google Patents

Info

Publication number
JPH0141675B2
JPH0141675B2 JP58110314A JP11031483A JPH0141675B2 JP H0141675 B2 JPH0141675 B2 JP H0141675B2 JP 58110314 A JP58110314 A JP 58110314A JP 11031483 A JP11031483 A JP 11031483A JP H0141675 B2 JPH0141675 B2 JP H0141675B2
Authority
JP
Japan
Prior art keywords
additive
water
soil
soft soil
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58110314A
Other languages
Japanese (ja)
Other versions
JPS5911390A (en
Inventor
Hajime Myoshi
Etsuo Asanagi
Junsuke Iguchi
Ikuo Okabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP11031483A priority Critical patent/JPS5911390A/en
Publication of JPS5911390A publication Critical patent/JPS5911390A/en
Publication of JPH0141675B2 publication Critical patent/JPH0141675B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、悪臭を持つ含水軟弱土を経済的かつ
効率よく脱臭させると共にその強度を増加させる
方法に関するものである。 含水軟弱土は、閉鎖型海域、開放型海域、干潮
河川などに堆積する海域系のもの、河川、湖沼、
貯水池、浄化池、浄水場などに堆積する淡水系の
もの、アースドリル工法、ベノト杭工法などにお
いて排出される土木工事系のものなどに分類され
る。これらの含水軟弱土は、一般に、無臭のもの
は少なく、多くの場合、独特の悪臭を放つ。そし
て、この悪臭は、近接する生活環境を著しく不快
にする。また、この含水軟弱土は、取扱いの困難
なもので、これを建設地としたり、あるいは他の
用途のために移送させるためには、強度増加処理
をしなければならない。 従来、含水軟弱土の処理に関しては、強度増加
や脱臭を独立して行うことは知られているが、両
者を一挙に実施し得る方法は知られていない。 含水軟弱土の脱臭のみを目的とした処理法とし
ては、消石灰や生石灰を添加する方法が知られて
いる。この場合、悪臭を持つ含水軟弱土のPH値を
上昇することにより、悪臭の原因となつている硫
化水素やメルカプタン類をカルシウム塩として、
その目的を達成させているために、実用性が乏し
い。即ち、この方法によると、硫化水素やメルカ
プタン類は、軟弱土のPH値が10以上のアルカリ性
にならないと、消石灰や生石灰による脱臭反応
(カルシウム塩生成反応)が不充分である。換言
すれば、処理土は、脱臭反応により生じるカルシ
ウム塩が安定に存在し得るようにPH値を10以上に
維持しなければ、再び悪臭である硫化水素やメル
カプタン類が発生することになる。軟弱土にはPH
値緩衝の作用が大きいので、これ方法で良好な脱
臭効果を得るためには、この大きなPH緩衝作用に
よりさらに上回つた多量の消石灰や生石灰の添加
が必要とされる。このように、消石灰や生石灰等
の石灰を多量に用いることは、経済性を損ねるの
で実用的でなく、さらに、これを本発明で強度増
加処理する時、この対象土がゲルストレングスに
より、この粘度が非常に高くなり、強度増加処理
の作業性を著しく困難にするという大きな欠点を
生じる。その上、消石灰や生石灰を用いる場合に
は、それが危険物であるために取り扱いやその貯
蔵、保管に種々の制約を受ける欠点がある。ま
た、他の方法としては、硫酸第2鉄や塩化第2鉄
のような水溶性の3価鉄塩を添加する方法も提案
されているが、この場合にも、次の理由により満
足すべき結果を与えない。 (a) 水溶性の3価鉄塩は、加水分解して不溶性の
水酸化物となり易い。水溶性の3価鉄塩を安定
な水溶液として取り扱う場合、そのPH値は2.5
以下に維持する必要があり、そのPH値が3以上
になると、ほとんどが水酸化物として沈殿して
しまう。 Fe3++3H2OFe(OH3)↓+3H+ (1) 沈殿生成した水酸化物と悪臭の成分である硫
化水素やメルカプタンとの反応は、不均一反応
となるので、その反応は円滑に進まない。 (b) 悪臭の主成分である硫化水素が鉄分と反応し
て硫化鉄を生じるためには、その溶液のPH値は
4.5〜8.5とする必要がある。従つて、水溶性の
3価鉄塩の単独添加のみでは満足すべき結果が
得難い。 (c) (a)と(b)項の条件の調和のために、水溶性の3
価鉄塩と生石灰または消石灰との併用が提案さ
れているが、鉄塩の加水分解が起きるために、
悪臭の原因となつている硫化水素の化学量論に
対して大過剰の鉄塩を加えないと満足し得る結
果は得られない。 (d) 鉄塩が不溶性の水酸化物となつている状態で
鉄塩を作用させる時には、脱臭反応は不均一反
応となるため、その供給量は(c)項の条件下より
更に大過剰の鉄を供給し、その処理時間を長く
しないと満足すべき結果が得られない。 (e) (b)項で処理したものは、さらに本発明の強度
増加処理を行う場合、対象土のPH値が低下して
いるので、その強度増加作用を著しく阻害す
る。 尚、脱臭処理として、悪臭物質である硫化水素
などをパーライトなどによる物質的な吸着を利用
して行う方法も考えられる。が、しかし、この方
法では、物理吸着による硫化水素などの吸着平衡
が温度により大きく影響されることと、悪臭を感
じない迄に硫化水素などを完全に吸着させるため
には、吸着剤を大量用いる必要のあること、及
び、悪臭発生の原因となつているバクテリア殺菌
や繁殖防止の作用がないので、2次的にその処理
を行わなければならない、などの問題がある。悪
臭を持つ含水軟弱土を化学的に効率よく脱臭処理
するためには、次に示す(a)〜(c)等の課題を解決し
なければならない。 (a) 悪臭物質と反応させる脱臭剤は水溶性のもの
とし、脱臭反応による生成物が、対象土の強度
増加処理の条件や処理土中で、物理的にも化学
的にも安定な不溶性物質となるものを選定する
必要がある。 (b) 脱臭処理の条件としては、水溶性の脱臭剤が
狭雑物との競争反応に優先して選択的に悪臭物
質と完全に反応させるための条件、及び、反応
原料である脱臭剤が悪臭の原因となつている物
質と反応する以前に不溶性物質に変化しないよ
うな条件を満足しなければならない。そのため
には、脱臭剤の濃度、反応雰囲気のPH値や酸
化、還元電位及び温度、対象土への添加の方
法、その他の諸条件を特定とする必要がある。 (c) 脱臭剤が対象土に過剰に加えられた場合で
も、それが残存して強度増加剤に弊害を及ぼす
ことがなく、しかも、最終的に狭雑物やその他
の条件により、物理的にも化学的にも安定な不
溶性物質に変化するような脱臭剤とその処理の
条件を選ぶ必要がある。 一般的に、セメントを含む強度増加剤は、悪臭
を発生する含水軟弱土に対しては、そのセメント
の水和反応から副生する水酸化カルシウム(消石
灰)により、一時的な脱臭効果を示すものの、そ
の脱臭効果は前記したように含水軟弱土のPH値条
件によつて大きく作用され、長期かつ安定的なも
のでなく、その上、その強度増加の効果も余り大
きくない。というのは、悪臭を放つ含水軟弱土に
は相当量の有機物が含まれ、そしてセメントの水
硬作用(水和反応)は、この有機物によつて著し
く阻害されるからである。したがつて、セメント
を含む強度増加剤の場合は、悪臭を放つ含水軟弱
土に対して適用するためにはある種の工夫が要求
される。 本発明者らは、含水軟弱土の強度増加及び脱臭
に関する上記事情に鑑み、強度増加と脱臭の両方
を一挙に達成し得る方法を開発すべく鋭意研究を
重ねた結果、本発明を完成するに到つた。 本発明は;悪臭を持つ含水軟弱土に;下記に示
す添加剤A、B及びCを添加、混合することから
なり;添加剤A及びCは、添加剤Bの添加前に、
添加剤A及びCの順序に、または、同時に添加
し;かつ、添加剤AとBの重量割合A/Bが75/
25〜55/45の範囲であること;を特徴とする悪臭
を持つ含水軟弱土の脱臭を伴う強度増加方法であ
る。 添加剤A:2水石灰コウ5〜45重量%と粒径
100〜1μmの微細高炉水滓95〜55重量%の混
合物 添加剤B:ポルトランドセメント 添加剤C:水溶性の2価鉄塩 添加剤C(脱臭剤)としての水溶性の2価鉄塩
は、無機酸及び有機酸のいずれの塩も使用できる
が、添加剤A及びBへの影響や、経済性などの実
用性を考慮すると、硫酸第1鉄と塩化第1鉄の使
用が好ましい。その中でも、硫酸第1鉄は、チタ
ン製造時に大量副生され、かつ、安価であるので
最も好ましい。チタン製造工場では、多くの場
合、硫酸第1鉄が産業廃棄物として処分されてい
るので、このものの利用は、廃棄物の処理と利用
の面から考えるとまさに一石二鳥である。 本発明で用いる添加剤C、即ち、水溶性の2価
鉄塩は、本発明における添加剤Aの使用条件下、
即ち、微弱酸性〜弱アルカリ性の条件下で有効に
作用し、添加剤A及びBにおける強度増加作用に
悪影響を及ぼすことがなく、悪臭を持つ含水軟弱
土の脱臭効果を著しく高める。即ち、この水溶性
の2価鉄塩は、本発明における処理条件下では、
ヘドロなどにおける悪臭の原因物質である硫化水
素やメルカプタン類と効率よく反応し、これを固
定化する。この場合の反応は次の式で表わされ
る。 H2S+Fe2+→FeS(固体)+2H+ (2) 2RSH+Fe2+→(RS)2Fe(固体)+2H+ (3) この反応は、炭酸ガスの存在下でも選択的に起
り、炭酸ガスにより支障を受けることはない。悪
臭を持つ含水軟弱土の発生ガス中には炭酸ガスが
悪臭原因物質である酸化水素よりも大量に存在す
るが、本発明で用いる水溶性の2価鉄塩は、この
ような炭酸ガスの存在下でも硫化水素と選択的に
反応し、しかも、過剰に加えられた2価鉄塩は、
硫化水素との反応終了後に、この炭酸ガスと反応
し、無公害の炭酸第1鉄(シデライト)となる利
点を有している。また、水溶性の2価鉄塩の場
合、その溶解度は酸性及び中性溶液の範囲では、
そのPH値による影響(加水分解を受けて水酸化第
1鉄の沈殿生成物は生じない)を受けず、前記の
脱臭反応は、PH値4.5〜8.5の範囲で円滑に遂行す
る。このようなことは、前述の如く、3価の鉄塩
の場合には見られなかつたことであり、水溶性の
2価鉄塩による顕著な効果である。 含水軟弱土に対する水溶性の2価鉄塩の添加量
は、それに含まれる硫化水素量に支配され、一義
的に定めることはできないが、添加剤Cを添加剤
Aの添加後または同時に添加する際に、含水軟弱
土中に含まれる全硫化水素分に対して等モル以上
添加すればよい。この場合、全硫化水素分は、含
水軟弱土中の水分に溶解している未解離状成分と
解離状成分、及び固形物に収着されている収着成
分を意味し、金属と結合している不溶性の硫化物
は含まれない。このような全硫化水素分は、含水
軟弱土を水蒸気蒸留し、留出してくる硫化水素を
分析することにより定量する。また、金属と結合
している不溶性の硫化物は、全硫化水素分析に用
いた蒸留残渣に濃硫酸を加え、再び水蒸気蒸留し
て発生した硫化水素を分析して定量することがで
きる。本発明においては、過剰に添加された水溶
性の2価鉄塩は、前記したように、共存する炭酸
ガスと反応してシデライトを形成したり、また、
軟弱土の持つ陽イオン交換成分により捕捉されて
固定化される。したがつて、本発明においては、
添加する水溶性の2価鉄塩は、その過剰分がこの
ような反応により固定化される範囲内であれば、
添加剤A及びBによる強度増加反応に支障を与え
ることはない。尚、対象土の陽イオン交換容量
は、その土壌粒子に含まれている、粘土鉱物の種
類とその量比、及び腐植の量比により異なる。従
つて、対象土によつて陽イオン交換容量は大きく
相違する。 悪臭を持つ含水軟弱土を、添加剤C(可溶性の
2価鉄塩)を用いて効率よく脱臭するためには、
可溶性の2価鉄塩を添加剤Bに先立つて、添加剤
Aの添加後または同時に対象となる含水軟弱土に
分散・混合させる必要がある。そのためには、添
加剤Bの添加に先立つて、可溶性の2価鉄塩と添
加剤Aを含水軟弱土に分散・混合する必要があ
る。このためには、添加剤Aを添加混合した後に
2価鉄塩を水溶液として分散・混合する方法や、
あらかじめ添加剤Aに2価鉄塩を均一に分散させ
て、含水軟弱土に添加・混合する方法がとられ
る。添加剤Bの添加・混合の後に添加剤Cを含水
軟弱土に添加すると、添加剤Cの素材である水溶
性の2価鉄塩が、添加剤Bのアルカリ成分によ
り、不溶性の水酸化物となるために、迅速な脱臭
反応を行うことができない。従つて、このような
添加剤Cの使用方法は好ましくない。 次に、本発明の強度増加剤として用いる添加剤
A及びBについて詳細に説明する。 本発明に用いる添加剤Aは;2水石コウ5〜45
重量%と粒径100〜1μm(セメントと略同じかそれ
以下の粒度)の微細高炉水滓95〜55重量%の混合
物からなる。本発明において、添加剤Aの原料の
1つである2水石コウは;その粒度を特に制約さ
れず、粉末あるいは粒状物で用いることができ、
また、本発明の場合、排煙脱硫石コウをはじめ各
種の副生2水石コウが、付加価値を高めることな
く、回収時の形態のままでも使用することができ
る。また、本発明の添加剤Aの原料の他の1つで
ある高炉水滓は;製鉄用溶鉱炉の副生物であるス
ラグ、すなわち、鉱滓を水で急冷して1〜5mmぐ
らいの砂状ないしは粒状に砕いた水砕鉱滓(以下
高炉水滓という)を更に粒径100〜1μmに微粉砕
したものである。この組成は、鉄鉱石の成分やそ
の溶鉱炉の操作方針によつて若干異なるが、およ
そ次のようなものである。 SiO230〜35%、Al2O313〜18%、CaO38〜45
%、Fe2O30.5〜1.0%、MgO3〜6%、S0.5〜1.0
%、MnO0.5〜1.5%、TiO20.5〜1.0% この微細高炉水滓は前述した如く反応剤として
用いられるため、アルカリや硫酸塩などの刺激作
用により水硬性を発揮し得る潜在水硬性を必須の
要件としている。この潜在水硬性は、高炉滓を急
冷し、その結晶化を回避して、結晶化エネルギー
を内部に保存した非結晶(ガラス状)のものとす
ることによつて得ることができる。高炉滓を徐冷
して得た結晶質のものは、メリライト(ゲーレナ
イトCa2Al2SiO7・オケルマナイトCa2MgSi2O7
固溶体)とオルトケイ酸カルシウムを主要構成鉱
物とする緻密の結晶質であり、潜在水硬性がない
ので不適当である。尚、1〜5mm粗粒状の高炉水
滓を添加剤Aの原料に用いることは、その反応に
寄与する表面積が小さ過ぎるために、その反応性
が著しく低下するので好ましくない。本発明の必
須要件の1つである粒径100〜1μmの微細高炉水
滓を用いる時には、一般に用いられている1〜5
mm粗粒状の高炉水滓を用いる場合に比して、得ら
れる処理土の強度増加は3〜5倍にも達する。添
加剤A中に含ませる2水石コウと微細高炉水滓
は、添加剤Bの添加・混合以前であれば各々独立
して夫々を含水軟弱土に添加・混合することも可
能であるが、この場合には、操作回数が増す上に
均一混合にも負荷がかかるので実用的でない。こ
れらの原料は、その反応性を高めるためにあらか
じめ均一に混合することが重要である。添加剤A
は、2水石コウと高炉水滓を所定の割合に調製し
たものを混合・粉砕してつくるか、あるいは、高
炉水滓単独を粉砕したものに所定の粉末または未
粉砕の2水石コウを均一に混合してつくる。排煙
脱硫装置からの副生2水石コウは、分離工程で遠
心分離機などを経て約10重量%の自由水を含んだ
状態で回収されるが、乾燥高炉水滓と所定の割合
に混合することにより、これは乾燥することがな
く、直接に混合粉砕して添加剤Aとすることもで
きる。 本発明に用いる添加剤Aにおいては、2水石コ
ウ(X)5〜45重量%と微細高炉水滓(Y)95〜
55重量%からなることが必要である。これは、添
加剤Bとの添加比を含めて総合的に実験して見出
されたものである。添加剤A中の2水石コウ含有
量が5重量%以下の場合、腐植などによるポルト
ランドセメントの水和反応への弊害を阻止する作
用が満足されないのみならず、添加剤AとB及び
土壌間でエトリンガイト(3CaO・Al2O3
3CaSO4・28〜33H2O)の生成反応に必要な石コ
ウ量が不足し、含水軟弱土の強度増加に及ぼす効
果が小さくなるので好ましくない。一方、添加剤
A中の2水石コウ含有量が45重量%以上の場合、
即ち、微細高炉水滓含有量が55%以下の時には、
上記のエトリンガイト生成反応に必要な石コウ以
上にそれが供給されることと、微細高炉水滓が反
応剤として不足するために、含水軟弱土の強度増
加効果が小さくなるので好ましくない。 次に、添加剤Bとして用いるポルトランドセメ
ントは;日本工業規格JIS R5210に準ずるもので
あるが、一般的にはその内の普通ポルトランドセ
メントに準ずるものが用いられる。しかし、含水
軟弱土処理の条件によつては、中康熱ポルトラン
ドセメント、早強ポルトランドセメント及び超早
強セメントなどの規格に準ずるポルトランドセメ
ントの単独またはこれらを混合したものが使用さ
れる。 本発明に用いる添加剤AとBの含水軟弱土への
添加重量比A/Bは;75/25〜55/45の範囲に保
持することが、含水軟弱土の強度増加への効果の
点で重要である。これらの条件以外では、総合的
な最適成分のバランス比が得られなく、含水軟弱
土の強度増加効果が小さく、しかも、処理土は好
ましいものではない。 即ち、添加重量比A/Bが75/25より大きい
と、ポルトランドセメントの割合が小さ過ぎ、そ
の水和反応(水硬性反応)により副生する水酸化
カルシウム(消石灰)が少な過ぎ、これを引金と
して反応が誘発される微細高炉水滓などの含水軟
弱土に及ぼす強度増加の諸反応が十分に生起しな
いので、その目的を達成することができない。一
方、添加重量比A/Bが55/45より小さいと(添
加剤Bの添加割合が大き過ぎると)、2水石コウ
と微細高炉水滓が不足して、含水軟弱土の改良の
目的を十分に達成することができない。2水石コ
ウが不足すると、腐植などによるポルトランドセ
メントの水和反応への弊害を阻止することができ
ないのみならず、強度増加に寄与するエトリンガ
イト生成反応の原料として必要な石コウが不足す
るという問題が生じる。また、微細高炉水滓が不
足すると、エトリンガイト生成反応に必要な原料
が不足するなどにより、含水軟弱土の強度増加に
及ぼす効果が小さくなるという弊害の他に、次の
(a)〜(d)の如き問題が生じる。 (a)強度増加処理に際し、発熱が大きくなつて、
処理土中に内部ヒズミが発生するなどの問題が生
じる。(b)処理土には、ポルトランドセメントの水
和反応により副生する水酸化カルシウムが多量に
含まれるようになることから、処理土がアルカリ
性の強いものになる。(c)処理土が下水や海水によ
つて侵食されやすくなる。(d)強度増加剤のコスト
が高くなる。 本発明に於ける添加剤AとBの最も好ましい添
加量比A/Bは70/30〜60/40で、その時の添加
剤Aの好ましい配合割合は、2水石コウ(X)が
15〜35重量%、微細高炉水滓(Y)が85〜65重量
%である。 本発明を好ましく実施するには;添加剤A、B
及びCの含水軟弱土への添加順序を次の(a)〜(c)の
如く行う必要がある。 (a) 添加剤AとCを同時に含水軟弱土へ添加・混
合した後に、添加剤Bを添加・混合する。 (b) 添加剤Aを含水軟弱土に添加した後、添加剤
Cを添加・混合し、次いで、添加剤Bを添加・
混合する。 このように、添加剤Bを添加・混合する前段処
理において、臭気の原因となつている硫化水素
は、水溶性の2価鉄塩と前記の反応式(1)に従つて
反応し、硫化鉄(パイライト)となつて脱臭さ
れ、また、添加剤Aの作用により含水軟弱土は、
後続の添加剤Bに対して高い反応性を示す軟弱土
に変換される。また、添加剤Cを添加剤Aの後
に、または、同時に添加することによつて、悪臭
を持つ含水軟弱土を効果的に脱臭することができ
る。即ち、添加剤A中の2水石コウ成分が土壌の
陽イオン交換反応に大きく影響を及ぼし、添加剤
C中の2価鉄塩イオンが土壌中の悪臭性物質と効
果的に反応することが可能になる。 含水軟弱土への前段処理での添加剤Aの添加・
混合の作業性は極めてよく、また、この添加剤A
が加えられた含水軟弱土は、後続の添加剤Bの添
加・混合が均一、かつ、容易に行い得る様に作業
性は改善され、しかも、添加剤Bの添加による反
応が円滑に起り得る土壌基盤に効果的に改質され
る。添加剤Aに含まれる2水石コウは、水100g
に対しCaSo4換算で約0.2gという適当な溶解度
であるために、これが含水軟弱土に添加・混合さ
れると、ゲルストレングスなどの悪影響を及ぼす
ことがなく、(a)ポルトランドセメントの水和反応
に弊害を及ぼす対象土の腐植等の悪影響を抑制
し、(b)土壌粒子との陽イオン交換反応は好ましい
平衡状態に達する。従つて、後処理工程で添加剤
Bが加えられた場合には、含水軟弱土の強度増加
に必要な諸反応が効果的に生起する。 次に、この反応性が高められた含水軟弱土に後
処理工程として、添加剤Bを添加・混合する。こ
の添加剤Bの添加により、その素材であるポルト
ランドセメントの水和反応が始まると、副生する
水酸化カルシウムのために、一時的に対象土のPH
値は上昇し、添加剤Bと添加剤Aを構成する2水
石コウ及び微細高炉水滓との反応、及びこれら添
加剤AとBの各素材と微細土壌成分との諸反応が
誘発され、含水軟弱土の強度は増加される。この
場合、上記の如く、添加剤Aが添加・混合された
含水軟弱土は、その強度増加の諸反応が誘発され
易い土壌基盤に改質され、さらに、作業性も向上
しているために、後続の添加剤Bの添加・混合は
均一、かつ、容易に行なわれて、その目的が効率
よく達成される。 本発明に於ける含水軟弱土の強度増加反応とし
ては、(a)土壌微細土粒子や腐植のイオン交換反応
(b)エトリンガイトの生成反応(c)トベルモライト鉱
物類似相(3CaO・2SiO2・3H2O)の生成するポ
ゾラン反応(d)諸反応による非結晶ゲル物質の生成
反応(e)その他、が挙げられる。 また、この添加剤Bが対象土に加えられると、
反応の過程において水酸化カルシウム(消石灰)
が副生するために、必然的にその対象土のPH値が
一時的に高くなる。それ故に、対象土中の悪臭ガ
スの発生に関与しているバクテリアは死滅して、
悪臭ガスの発生は停止されるという効果がある。 以上の如く、本発明においては、悪臭を持つ含
水軟弱土の脱臭と強度増加の処理を行うに際し、
前段処理工程で添加剤A及び添加剤Cを添加・混
合し、後処理工程にて添加剤Bを添加・混合す
る。もし、添加剤Cで脱臭処理を行つた対象土を
強度増加する場合に、添加剤Bを添加・混合した
後に添加剤Bを対象土に添加・混合すると、その
操作の作業性が悪くなるために、特殊の施工機を
用いても本発明の様に効率よく目的を達成するこ
とは困難となる。即ち、添加剤Cで脱臭処理した
含水軟弱土に添加剤Bを加えると、その含水軟弱
土の粘性、ゲルストレングス及びPH値に著しい悪
影響を与える。これに起因し、必然的に操作処理
の作業性が悪くなり、含水軟弱土の均一混合の操
作がむずかしくなる。これに伴い、後続の添加剤
Aの添加・混合による均一分散及びその諸反応に
も悪影響を与えて含水軟弱土の強度増加の発現が
悪くなる。添加剤Bを先に加えることによる含水
軟弱土の粘度、ゲルストレングス及びPH値に及ぼ
す悪影響の原因は、ポルトランドセメントの水和
反応により生じるCa2+とOH-である。この悪影
響の原因となるCa2+とOH-も、本発明の強度増
加剤を用い、添加剤AとBの含水軟弱土への添加
順序を特定することによつて、含水軟弱土の強度
増加の操作性は改善され、しかも、その化学的諸
特性を効果的に利用することができる。 本発明の大きな特徴は、前記したように、(a)可
溶性の2価鉄塩(添加剤C)を脱臭剤に用い(b)強
度増加剤を、反応性の高い微細高炉水滓、2水石
コウ及びポルトランドセメントの3素材とし(c)そ
の強度増加剤3素材を、微細高炉水滓と2水石コ
ウから構成される添加剤Aと、ポルトランドセメ
ントからなる添加剤Bに区分し、(d)添加剤C(脱
臭剤)と添加剤Aを、添加剤Bに先立つて、悪臭
を持つ含水軟弱土に添加・混合した後に、添加剤
Bをそれに添加・混合とともに、添加剤Cを添加
剤Aの後に、または、同時に添加することによつ
て、悪臭を持つ含水軟弱土の脱臭と強度増加処理
を効率よく達成させることである。 本発明を実施する場合、添加剤A及びBはいず
れも粉末状又はスラリー状で添加することができ
る。 本発明によれば、前記したように、従来の方法
とは異なり、悪臭を持つ含水軟弱土が効率よく脱
臭でき、また、添加剤A、B及び土壌の各成分と
の間での反応が極めて効率よく起り、処理土の強
度増加が最も大きくなるように配慮されているこ
とから、所要の強度増加を得るのに、それら添加
剤A、Bの使用量は少なくて済み、しかも所要強
度に達する時間は短かくて済む。処理対象土に関
しては、一般的に、アロフエン、加水ハロサイ
ト、モンモリロナイト等の粘土鉱物を多く含むも
のは反応性が高く、一方カオリナイト、イライ
ト、クロライトなどを多く含むものは反応性が前
者より低い。又、粘土などの細粒分の含有量(土
性)、腐植などの有機分の含有量及びPH値により
反応性は異なり、さらに初期含水比によつても含
水軟弱土の強度増加への効果は影響を受ける。し
かし、通常の所要強度の目的達成のために用いる
本発明の強度増加剤の使用量は含水軟弱土1m3
り、添加剤A及びBの総量で50〜150Kg程度であ
る。含水軟弱土が反応性の高い粘土鉱物を多く含
んだり、有機質の含有量が小さいなど強度増加の
反応に適している場合には、強度増加剤の使用量
は含水軟弱土1m3当り通常50〜100Kg程度である。 本発明の方法は、含水軟弱土の含水比50〜200
%の軟弱土は勿論、500〜1000%という極めて高
い含水比の軟弱土に対しても適用することができ
る。処理対象土の初期含水比は処理土の改良効果
に影響を及ぼすが、含水比が高い軟弱土に対して
本発明を適用した場合、一定量以上の水はブリー
ジングにより処理土から分離し、その表面に遊離
する。 本発明によれば、前記したように、臭気を持つ
含水軟弱土に効率のよい脱臭と強度増加を達成す
ることが可能であるが、この場合、添加剤Bの素
材であるポルトランドセメントの添加量は比較的
少量であることから、その水和反応により生じる
発熱は著しく抑制され、処理土にヒズミが発生す
るようなこともなく、その上、処理土中の残留ア
ルカリ量が少ないことから、処理土のアルカリ上
昇も見られず、また下水や海水によつて処理土が
侵食されるようなこともない。また、本発明の場
合、総添加剤使用量が少なく、しかも、強度増加
剤中に占めるポルトランドセメントの割合が小さ
く、また康価な高炉水滓の割合が大きいことか
ら、経済性において著しくすぐれたものである。
さらにまた、本発明で用いる添加剤原料は、セメ
ントを除くといずれも極めて安価であり、多くの
場合、産業廃棄物として入手し得るため、本発明
は経済的面以外にエコロジーの面からも非常にす
ぐれたものである。 本発明においては、前記のように、処理剤は、
添加剤Aと添加剤Bの2剤に区分されているが、
その2剤化の効果をさらに具体的に示すと以下の
通りである。 (a) 被処理土に適した添加剤Aと添加剤Bとの配
合比が現場において自由に定められると共に、
各添加剤A及び添加剤Bの特性が十分に発揮で
きる。従つて、強度増加処理の効率が向上す
る。 (B) 添加剤A成分として用いるセツコウは、セメ
ント(添加剤B)から分離されているために、
乾燥や粉末化の必要がなく、排煙脱硫プロセス
などからの副生物を後処理しないで直接使用で
きること(産廃物の直接的な有効利用)。 (C) 脱臭剤としての2価鉄塩(添加剤C)を効果
的に作用させることができる。即ち、本発明で
は、脱臭剤として用いる2価鉄塩は、前記のよ
うに、添加剤B(セメント)の添加に先立つて
含水軟弱土に添加されるため、その2価鉄塩の
添加量を節約し、しかも、添加剤AとBとの反
応に悪影響を与えずに強度増加処理を達成でき
かつ効果的な脱臭処理を達成できる。 次に本発明を実施例及び参考例によりさらに詳
細に説明する。 なお、後記実施例において、添加剤Aとして
は;排煙脱硫工程で副生した2水石コウ粉末
(X)(平均粒径53μm、含水率9%、組成:
CaO31.2%、SO344.1%)と市販の微細高炉水滓
(Y)(ブレーン法測定による比表面積3600〜4000
cm2/g即ち平均粒径4μm、組成:SiO232〜35%、
Al2O315〜16%、CaO41〜44%、MgO4〜6%、
Fe2O30.5〜1.2%、S0.8〜1.0%、偏光顕微鏡下の
観察ではほとんど結晶物質を含まずガラス質であ
つた)と均一に混合したものを用いた。また、添
加剤Bとしては;ポルトランドセメントにおける
普通セメント(ブレーン法測定による比表面積
3300cm2/g)を用いた。また、原料含水軟弱土と
しては;実施例では、東京都江東区堅川の堆積軟
弱土を用いた。このものは含水比348.4%、粒度
組成0〜5μm46%、5〜20μm49%、20μm以上5
%であり、平均粒径5.2μmを示す。またこのもの
は含水比348%における密度が1.15g/cm3、PH値
8.0、灼熱減量23.7%を示し、このものの重クロ
ム酸試験法による有機含有量は21.2重量%、発生
ガス中の硫化水素含有濃度1800〜2000ppmであり
(北川式硫化水素検知管により測定)、水蒸気蒸留
液のヨード滴定により測定した全硫化水素分は供
試土1Kg当り430mg(12.6ミリモル)である。ま
た全硫化水素分を分析した蒸留残渣に濃硫酸を加
え再び水蒸気蒸留して同様に分析、定量した金属
と結合している不溶性硫化物は硫化水素換算で供
試土1Kg当り2836mg(70.2ミリモル)である。ま
た、参考例1〜4では、含水比260%、粒度組成
が0〜2μm14%、2〜5μm42%、5〜10μm19%、
10〜20μm25%、及び含水比260%における密度
1.21g/cm3である大阪南港浚渫底泥を用いた。 実施例 悪臭を持つ原料軟弱土1m3に対し、1中に2
価のFe15.6g(0.28モル)を含む硫酸第1鉄溶液
からなる添加剤C5(硫酸第1鉄4Kg相当量)、
添加剤A78Kg(X/Y=33/67)及び添加剤B52
Kgを第1表に示した添加順位で添加・混合した。
混合は各ステツプごとに混合機を用い充分に混合
した。この処理の過程において、添加剤Cと添加
剤Aとを同時に添加・混合処理した軟弱土は、脱
臭され、硫化水素分圧が0.2ppm(検知管検出限
界)以下となつた。因に、上記と同じ量比関係に
おいて、硫化水素分圧は、添加剤Cのみを供試軟
弱土に添加・混合した時には約1ppm程度で、該
軟弱土に更に添加剤Aを添加・混合すると、
0.2ppm以下に低下した。なお、添加剤Aを悪臭
を持つ含水軟弱土に添加・混合した後に添加剤C
を添加・混合した軟弱土は、硫化水素分圧が
0.2ppm以下であつた。次に、この混合試料を内
径50mm、高さ100mmの円筒型モールドに注入し、
恒温恒湿養生器内で20±1℃に保持して所要期間
養生した後、脱型し、その一軸圧縮強さと発生す
る硫化水素量及び環境庁告示13号に指定する溶出
試験によるPHを測定した。その結果を第1表に示
す。なお、表中に示したC・Aは、添加剤Cと添
加剤Aを同時に添加したことを表わす。
The present invention relates to a method for economically and efficiently deodorizing water-containing soft soil that has a bad odor and increasing its strength. Hydrous soft soils include those deposited in closed sea areas, open sea areas, low tide rivers, etc., rivers, lakes, marshes, etc.
It is classified into freshwater type, which is deposited in reservoirs, purification ponds, water purification plants, etc., and civil engineering type, which is discharged in earth drill method, Benoto pile method, etc. Generally, these soft soils containing water are rarely odorless, and in many cases, they emit a unique foul odor. This bad odor makes the living environment in the vicinity extremely unpleasant. In addition, this soft soil containing water is difficult to handle, and in order to use it as a construction site or to transport it for other uses, it must be treated to increase its strength. Conventionally, with regard to the treatment of hydrated soft soil, it has been known to independently perform strength increase and deodorization, but there is no known method that can perform both at once. As a treatment method for the sole purpose of deodorizing water-containing soft soil, a method of adding slaked lime or quicklime is known. In this case, by increasing the pH value of the water-containing soft soil that has a bad odor, hydrogen sulfide and mercaptans, which cause the bad odor, are converted into calcium salts.
Because it accomplishes its purpose, it is of little practical use. That is, according to this method, the deodorizing reaction (calcium salt production reaction) of hydrogen sulfide and mercaptans by slaked lime and quicklime is insufficient unless the PH value of the soft soil becomes alkaline with a pH value of 10 or more. In other words, unless the PH value of the treated soil is maintained at 10 or higher so that the calcium salts generated by the deodorizing reaction can stably exist, hydrogen sulfide and mercaptans, which are bad smells, will be generated again. PH for soft soil
Since the value buffering effect is large, in order to obtain a good deodorizing effect using this method, it is necessary to add a large amount of slaked lime or quicklime which is further exceeded by this large pH buffering effect. As described above, it is impractical to use a large amount of lime such as slaked lime or quicklime because it impairs economic efficiency.Furthermore, when this is treated to increase its strength in the present invention, the gel strength of the target soil increases its viscosity. becomes very high, resulting in a major drawback in that it makes the workability of strength increasing treatment extremely difficult. Moreover, when slaked lime or quicklime is used, there is a drawback in that it is a dangerous substance and is subject to various restrictions in its handling, storage, and preservation. In addition, as another method, a method of adding a water-soluble trivalent iron salt such as ferric sulfate or ferric chloride has been proposed, but even in this case, it should be satisfied for the following reasons. Gives no results. (a) Water-soluble trivalent iron salts are easily hydrolyzed to form insoluble hydroxides. When handling a water-soluble trivalent iron salt as a stable aqueous solution, its pH value is 2.5.
It is necessary to maintain the pH value below, and if the pH value exceeds 3, most of it will precipitate as hydroxide. Fe 3+ +3H 2 OFe(OH 3 )↓+3H + (1) The reaction between the precipitated hydroxide and hydrogen sulfide and mercaptan, which are components of bad odor, is a heterogeneous reaction, so the reaction does not proceed smoothly. do not have. (b) In order for hydrogen sulfide, the main component of bad odor, to react with iron to produce iron sulfide, the pH value of the solution must be
Must be between 4.5 and 8.5. Therefore, it is difficult to obtain satisfactory results only by adding a water-soluble trivalent iron salt alone. (c) For harmonization of the conditions in paragraphs (a) and (b), water-soluble
It has been proposed to use ferrous salts in combination with quicklime or slaked lime, but due to hydrolysis of the iron salts,
Satisfactory results cannot be obtained unless a large excess of iron salt is added relative to the stoichiometry of hydrogen sulfide, which causes the odor. (d) When iron salt is reacted with the iron salt in the form of insoluble hydroxide, the deodorizing reaction becomes a heterogeneous reaction, so the amount supplied is much larger than under the conditions in (c). Satisfactory results cannot be obtained unless iron is supplied and the processing time is lengthened. (e) When the soil treated in item (b) is further subjected to the strength increasing treatment of the present invention, the PH value of the target soil has decreased, so the strength increasing effect is significantly inhibited. As a deodorizing treatment, it is also possible to consider a method in which hydrogen sulfide, which is a malodorous substance, is adsorbed physically using pearlite or the like. However, with this method, the adsorption equilibrium of hydrogen sulfide, etc. due to physical adsorption is greatly affected by temperature, and a large amount of adsorbent must be used to completely adsorb hydrogen sulfide, etc. without causing a bad odor. There are also problems such as the fact that it is necessary to remove the odor, and that it does not have the effect of sterilizing or preventing the proliferation of bacteria that cause the odor, so it must be treated as a secondary treatment. In order to chemically and efficiently deodorize water-containing soft soil that has a bad odor, the following problems (a) to (c) must be solved. (a) The deodorizing agent to be reacted with the malodorous substance is water-soluble, and the product of the deodorizing reaction is an insoluble substance that is physically and chemically stable under the conditions of the strength increasing treatment of the target soil and in the treated soil. It is necessary to select the one that will. (b) The conditions for deodorizing treatment are such that the water-soluble deodorizing agent selectively and completely reacts with malodorous substances in preference to competitive reactions with impurities, and the deodorizing agent as a reaction raw material Conditions must be met to ensure that the substance does not change into an insoluble substance before reacting with the substance causing the odor. To do this, it is necessary to specify the concentration of the deodorizer, the PH value and oxidation of the reaction atmosphere, the reduction potential and temperature, the method of addition to the target soil, and other various conditions. (c) Even if the deodorizer is added in excess to the target soil, it will not remain and harm the strength enhancer, and will eventually be physically It is necessary to select a deodorizer and treatment conditions that will transform it into a chemically stable insoluble substance. In general, strength increasing agents containing cement have a temporary deodorizing effect on soft, water-containing soil that generates bad odors due to the calcium hydroxide (slaked lime) that is produced as a by-product from the hydration reaction of the cement. As mentioned above, its deodorizing effect is greatly affected by the PH value conditions of the hydrated soft soil, and is not stable over a long period of time.Furthermore, its strength-increasing effect is not very large. This is because the foul-smelling, hydrated soft soil contains a considerable amount of organic matter, and the hydraulic action (hydration reaction) of cement is significantly inhibited by this organic matter. Therefore, in the case of strength enhancers containing cement, certain measures are required in order to apply them to soft, water-containing soils that emit foul odors. In view of the above-mentioned circumstances regarding strength increase and deodorization of hydrated soft soil, the present inventors have conducted extensive research to develop a method that can achieve both strength increase and deodorization at once, and as a result, have completed the present invention. It has arrived. The present invention consists of adding and mixing additives A, B, and C shown below to water-containing soft soil having a bad odor; additives A and C are added before adding additive B.
Additives A and C are added in the order or simultaneously; and the weight ratio A/B of additives A and B is 75/
This is a strength increasing method that involves deodorizing water-containing soft soil with a foul odor, characterized in that the soil is in the range of 25 to 55/45. Additive A: 5-45% by weight of dihydrate lime and particle size
Mixture of 95-55% by weight of fine blast furnace water slag of 100-1 μm Additive B: Portland cement Additive C: Water-soluble divalent iron salt The water-soluble divalent iron salt as Additive C (deodorizer) is Although any salt of an inorganic acid or an organic acid can be used, it is preferable to use ferrous sulfate and ferrous chloride in consideration of the influence on additives A and B and practicality such as economical efficiency. Among these, ferrous sulfate is the most preferred because it is produced in large quantities as a by-product during titanium production and is inexpensive. In titanium manufacturing plants, ferrous sulfate is often disposed of as industrial waste, so the use of ferrous sulfate is the perfect way to kill two birds with one stone from the perspective of waste treatment and utilization. Additive C used in the present invention, that is, a water-soluble divalent iron salt, is used under the conditions of use of Additive A in the present invention.
That is, it acts effectively under slightly acidic to slightly alkaline conditions, does not adversely affect the strength-increasing effect of additives A and B, and significantly enhances the deodorizing effect of water-containing soft soil that has a bad odor. That is, this water-soluble divalent iron salt under the treatment conditions of the present invention:
It reacts efficiently with hydrogen sulfide and mercaptans, which are the causative agents of bad odors in sludge, etc., and fixes them. The reaction in this case is expressed by the following formula. H 2 S + Fe 2+ → FeS (solid) + 2H + (2) 2RSH + Fe 2+ → (RS) 2 Fe (solid) + 2H + (3) This reaction occurs selectively even in the presence of carbon dioxide; There will be no hindrance. Carbon dioxide gas is present in the gas generated from water-containing soft soil, which has a bad odor, in a larger amount than hydrogen oxide, which is the substance that causes the bad odor. Even below, the divalent iron salt reacts selectively with hydrogen sulfide, and the divalent iron salt added in excess is
It has the advantage that after the reaction with hydrogen sulfide is completed, it reacts with this carbon dioxide gas and becomes non-polluting ferrous carbonate (siderite). In addition, in the case of water-soluble divalent iron salts, their solubility is within the range of acidic and neutral solutions.
The deodorizing reaction is not affected by the pH value (no precipitated product of ferrous hydroxide is produced upon hydrolysis), and the deodorizing reaction is smoothly performed within the pH value range of 4.5 to 8.5. As mentioned above, this was not observed in the case of trivalent iron salts, and is a remarkable effect of water-soluble divalent iron salts. The amount of water-soluble divalent iron salt added to moist soft soil is controlled by the amount of hydrogen sulfide contained therein and cannot be unambiguously determined, but when Additive C is added after or simultaneously with Additive A. It may be added in an amount equal to or more than the same mole based on the total hydrogen sulfide contained in the hydrated soft soil. In this case, the total hydrogen sulfide content refers to undissociated components and dissociated components dissolved in water in the soft soil, as well as sorbed components sorbed to solid materials, which are bound to metals. It does not include insoluble sulfides. The total hydrogen sulfide content is determined by steam-distilling soft soil containing water and analyzing the hydrogen sulfide distilled out. Furthermore, insoluble sulfides bound to metals can be quantified by adding concentrated sulfuric acid to the distillation residue used for total hydrogen sulfide analysis, steam distilling it again, and analyzing the generated hydrogen sulfide. In the present invention, as described above, the water-soluble divalent iron salt added in excess reacts with coexisting carbon dioxide gas to form siderite, and
It is captured and immobilized by the cation exchange components of soft soil. Therefore, in the present invention,
The water-soluble divalent iron salt to be added is within the range where the excess amount is fixed by such a reaction,
It does not interfere with the strength increasing reaction by additives A and B. Note that the cation exchange capacity of the target soil varies depending on the type and amount ratio of clay minerals and the amount ratio of humus contained in the soil particles. Therefore, the cation exchange capacity varies greatly depending on the target soil. In order to efficiently deodorize water-containing soft soil that has a bad odor using Additive C (soluble divalent iron salt),
It is necessary to disperse and mix the soluble divalent iron salt into the target hydrous soft soil prior to the addition of Additive B, after or simultaneously with the addition of Additive A. For this purpose, it is necessary to disperse and mix the soluble divalent iron salt and the additive A into the hydrated soft soil before adding the additive B. For this purpose, there is a method of dispersing and mixing divalent iron salt as an aqueous solution after adding and mixing additive A,
A method is used in which the divalent iron salt is uniformly dispersed in Additive A in advance, and then added to and mixed with the soft soil containing water. When Additive C is added to water-containing soft soil after Additive B is added and mixed, the water-soluble divalent iron salt, which is the raw material of Additive C, becomes insoluble hydroxide due to the alkaline component of Additive B. Therefore, a rapid deodorizing reaction cannot be performed. Therefore, such a method of using Additive C is not preferred. Next, additives A and B used as the strength increasing agent of the present invention will be explained in detail. Additive A used in the present invention is;
It consists of a mixture of 95-55% by weight of fine blast furnace water slag with a particle size of 100-1 μm (approximately the same particle size as cement or smaller). In the present invention, dihydrite, which is one of the raw materials for additive A, can be used in the form of powder or granules without any particular restriction on its particle size.
Further, in the case of the present invention, various by-product dihydrate stones including flue gas desulfurization stones can be used in the form they were recovered without increasing added value. Blast furnace water slag, which is another raw material for additive A of the present invention, is slag, which is a by-product of blast furnaces for iron-making; The granulated mineral slag (hereinafter referred to as blast furnace slag) is further pulverized to a particle size of 100 to 1 μm. This composition varies slightly depending on the components of the iron ore and the operating policy of the blast furnace, but it is approximately as follows. SiO2 30~35%, Al2O3 13~18%, CaO38 ~ 45
%, Fe2O3 0.5 ~1.0%, MgO3~6%, S0.5~1.0
%, MnO 0.5-1.5%, TiO 2 0.5-1.0% As this fine blast furnace water slag is used as a reactant as mentioned above, it has latent hydraulic properties that can exhibit hydraulic properties due to the stimulating action of alkali or sulfate. It is a mandatory requirement. This latent hydraulic property can be obtained by rapidly cooling the blast furnace slag, avoiding its crystallization, and making it amorphous (glass-like) with crystallization energy stored inside. The crystalline material obtained by slowly cooling blast furnace slag is a dense crystalline material whose main constituent minerals are melilite (Gehlenite Ca 2 Al 2 SiO 7 / Okermanite Ca 2 MgSi 2 O 7 solid solution) and calcium orthosilicate. It is unsuitable because it has no latent hydraulic properties. Incidentally, it is not preferable to use blast furnace water slag in the form of coarse particles of 1 to 5 mm as a raw material for additive A, since the surface area contributing to the reaction is too small and the reactivity is significantly reduced. When using fine blast furnace water slag with a particle size of 100 to 1 μm, which is one of the essential requirements of the present invention, the generally used 1 to 5
The strength of the resulting treated soil is increased by 3 to 5 times compared to when blast furnace water slag in the form of coarse grains is used. Dihydrate slag and fine blast furnace water slag included in Additive A can be added and mixed independently to soft soil containing water before Additive B is added and mixed. In this case, it is not practical because the number of operations increases and it also puts a burden on uniform mixing. It is important to uniformly mix these raw materials in advance in order to increase their reactivity. Additive A
It can be made by mixing and pulverizing dihydrate slag and blast furnace water slag prepared in a predetermined ratio, or by pulverizing blast furnace water slag alone and uniformly adding a specified powder or unground dihydrate slag. Make by mixing. Dihydrite, a by-product from flue gas desulfurization equipment, is recovered in a state containing approximately 10% free water by weight through a centrifuge during the separation process, and is mixed with dried blast furnace water slag at a predetermined ratio. Therefore, it can be mixed and ground directly to obtain additive A without drying. In the additive A used in the present invention, 5 to 45% by weight of dihydrate slag (X) and 95 to 45% of fine blast furnace water slag (Y) are added.
It is necessary to consist of 55% by weight. This was discovered through comprehensive experiments including the addition ratio with Additive B. If the dihydrate content in Additive A is less than 5% by weight, not only will the effect of inhibiting the hydration reaction of Portland cement caused by humus etc. Ettringite (3CaO・Al 2 O 3
This is not preferable because the amount of gypsum necessary for the production reaction of 3CaSO 4 .28~33H 2 O) is insufficient, and the effect on increasing the strength of hydrous soft soil is reduced. On the other hand, when the dihydrate content in Additive A is 45% by weight or more,
That is, when the fine blast furnace water slag content is less than 55%,
This is not preferable because the above-mentioned ettringite production reaction requires more gypsum to be supplied, and because the fine blast furnace water slag is insufficient as a reactant, the effect of increasing the strength of the hydrous soft soil becomes small. Next, the Portland cement to be used as additive B complies with the Japanese Industrial Standard JIS R5210, among which one conforming to ordinary Portland cement is generally used. However, depending on the conditions of hydrous soft soil treatment, a single or a mixture of Portland cements conforming to the standards, such as medium-low temperature Portland cement, early-strength Portland cement, and ultra-early-strength cement, may be used. The weight ratio A/B of additives A and B used in the present invention to the hydrated soft soil should be maintained in the range of 75/25 to 55/45 in terms of the effect on increasing the strength of the hydrated soft soil. is important. Under conditions other than these, a comprehensive optimum balance ratio of components cannot be obtained, the effect of increasing the strength of hydrated soft soil is small, and the treated soil is not preferable. That is, if the addition weight ratio A/B is larger than 75/25, the proportion of Portland cement is too small, and the calcium hydroxide (slaked lime) produced by the hydration reaction (hydraulic reaction) is too small. The purpose cannot be achieved because the various reactions that increase the strength of soft soils containing water, such as fine blast furnace water slag, in which reactions are induced as gold, do not occur sufficiently. On the other hand, if the addition weight ratio A/B is smaller than 55/45 (if the addition ratio of additive B is too large), dihydrate slag and fine blast furnace water slag will be insufficient, and the purpose of improving hydrated soft soil will be insufficient. cannot be achieved. If there is a shortage of dihydrate, not only will it be impossible to prevent the harmful effects of humus on the hydration reaction of Portland cement, but there will also be a problem that there will be a shortage of gypsum, which is necessary as a raw material for the ettringite production reaction that contributes to increased strength. arise. In addition, if there is a shortage of fine blast furnace water slag, there will be a shortage of raw materials necessary for the ettringite production reaction, which will reduce the effect on increasing the strength of hydrated soft soil, as well as the following:
Problems like (a) to (d) arise. (a) During strength increasing treatment, heat generation increases,
Problems such as internal distortions occur in the treated soil. (b) The treated soil becomes highly alkaline because it contains a large amount of calcium hydroxide, which is a by-product of the hydration reaction of Portland cement. (c) Treated soil becomes easily eroded by sewage and seawater. (d) The cost of strength enhancers increases. The most preferable addition ratio A/B of additives A and B in the present invention is 70/30 to 60/40, and the preferable blending ratio of additive A at that time is that dihydrite (X) is
15 to 35% by weight, and 85 to 65% by weight of fine blast furnace water slag (Y). To preferably carry out the present invention; Additives A and B
It is necessary to add C and C to the water-containing soft soil in the following order (a) to (c). (a) Additives A and C are simultaneously added and mixed to the hydrated soft soil, and then Additive B is added and mixed. (b) After adding Additive A to the hydrated soft soil, Additive C is added and mixed, and then Additive B is added and mixed.
Mix. In this way, in the preliminary treatment of adding and mixing additive B, hydrogen sulfide, which causes odor, reacts with water-soluble divalent iron salt according to the reaction formula (1) above, and becomes iron sulfide. (pyrite) and is deodorized, and due to the action of additive A, water-containing soft soil is
It is converted into a soft soil that is highly reactive towards subsequent additive B. In addition, by adding Additive C after Additive A or at the same time, it is possible to effectively deodorize water-containing soft soil that has a bad odor. In other words, the dihydrate component in Additive A greatly affects the cation exchange reaction in soil, and the divalent iron salt ions in Additive C can effectively react with malodorous substances in soil. become. Addition of Additive A in the preliminary treatment to moist soft soil
The workability of mixing is extremely good, and this additive A
The water-containing soft soil to which Additive B has been added has improved workability so that the subsequent addition and mixing of Additive B can be carried out uniformly and easily, and the soil also allows the reaction caused by the addition of Additive B to occur smoothly. The base is effectively modified. The dihydrite contained in additive A is 100g of water.
However, since it has an appropriate solubility of approximately 0.2 g in terms of CaSo 4 , when it is added to and mixed with hydrated soft soil, it does not have any adverse effects such as gel strength, and (a) hydration reaction of Portland cement. (b) The cation exchange reaction with soil particles reaches a favorable equilibrium state. Therefore, when additive B is added in the post-treatment step, various reactions necessary for increasing the strength of the hydrous soft soil effectively occur. Next, as a post-treatment step, additive B is added and mixed to this hydrous soft soil with increased reactivity. When the addition of Additive B starts the hydration reaction of the Portland cement material, calcium hydroxide, which is a by-product, temporarily causes the PH of the target soil to rise.
The value increases, and reactions between Additive B and the dihydrate slag and fine blast furnace water slag that make up Additive A, as well as various reactions between each of these additives A and B and the fine soil components, are induced, and the water content increases. The strength of soft soil is increased. In this case, as mentioned above, the hydrated soft soil to which Additive A has been added and mixed has been modified into a soil base that easily induces various reactions that increase its strength, and furthermore, workability has been improved. The subsequent addition and mixing of additive B is uniform and easy, and the purpose is efficiently achieved. In the present invention, the strength increasing reaction of hydrated soft soil includes (a) ion exchange reaction of fine soil particles and humus;
(b) Ettringite production reaction (c) Pozzolanic reaction producing tobermolite mineral-like phase (3CaO 2SiO 2 3H 2 O) (d) Production reaction of amorphous gel material through various reactions (e) Others, Can be mentioned. Also, when this additive B is added to the target soil,
Calcium hydroxide (slaked lime) in the process of reaction
As a by-product, the PH value of the target soil will inevitably rise temporarily. Therefore, the bacteria involved in the generation of foul-smelling gas in the target soil are killed,
This has the effect of stopping the generation of foul-smelling gas. As described above, in the present invention, when deodorizing and increasing the strength of water-containing soft soil that has a bad odor,
Additive A and Additive C are added and mixed in the pre-treatment step, and Additive B is added and mixed in the post-treatment step. If you want to increase the strength of target soil that has been deodorized with Additive C, if Additive B is added and mixed with the target soil after Additive B is added and mixed, the workability of the operation will deteriorate. Furthermore, even if a special construction machine is used, it is difficult to achieve the purpose as efficiently as the present invention. That is, when Additive B is added to hydrated soft soil that has been deodorized with Additive C, it has a significant adverse effect on the viscosity, gel strength, and PH value of the hydrated soft soil. Due to this, the workability of the operation treatment inevitably deteriorates, and it becomes difficult to uniformly mix the water-containing soft soil. Along with this, uniform dispersion by subsequent addition and mixing of additive A and its various reactions are also adversely affected, making it difficult to increase the strength of the hydrated soft soil. The cause of the negative effect on the viscosity, gel strength, and PH value of the hydrous soft soil by adding Additive B first is Ca 2+ and OH - generated by the hydration reaction of Portland cement. Ca 2+ and OH - , which cause this adverse effect, can be improved by using the strength increasing agent of the present invention and by specifying the order in which additives A and B are added to the soft soil. Its operability is improved, and its chemical properties can be effectively utilized. As mentioned above, the major features of the present invention are that (a) soluble divalent iron salt (additive C) is used as a deodorizing agent, and (b) the strength increasing agent is mixed with highly reactive fine blast furnace water slag, dihydrite, etc. (c) The three strength increasing materials are divided into Additive A consisting of fine blast furnace water slag and dihydrite, and Additive B consisting of Portland cement. (d) Additive C (deodorizer) and Additive A are added to and mixed with the water-containing soft soil having a bad odor prior to Additive B, and then Additive B is added and mixed with Additive A. By adding it after or at the same time, it is possible to efficiently deodorize and increase the strength of water-containing soft soil that has a bad odor. When carrying out the present invention, both additives A and B can be added in the form of powder or slurry. According to the present invention, as described above, unlike conventional methods, water-containing soft soil with a bad odor can be efficiently deodorized, and the reaction between additives A and B and each component of the soil is extremely low. Since this occurs efficiently and consideration has been given to maximize the increase in strength of the treated soil, the amount of additives A and B used is small in order to obtain the required increase in strength, and the required strength is achieved. It only takes a short time. Regarding the soil to be treated, in general, those containing a large amount of clay minerals such as allofene, hydrated hallosite, and montmorillonite are highly reactive, while those containing large amounts of kaolinite, illite, and chlorite are more reactive than the former. low. In addition, the reactivity differs depending on the content of fine particles such as clay (soil texture), the content of organic matter such as humus, and the PH value, and the initial moisture content ratio also has an effect on increasing the strength of moist soft soil. is affected. However, the amount of the strength increasing agent of the present invention used to achieve the purpose of normal required strength is about 50 to 150 kg in total of additives A and B per 1 m 3 of water-containing soft soil. If the hydrated soft soil is suitable for strength-increasing reactions, such as by containing a large amount of highly reactive clay minerals or having a low organic matter content, the amount of strength increasing agent used is usually 50 to 50% per 1 m 3 of hydrated soft soil. It is about 100Kg. The method of the present invention has a water content ratio of 50 to 200 of hydrated soft soil.
It can be applied not only to soft soil with a moisture content of 500% to 1000%, but also to soft soil with an extremely high moisture content of 500 to 1000%. The initial water content ratio of the soil to be treated affects the improvement effect of the treated soil, but when the present invention is applied to soft soil with a high water content ratio, more than a certain amount of water will be separated from the treated soil by breathing, and the released on the surface. According to the present invention, as described above, it is possible to efficiently deodorize and increase the strength of odor-containing soft soil, but in this case, the amount of Portland cement that is the material of additive B added Since the amount of alkaline is relatively small, the heat generated by the hydration reaction is significantly suppressed, and no distortion occurs in the treated soil.Furthermore, since the amount of residual alkali in the treated soil is small, There is no increase in alkalinity in the soil, and the treated soil is not eroded by sewage or seawater. In addition, in the case of the present invention, the total amount of additives used is small, the proportion of Portland cement in the strength increasing agent is small, and the proportion of inexpensive blast furnace water slag is large, so it is extremely economical. It is something.
Furthermore, the additive raw materials used in the present invention are all extremely cheap except for cement, and in many cases can be obtained as industrial waste. It is of excellent quality. In the present invention, as mentioned above, the processing agent is
It is classified into two agents, Additive A and Additive B.
The effects of the two-component formulation are more specifically shown below. (a) The mixing ratio of additive A and additive B suitable for the soil to be treated can be freely determined on site, and
The characteristics of each additive A and additive B can be fully exhibited. Therefore, the efficiency of the strength increasing process is improved. (B) Because the slag used as the additive A component is separated from the cement (additive B),
There is no need for drying or pulverization, and by-products from flue gas desulfurization processes can be used directly without post-processing (direct effective use of industrial waste). (C) Divalent iron salt (additive C) as a deodorizing agent can be made to act effectively. That is, in the present invention, the divalent iron salt used as a deodorizing agent is added to the water-containing soft soil before adding additive B (cement) as described above, so the amount of the divalent iron salt added is In addition, it is possible to achieve strength-increasing treatment without adversely affecting the reaction between additives A and B, and to achieve effective deodorization treatment. Next, the present invention will be explained in more detail with reference to Examples and Reference Examples. In addition, in the examples described later, additive A is:
CaO3 1.2%, SO3 44.1%) and commercially available fine blast furnace water slag (Y) (specific surface area 3600-4000 by Blaine method measurement)
cm 2 /g or average particle size 4 μm, composition: SiO 2 32-35%,
Al2O3 15-16%, CaO41-44 % , MgO4-6%,
A homogeneous mixture of 0.5 to 1.2% Fe 2 O 3 and 0.8 to 1.0% S (which was glassy with almost no crystalline material when observed under a polarizing microscope) was used. In addition, as additive B: Ordinary cement in Portland cement (specific surface area measured by Blaine method)
3300cm 2 /g) was used. In addition, as the raw material water-containing soft soil; in the examples, sedimentary soft soil from Katagawa, Koto-ku, Tokyo was used. This product has a moisture content of 348.4%, a particle size composition of 0 to 5 μm, 46%, 5 to 20 μm, 49%, and 5 to 20 μm.
%, showing an average particle size of 5.2 μm. In addition, this product has a density of 1.15 g/cm 3 at a water content of 348%, and a pH value of
8.0, the loss on ignition was 23.7%, the organic content of this product was 21.2% by weight according to the dichromic acid test method, the hydrogen sulfide concentration in the generated gas was 1800 to 2000 ppm (measured with a Kitagawa hydrogen sulfide detector tube), and the water vapor The total hydrogen sulfide content measured by iodometric titration of the distillate was 430 mg (12.6 mmol) per 1 kg of test soil. In addition, concentrated sulfuric acid was added to the distillation residue analyzed for total hydrogen sulfide content, steam distilled again, and the amount of insoluble sulfide bound to metals was similarly analyzed and quantified. In terms of hydrogen sulfide, the amount of insoluble sulfide bound to metals was 2836 mg (70.2 mmol) per 1 kg of test soil. It is. In addition, in Reference Examples 1 to 4, the water content was 260%, the particle size composition was 14% from 0 to 2 μm, 42% from 2 to 5 μm, 19% from 5 to 10 μm,
Density at 10-20μm25% and moisture content 260%
Osaka Nanko dredging bottom mud with a concentration of 1.21 g/cm 3 was used. Example: For 1 m3 of raw material soft soil with a bad odor, 2 in 1
Additive C5 consisting of a ferrous sulfate solution containing 15.6 g (0.28 mol) of ferrous sulfate (equivalent to 4 kg of ferrous sulfate);
Additive A78Kg (X/Y=33/67) and Additive B52
Kg were added and mixed in the order of addition shown in Table 1.
The mixture was thoroughly mixed using a mixer at each step. In the course of this treatment, the soft soil to which Additive C and Additive A were simultaneously added and mixed was deodorized and the partial pressure of hydrogen sulfide was reduced to 0.2 ppm (detection tube detection limit) or less. Incidentally, in the same quantity ratio relationship as above, the hydrogen sulfide partial pressure is about 1 ppm when only Additive C is added and mixed with the soft soil sample, and when Additive A is further added and mixed with the soft soil. ,
It decreased to below 0.2ppm. In addition, after Additive A is added and mixed with water-containing soft soil that has a bad odor, Additive C is added.
Soft soil with added and mixed hydrogen sulfide has a hydrogen sulfide partial pressure of
It was below 0.2ppm. Next, this mixed sample was poured into a cylindrical mold with an inner diameter of 50 mm and a height of 100 mm.
After curing at 20±1°C in a constant temperature and humidity curing chamber for the required period, it is demolded and its unconfined compressive strength, amount of hydrogen sulfide generated, and PH by elution test specified in Environment Agency Notification No. 13 are measured. did. The results are shown in Table 1. Note that C.A shown in the table indicates that Additive C and Additive A were added at the same time.

【表】 参考例 1 原料軟弱土1m3に対して添加剤A(X/Y=
30/70)43.7Kgを添加して混練機で均一に混合
し、次いで添加剤B23.5Kgを添加し、混練機で充
分混合した。次に、この混合試料は実施例と同じ
操作により処理して1軸圧縮強さを測定した。ま
た、高炉水滓の粒径の強度に及ぼす影響を明らか
にするために、粗粒状の高炉水滓(Y′)を用い
た以外は同様な条件で比較試験を行つた。それら
の結果を第1図に示す。なお、使用した高炉水滓
Y及びY′の粒度分布は第2表の通りである。 なお、第1図の横軸は処理後の日数(材令)、
縦軸は処理土の1軸圧縮強さ(Kgf/cm2)を示
し、図中の曲線1は本願発明の参考例結果、曲線
2は比較試験例結果を示す。
[Table] Reference example 1 Additive A ( X /Y=
30/70) 43.7 kg was added and mixed uniformly with a kneader, and then 23.5 kg of additive B was added and thoroughly mixed with a kneader. Next, this mixed sample was treated in the same manner as in the example, and the uniaxial compressive strength was measured. In addition, in order to clarify the effect of the particle size of blast furnace water slag on the strength, a comparative test was conducted under the same conditions except that coarse-grained blast furnace water slag (Y') was used. The results are shown in FIG. The particle size distributions of the blast furnace water slags Y and Y' used are shown in Table 2. The horizontal axis in Figure 1 is the number of days after treatment (wood age);
The vertical axis shows the uniaxial compressive strength (Kgf/cm 2 ) of the treated soil, curve 1 in the figure shows the results of a reference example of the present invention, and curve 2 shows the results of a comparative test example.

【表】 参考例 2 原料軟弱土1m3に対し、添加剤A40.3Kgを用
い、X/Y重量比を4/96〜50/50に変化させ、
添加剤B26.9Kgを用いる以外は参考例1と同様に
して試験を行なつた。材令14日目の結果を第2図
に示す。第2図の横軸は添加剤A中の石コウ含有
重量百分率を示し、縦軸は処理土の1軸圧縮強さ
(Kgf/cm2)を示す。 原料軟弱土1m3に対し、添加剤AとBの添加総
量を67.2Kgとし、添加剤AとBの重量割合を種々
変化させ、参考例1の操作条件で試験を行つた。
材令14日と28日目結果を第3図に示す。第3図の
横軸は添加剤AとBの添加総量に対する添加剤B
の重量百分率で、縦軸は処理土の1軸圧縮強さ
(Kgf/cm2)を示す。図中の曲線1及び2は処理
後の日数(材令)14日と25日目の処理土について
の結果を示している。 参考例 4 参考例1と同じ供試含水軟弱土に対し添加剤A
及びBの添加順位を逆にした時の試験結果の比較
を第3図に示す。
[Table] Reference example 2 Using 40.3 kg of additive A for 1 m 3 of raw material soft soil, changing the X/Y weight ratio from 4/96 to 50/50,
The test was conducted in the same manner as in Reference Example 1 except that 26.9 kg of additive B was used. Figure 2 shows the results on the 14th day of wood age. The horizontal axis of FIG. 2 shows the weight percentage of gypsum contained in the additive A, and the vertical axis shows the uniaxial compressive strength (Kgf/cm 2 ) of the treated soil. The total amount of Additives A and B added to 1 m 3 of raw material soft soil was 67.2 kg, and the test was conducted under the operating conditions of Reference Example 1 while varying the weight ratio of Additives A and B.
Figure 3 shows the results on the 14th and 28th day of wood age. The horizontal axis in Figure 3 is additive B relative to the total amount of additives A and B added.
The vertical axis shows the uniaxial compressive strength (Kgf/cm 2 ) of the treated soil. Curves 1 and 2 in the figure show the results for treated soil 14 and 25 days after treatment (wood age). Reference example 4 Additive A was applied to the same sample hydrated soft soil as in reference example 1.
FIG. 3 shows a comparison of the test results when the order of addition of B and B was reversed.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は含水軟弱土の処理結果を示すグラ
フであり、第1図は添加剤A中の高炉水滓の種
類、第2図は添加剤A中の石コウ含量、及び第3
図は添加剤AとBの割合がそれぞれ処理土の強度
増加に及ぼす影響を示す。
Figures 1 to 3 are graphs showing the treatment results for hydrated soft soil. Figure 1 shows the types of blast furnace slag in Additive A, Figure 2 shows the gypsum content in Additive A, and
The figure shows the influence of the proportions of additives A and B on the strength increase of treated soil.

Claims (1)

【特許請求の範囲】 1 悪臭を持つ含水軟弱土に;下記に示す添加剤
A、B及びCを添加・混合することからなり;添
加剤A及びCは、添加剤Bの添加前に、添加剤A
及びCの順々に、または、同時に添加し;かつ、
添加剤AとBの重量割合A/Bが75/25〜55/45
の範囲であること;を特徴とする悪臭を持つ含水
軟弱土の脱臭を伴う強度増加方法。 添加剤A:2水石コウ5〜45重量%と粒径100
〜1μmの微細高炉水滓95〜55重量%の混合物 添加剤B:ポルトランドセメント 添加剤C:水溶性の2価鉄塩 2 添加剤Aが2水石コウ15〜35重量%と粒径
100〜1μmの微細高炉水滓85〜65重量%との混合
物からなり、添加剤Aと添加剤Bとの重量割合
A/Bが70/30〜60/40の範囲である特許請求の
範囲第1項の方法。
[Claims] 1. Additives A, B, and C shown below are added and mixed into water-containing soft soil having a bad odor; Additives A and C are added before adding Additive B. Agent A
and C are added in order or simultaneously; and
Weight ratio A/B of additives A and B is 75/25 to 55/45
A method for increasing strength involving deodorization of hydrated soft soil having a foul odor, characterized in that the range is within the range of; Additive A: Dihydrite 5-45% by weight and particle size 100
A mixture of 95-55% by weight of ~1 μm fine blast furnace water slag Additive B: Portland cement Additive C: Water-soluble divalent iron salt 2 Additive A is 15-35% by weight of dihydrite slag and particle size
Claim No. 1 is made of a mixture with 85 to 65% by weight of fine blast furnace water slag of 100 to 1 μm, and the weight ratio A/B of additive A to additive B is in the range of 70/30 to 60/40. Method of Section 1.
JP11031483A 1983-06-17 1983-06-17 Increase in strength of odorous, hydrous soft earth accompanied by deodorization Granted JPS5911390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11031483A JPS5911390A (en) 1983-06-17 1983-06-17 Increase in strength of odorous, hydrous soft earth accompanied by deodorization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11031483A JPS5911390A (en) 1983-06-17 1983-06-17 Increase in strength of odorous, hydrous soft earth accompanied by deodorization

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP439580A Division JPS56100920A (en) 1980-01-18 1980-01-18 Improvement of water content poorsoil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22911887A Division JPS6372783A (en) 1987-09-12 1987-09-12 Method of increasing strength of malodorous and hydrous poor soil concurrently with deodorization

Publications (2)

Publication Number Publication Date
JPS5911390A JPS5911390A (en) 1984-01-20
JPH0141675B2 true JPH0141675B2 (en) 1989-09-06

Family

ID=14532568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11031483A Granted JPS5911390A (en) 1983-06-17 1983-06-17 Increase in strength of odorous, hydrous soft earth accompanied by deodorization

Country Status (1)

Country Link
JP (1) JPS5911390A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341056A (en) * 1976-09-27 1978-04-14 Mitsubishi Heavy Ind Ltd Sludge water treatment process
JPS5352534A (en) * 1976-10-25 1978-05-13 Osaka Cement Production method of expandable setting material
JPS54113911A (en) * 1978-02-24 1979-09-05 Onoda Cement Co Ltd Improving material of organic matter soft ground
JPS54135408A (en) * 1978-04-11 1979-10-20 Nippon Steel Corp Method of improving organic soft earth that use iron manufacturing slag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341056A (en) * 1976-09-27 1978-04-14 Mitsubishi Heavy Ind Ltd Sludge water treatment process
JPS5352534A (en) * 1976-10-25 1978-05-13 Osaka Cement Production method of expandable setting material
JPS54113911A (en) * 1978-02-24 1979-09-05 Onoda Cement Co Ltd Improving material of organic matter soft ground
JPS54135408A (en) * 1978-04-11 1979-10-20 Nippon Steel Corp Method of improving organic soft earth that use iron manufacturing slag

Also Published As

Publication number Publication date
JPS5911390A (en) 1984-01-20

Similar Documents

Publication Publication Date Title
Koralegedara et al. Recent advances in flue gas desulfurization gypsum processes and applications–a review
US4465518A (en) Process for strengthening soft soil
US4028130A (en) Disposal method and use of sewage sludge
GB2042025A (en) Strengthening soft soil
US4124405A (en) Process for solidifying aqueous wastes and products thereof
US4443260A (en) Method for strengthening soft soil
JPS5817556B2 (en) Method for increasing deodorizing strength of hydrated soft soil with bad odor
JP2009013427A (en) Agent for solidifying and insolubilizing soil and soil treating method
KR20140092699A (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
Strigáč et al. The fungistatic properties and potential application of by-product fly ash from fluidized bed combustion
JP3274376B2 (en) Agglomerating agent for mud, solidifying agent using it
JP2004136160A (en) Toxic heavy metal collecting material
JP2013086030A (en) Method for treating dolomite sludge and soil improving material
KR100374189B1 (en) The manufacturing method for soil stabilization
JP2012214591A (en) Method for manufacturing soil hardener using inorganic waste containing fluorine, soil hardener obtained thereby, and method for immobilizing soft soil using the soil hardener
JPH0141675B2 (en)
JPS6244794B2 (en)
JPH0331755B2 (en)
KR102060569B1 (en) Sewage sludge solidification treatment method
KR830002746B1 (en) Method for improving the strength of a water-saturated soft soil
JPS6244795B2 (en)
JPS6361356B2 (en)
JP4148912B2 (en) Water treatment material and water treatment method
KR100375408B1 (en) Solidity material for reapplication of waste
KR20100059029A (en) Material for solidifying organic sludge