JPH0139478B2 - - Google Patents

Info

Publication number
JPH0139478B2
JPH0139478B2 JP14398781A JP14398781A JPH0139478B2 JP H0139478 B2 JPH0139478 B2 JP H0139478B2 JP 14398781 A JP14398781 A JP 14398781A JP 14398781 A JP14398781 A JP 14398781A JP H0139478 B2 JPH0139478 B2 JP H0139478B2
Authority
JP
Japan
Prior art keywords
coal
sulfonic acid
weight
fluidity
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14398781A
Other languages
Japanese (ja)
Other versions
JPS5845290A (en
Inventor
Tomofumi Nakamoto
Hiroshi Horimoto
Norio Kotabe
Hiroyuki Ishimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sanyo Kokusaku Pulp Co Ltd
Original Assignee
Nippon Steel Corp
Sanyo Kokusaku Pulp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Sanyo Kokusaku Pulp Co Ltd filed Critical Nippon Steel Corp
Priority to JP14398781A priority Critical patent/JPS5845290A/en
Publication of JPS5845290A publication Critical patent/JPS5845290A/en
Publication of JPH0139478B2 publication Critical patent/JPH0139478B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は石炭・水スラリーの流動性改良法に関
するものであり、更に詳しくは石炭粉末の水スラ
リーの調整に際し、或る特定の流動性改良剤を加
えることによつてパイプライン輸送性の優れた石
炭・水スラリーを造る方法に係るものである。 近年、石油供給事情の悪化に伴ない石油代替エ
ネルギー源として資源的に豊富で埋蔵地域も広く
世界各地に分布している石炭が見直されて来てい
る。 しかし、石炭はバルクマテリアルであつてハン
ドリングの面で種々の問題を擁している。特に液
体である石油とは異なり、その輸送には莫大な設
備投資と動力、労力を要し、また石炭粉末の場合
は発塵による作業環境の悪化や自然発火に対する
対策を講ずる必要もある。 之等の問題の解決策として古くから石炭の液化
やガス化が検討されているが、実用化には未だ可
成りの時間が掛かると言われている。 そのつなぎとして、或いは液化やガス化の際の
原料供給法として考えられているのが、石炭粉末
を水や石油、メタノールなどの液体中に分散させ
ることによる液体化である。 この中で石炭粉末を水中に分散させてスラリー
化する方式は媒体が水であるため、種々の利点を
有しており既に山元からの石炭の長距離陸上パイ
プライン輸送において実用化されている。しかし
ながらスラリー中の石炭濃度を高くするとスラリ
ーの流動性が著しく悪くなるため、現状は45〜60
重量%の石炭濃度で実施されている。従つて現時
点では輸送効率や脱水効率、排水処理費、ボイラ
ーでの直接燃焼の場合の燃焼効率などの面で問題
があり、広く普及するには至つていない。 従来、この石炭粉末・水スラリー中の石炭濃度
を少しでも高めるべく、石炭粉末の粒度調整や分
散剤の添加によるスラリー粘度の低減などの方法
が種々提案されて来た。 例えば特開昭53−581には水酸化アンモニウム
と共に有機スルホン酸塩やリグニンスルホン酸塩
を添加して高濃度石炭・水スラリーを得る方法が
開示されているが、一般にリグニンスルホン酸塩
の添加によりスラリー粘度は可成り低下するが、
未だ満足出来るものではないため工業的に採用さ
れていないのが実情である。 また高濃度石炭・水スラリーは非ニユートン流
動性を示し、擬塑性ないし非ビンガム塑性流体で
あるため、炭種によつては比較的小さい応力に対
しては全く流動しないが、極めて僅かしか流動し
ない。従つて分散剤、流動性改良剤としては可成
り高い応力下での定常状態における見掛けの粘度
の低減のみならず、見掛けの降伏値も低くし得る
ものが望ましい。 しかるに所謂リグニンスルホン酸塩はこの見掛
けの降伏値低減効果が小さく、また炭種によつて
は高応力下でダイラタンシー性を示すケースもあ
る。 一方、同じく分散剤として公知のナフタレンス
ルホン酸ホルマリン縮合物(例えば特開昭56−
21636に記載)誘導体パルプ蒸解排液もまた、そ
の減粘効果が充分でなく、炭種によつては見掛け
の降伏値が高い場合が多い。 またナフタレンスルホン酸とリグニンスルホン
酸とのホルマリン共縮合物も同様の傾向を有し効
果は不充分である。 本発明者等は高濃度石炭・水スラリーの定常状
態における見掛粘度及び見掛けの降伏値を更に低
減し、流動性を改善する方法について鋭意研究を
積み重ねた結果、石炭粉末・水スラリーの調製に
際し流動性改良剤の少なくとも一部として、ナフ
タレンスルホン酸ホルマリン縮合物若しくはナフ
タレンスルホン酸とリグニンスルホン酸とのホル
マリン共縮合物の何れか1種と亜硫酸パルプ蒸解
排液の限外過膜(分画分子量10000以上の膜)
処理によつて純度が少なくとも90%以上になるま
で精製して得られたリグニンスルホンないしその
誘導体を固形分重量換算比で2:8ないし8:2
の割合で併用することによつて夫々単独使用の場
合の結果からは全く予想し得ない程度にスラリー
の流動性が著しく改善されることを見出し、本発
明に到達した。 本発明においてナフタレンスルホン酸ホルマリ
ン縮合物とは、公知の方法で造られたナフタレン
スルホン酸ホルマリン縮合物を指す。またナフタ
レンスルホン酸とリグニンスルホン酸誘導体及び
ホルムアルデヒドの共縮合物は例えば特許第
1019746号の方法で得られるものを指す。 また亜硫酸パルプ蒸解排液の限外過膜(分画
分子量10000以上の膜)処理によつて得られたリ
グニンスルホン酸塩は、その侭用いてもよいが、
更にホルマリンによるヒドロキシメチル化を二次
処理として施したものを用いてもよい。要は分子
量の高いリグニンスルホン酸塩を用いることにあ
り、分子量が高い範囲ではヒドロキシメチル化は
更に効果を高めるものである。 限外過膜処理によつて純度が少なくとも90%
以上になるまで精製したものを用いることに限定
した理由は、純度が90%より低いとリグニンスル
ホン酸塩以外の亜硫酸パルプ排液成分の残存率が
多く、また分子量の比較的低いリグニンスルホン
酸塩も多く残つて来るため本発明の効果が損われ
るからである。 ナフタレンスルホン酸ホルマリン縮合物若しく
はナフタレンスルホン酸とリグニンスルホン酸と
のホルマリン共縮合物の何れか1種と亜硫酸パル
プ蒸解排液の限外過膜(分画分子量10000以上
の膜)処理によつて得られたリグニンスルホン酸
塩ないし、その誘導体の使用比率は固形分重量換
算比で2:8ないし8:2の割合にすべきで、そ
の範囲外では両者の相乗効果が小さく、夫々単独
使用の場合の効果に近い。 また両者の合計添加量は石炭粉末絶乾重量100
重量部に対し、0.2〜2重量部の範囲が望ましい。
0.2重量部より少ないと流動性改良効果は小さく、
また2重量部より多くしても効果の上乗せは殆ん
ど期待出来ないか、逆に悪くなる。 添加の時期としては石炭粉末・水スラリー調製
時でもよいし、或いは石炭粉砕時でも何れでもよ
い。 本発明の方法はスラリー中の石炭濃度の如何に
拘わらず効果があるが、特に石炭濃度60重量%以
上の高濃度スラリーにおいてその意義は大きい。 なお本発明方法において更に流動性改良剤とし
てポリオキシアルキレンアルキルフエニルエーテ
ル、カルボキシメチルセルロース、ポルアクリル
酸塩、縮合リン酸塩など公知の添加剤を併用する
ことも可能である。 本発明方法による分散性向上の機構は詳細には
不明であるが、限外過膜により分画したリグニ
ンスルホン酸塩等の使用に寄り、石炭粒子の水中
分散に有用な界面活性能が増加し、粒子をバラバ
ラにほぐし凝集を阻害する働きが強化されたため
と考えられる。 以下、実施例により本発明を更に説明するが、
本発明は之等の実施例により限定されるものでは
ない。 実施例 1 濃度20%のNaベース亜硫酸パルプ排液を分画
分子量5000および10000のポリスルホン製限外
過膜を用いて分別し、夫々純度90%、5%水溶液
PH7のリグニンスルホン酸ナトリウム、UF−
5000、UF−10000Aを得た。 このUF−5000、UF−10000Aの各々と公知の
方法で製造したβ−ナフタレンスルホン酸ホルマ
リン縮合物(平均縮合度4)のナトリウム塩
(NSF−1)を固形分換算比で5:5に混合した
試料を各々固形分換算、対石炭絶乾重量0.6重量
%相当量を溶解した各水溶液169gに200メツシ
ユ、80%パスにまで微粉砕した三池炭331g(水
分1.9%)を加え、日本特殊機化工業社製T.K.ホ
モミキサーを用いて8000rpmで40分間撹拌し、石
炭濃度65重量%の石炭・水スラリーを調製した。 この各スラリーの定常状態における見掛粘度と
応力−せん断速度曲線の直線部分を外挿して求め
られる見掛けの降伏値をレオメーターで測定し、
第1表の結果を得た。測定時のスラリーの液温は
20℃である。 なお比較のためにUF−5000、UF−10000A、
及びNSF−1を夫々単独使用した系についても
測定した。 表中、見掛粘度、降伏値の低いスラリー程流動
性が良好で本発明例−1は比較例−1〜4に比し
著しく優れた流動性を有していることが判る。
The present invention relates to a method for improving the fluidity of a coal/water slurry, and more specifically, it improves pipeline transportability by adding a specific fluidity improver when preparing a water slurry of coal powder. This relates to a method of making coal/water slurry. In recent years, as the oil supply situation has worsened, coal, which is rich in resources and has wide reserves and is distributed all over the world, has been reconsidered as an alternative energy source to oil. However, coal is a bulk material and has various problems in handling. In particular, unlike petroleum, which is a liquid, transporting it requires enormous capital investment, power, and labor, and in the case of coal powder, it is also necessary to take measures to prevent deterioration of the working environment due to dust generation and spontaneous combustion. As a solution to these problems, coal liquefaction and gasification have been considered for a long time, but it is said that it will still take a considerable amount of time to put them into practical use. As a link to this, or as a method of supplying raw materials during liquefaction or gasification, liquefaction by dispersing coal powder in a liquid such as water, petroleum, or methanol is considered. Among these methods, the method of dispersing coal powder in water to form a slurry has various advantages because the medium is water, and has already been put into practical use for long-distance overland pipeline transportation of coal from the base of a mountain. However, increasing the coal concentration in the slurry significantly deteriorates the fluidity of the slurry, so the current
It is carried out at a coal concentration of % by weight. Therefore, at present, there are problems in terms of transportation efficiency, dewatering efficiency, wastewater treatment cost, combustion efficiency in the case of direct combustion in a boiler, etc., and it has not become widely used. Conventionally, various methods have been proposed in order to increase the coal concentration in this coal powder/water slurry as much as possible, such as adjusting the particle size of the coal powder and reducing the viscosity of the slurry by adding a dispersant. For example, JP-A-53-581 discloses a method for obtaining a highly concentrated coal/water slurry by adding organic sulfonate or lignin sulfonate together with ammonium hydroxide; Although the slurry viscosity decreases considerably,
The reality is that it has not yet been adopted industrially because it is not yet satisfactory. In addition, highly concentrated coal/water slurry exhibits non-Newtonian fluidity and is a pseudoplastic or non-Bingham plastic fluid, so depending on the type of coal, it will not flow at all under relatively small stress, but it will flow very little. . Therefore, it is desirable that the dispersant and fluidity improver not only reduce the apparent viscosity in a steady state under fairly high stress, but also reduce the apparent yield value. However, the so-called lignin sulfonate has a small effect of reducing this apparent yield value, and depending on the type of coal, it may exhibit dilatancy under high stress. On the other hand, naphthalene sulfonic acid formalin condensates, which are also known as dispersants (for example,
21636) The derivative pulp cooking effluent also does not have a sufficient viscosity reducing effect, and depending on the type of coal, the apparent yield value is often high. Furthermore, a formalin cocondensate of naphthalenesulfonic acid and ligninsulfonic acid has a similar tendency and is insufficiently effective. The inventors of the present invention have conducted extensive research on methods for further reducing the apparent viscosity and apparent yield value in a steady state of highly concentrated coal/water slurry, and improving the fluidity of the slurry. As at least a part of the fluidity improver, any one of a naphthalene sulfonic acid formalin condensate or a formalin cocondensate of naphthalene sulfonic acid and lignin sulfonic acid and an ultrafiltration membrane (molecular cutoff 10000+ membranes)
Lignin sulfone or its derivatives obtained by purification to a purity of at least 90% or more by treatment at a solid content weight ratio of 2:8 to 8:2
The present inventors have discovered that by using these components in combination, the fluidity of the slurry is significantly improved to an extent that could not be expected from the results obtained when each component is used alone, and the present invention has been achieved based on this finding. In the present invention, the naphthalene sulfonic acid formalin condensate refers to a naphthalene sulfonic acid formalin condensate produced by a known method. In addition, co-condensates of naphthalene sulfonic acid, lignin sulfonic acid derivatives and formaldehyde, for example,
Refers to the product obtained by the method of No. 1019746. In addition, lignin sulfonate obtained by ultrafiltration membrane treatment (membrane with a molecular weight cut-off of 10,000 or more) of sulfite pulp cooking effluent may be used as such, but
Furthermore, those subjected to hydroxymethylation with formalin as a secondary treatment may be used. The key is to use a lignin sulfonate with a high molecular weight, and hydroxymethylation further enhances the effect in a high molecular weight range. At least 90% purity due to ultrafiltration treatment
The reason why we limited ourselves to using products purified to the above level is that if the purity is lower than 90%, there will be a large residual rate of sulfite pulp effluent components other than lignin sulfonate, and lignin sulfonate, which has a relatively low molecular weight. This is because the effect of the present invention is impaired because a large amount of the particles remains. Obtained by ultrafiltration membrane treatment (membrane with a molecular weight cut-off of 10,000 or more) of sulfite pulp cooking effluent with either a naphthalene sulfonic acid formalin condensate or a formalin cocondensate of naphthalene sulfonic acid and lignin sulfonic acid. The usage ratio of the lignin sulfonate or its derivatives should be 2:8 to 8:2 in terms of solid content weight. Outside this range, the synergistic effect of the two will be small, and if each is used alone. The effect is close to that of The total amount of both added is 100% coal powder bone dry weight.
A range of 0.2 to 2 parts by weight is desirable.
If it is less than 0.2 part by weight, the fluidity improvement effect is small;
Moreover, if the amount is more than 2 parts by weight, little additional effect can be expected, or on the contrary, it may become worse. The timing of addition may be at the time of preparing the coal powder/water slurry or at the time of coal pulverization. Although the method of the present invention is effective regardless of the coal concentration in the slurry, it is particularly significant in high-concentration slurries with a coal concentration of 60% by weight or more. In addition, in the method of the present invention, it is also possible to further use known additives such as polyoxyalkylene alkyl phenyl ether, carboxymethyl cellulose, polyacrylate, condensed phosphate, etc. as a fluidity improver. Although the detailed mechanism of improving dispersibility by the method of the present invention is unknown, the use of lignin sulfonate, etc., fractionated by an ultrafiltration membrane increases surfactant ability, which is useful for dispersing coal particles in water. This is thought to be due to an enhanced ability to break apart particles and inhibit agglomeration. The present invention will be further explained below with reference to Examples.
The invention is not limited to these examples. Example 1 Na-based sulfite pulp wastewater with a concentration of 20% was separated using polysulfone ultrafiltration membranes with a molecular weight cutoff of 5000 and 10000, respectively, to obtain 90% purity and 5% aqueous solutions.
Sodium lignin sulfonate with pH7, UF-
5000, got UF-10000A. These UF-5000 and UF-10000A are mixed with sodium salt (NSF-1) of β-naphthalenesulfonic acid formalin condensate (average degree of condensation 4) produced by a known method at a solid content ratio of 5:5. To 169 g of each aqueous solution in which the sample was dissolved in an amount equivalent to 0.6% by weight of absolute dry coal based on solid content, 200 mesh of Miike charcoal (331 g of pulverized to 80% pass) (moisture 1.9%) was added, and Nippon Tokushuki Co., Ltd. A coal/water slurry having a coal concentration of 65% by weight was prepared by stirring at 8000 rpm for 40 minutes using a TK homomixer manufactured by Kakogyo Co., Ltd. The apparent viscosity of each slurry in a steady state and the apparent yield value obtained by extrapolating the straight line portion of the stress-shear rate curve were measured using a rheometer.
The results shown in Table 1 were obtained. The temperature of the slurry at the time of measurement is
It is 20℃. For comparison, UF-5000, UF-10000A,
Measurements were also made for systems using NSF-1 and NSF-1 alone. In the table, it can be seen that the lower the apparent viscosity and yield value of the slurry, the better the fluidity, and the present invention example-1 has significantly superior fluidity compared to comparative examples-1 to 4.

【表】 実施例 2 濃度20%のCaベース亜硫酸パルプ排液を分画
分子量10000のポリスルホン製限外過膜を用い
て分別し、純度90%の高分子量リグニンスルホン
酸カルシウムを得た。このものを常法により
Na2SO4とNaOHを用いてベース置換、並びに中
和処理し、5%水溶液、PH7の高分子量リグニン
スルホン酸ナトリウム(UF−10000B)とした。 このUF−10000Bと公知の方法で製造したβ−
ナフタレンスルホン酸ホルマリン縮合物(平均縮
合度8)のナトリウム塩(NSF−2)を固形分
換算比で夫々8:2、5:5、2:8に混合した
試料を各々固形分換算で対石炭絶乾重量0.6重量
%添加し、実施例1の方法に従つて石炭濃度65重
量%のスラリーを調整した。 得られた各スラリーは液温20℃に調整後、実施
例1と同じ方法でその見掛粘度と見掛降伏値の測
定に供した。 なお比較のためにUF−10000B、NSF−2を
夫々単独使用した系及び両者を固形分重量換算比
で9:1、1:9に混合した試料を用いた系につ
いても測定した。
[Table] Example 2 Ca-based sulfite pulp wastewater with a concentration of 20% was fractionated using a polysulfone ultrafiltration membrane with a molecular weight cutoff of 10,000 to obtain high molecular weight calcium ligninsulfonate with a purity of 90%. This item by the usual method
Base substitution and neutralization were performed using Na 2 SO 4 and NaOH to obtain a 5% aqueous solution with a pH of 7 and a high molecular weight sodium lignin sulfonate (UF-10000B). This UF-10000B and β- produced by a known method
Samples prepared by mixing sodium salt (NSF-2) of naphthalene sulfonic acid formalin condensate (average degree of condensation 8) in solid content ratios of 8:2, 5:5, and 2:8, respectively, were compared to coal in terms of solid content. A slurry having a coal concentration of 65% by weight was prepared according to the method of Example 1 by adding 0.6% by weight of bone dry weight. After adjusting the temperature of each slurry to 20° C., the slurry was subjected to measurement of its apparent viscosity and apparent yield value in the same manner as in Example 1. For comparison, measurements were also carried out on systems using UF-10000B and NSF-2, respectively, and systems using samples in which both were mixed at solid content weight ratios of 9:1 and 1:9.

【表】 実施例 3 実施例1に記したUF−10000AとNSF−1及び
その両者を固形分換算比で5:5に混合した試料
を各々固形分換算、対石炭絶乾重量0.6重量%添
加し、実施例1に準じた方法で石炭濃度67重量%
のスラリーを調整した。 得られた各スラリーは液温を20℃に調整後、実
施例1と同じ方法でその見掛粘度と見掛降伏値の
測定に供した。結果は第3表に示した。
[Table] Example 3 UF-10000A and NSF-1 described in Example 1 and a sample obtained by mixing both at a ratio of 5:5 in terms of solid content were added in an amount of 0.6% by weight based on the absolute dry weight of coal, respectively, in terms of solid content. Then, the coal concentration was reduced to 67% by weight in the same manner as in Example 1.
The slurry was adjusted. After adjusting the temperature of each slurry to 20° C., the slurry was subjected to measurement of its apparent viscosity and apparent yield value in the same manner as in Example 1. The results are shown in Table 3.

【表】 実施例 4 実施例2のUF−10000B、NSF−2及びその両
者を5:5の比率で混合した流動性改良剤を用
い、スラリーの石炭濃度65重量%で各流動性改良
剤の添加量の影響を調べた結果を第4表に示し
た。
[Table] Example 4 Using the UF-10000B and NSF-2 of Example 2 and a fluidity improver in which both were mixed at a ratio of 5:5, each fluidity improver was mixed at a coal concentration of 65% by weight in the slurry. Table 4 shows the results of investigating the effect of the amount added.

【表】【table】

【表】 実施例 5 実施例1のUF−10000Aと、商品名サンフロー
PS(山陽国策パルプ社製品、ナフタレンスルホン
酸・変性リグニンスルホン酸・ホルマリン共縮合
物)及び両者を5:5の比率で混合した試料、更
にその試料にその固形分の1%量のポリオキシエ
チレンノニルフエニルエーテル(エチレンオキサ
イド付加モル数15)を添加した試料を各々固形分
換算で対石炭絶乾重量0.8重量%添加し、実施例
1と同じ方法で石炭濃度65重量%のスラリーを調
整した。得られた各スラリーは液温を20℃に調整
後、実施例1と同じ方法でその見掛粘度と見掛降
伏値の測定に供した。結果を第5表に示す。
[Table] Example 5 UF-10000A of Example 1 and product name Sunflow
PS (product of Sanyo Kokusaku Pulp Co., Ltd., naphthalene sulfonic acid/modified lignin sulfonic acid/formalin co-condensate) and a sample of both mixed at a ratio of 5:5, and then added polyoxyethylene in an amount of 1% of the solid content of the sample. A sample containing nonyl phenyl ether (15 moles of ethylene oxide added) was added in an amount of 0.8% by weight based on the absolute dry weight of the coal in terms of solid content, and a slurry with a coal concentration of 65% by weight was prepared in the same manner as in Example 1. . After adjusting the temperature of each slurry to 20° C., the slurry was subjected to measurement of its apparent viscosity and apparent yield value in the same manner as in Example 1. The results are shown in Table 5.

【表】 実施例 6 実施例2に記したUF−10000Bの30%水溶液に
HCHOを対固形分2%添加し、120℃で30分間反
応させて得られた高分子量リグニンスルホン酸ナ
トリウムのヒドロキシメチル化物とNSF−2を
固形分換算比で5:5に混合した流動性改良剤を
固形分換算、対石炭絶乾重量0.6重量%添加し、
実施例1と同じ方法で調製した石炭濃度65重量%
のスラリーの見掛粘度、見掛降伏値は夫々
390cp、65dyne/cm2でヒドロキシメチル化物を単
独使用した場合の値680cp、290dyne/cm2より低
く、流動性が良かつた。 以上の実施例に示される様に本発明品の添加に
より、従来の未分画または分画分子量5000以上の
リグニンスルホン酸塩単品、ナフタレンスルホン
酸ホルマリン縮合物単品、両者を9:1〜1:9
で混合したものなどと比較して、スラリー見掛粘
度、スラリー見掛降伏値は何れも著しく低下し
(第1〜5表)、流動性が向上して本発明が完成さ
れた。
[Table] Example 6 A 30% aqueous solution of UF-10000B described in Example 2
Improved fluidity by mixing hydroxymethylated high molecular weight sodium ligninsulfonate obtained by adding 2% HCHO to solid content and reacting at 120°C for 30 minutes and NSF-2 at a solid content ratio of 5:5. The agent was added in an amount of 0.6% by weight based on the absolute dry weight of the coal in terms of solid content.
Coal concentration 65% by weight prepared by the same method as Example 1
The apparent viscosity and apparent yield value of the slurry are respectively
390 cp, 65 dyne/cm 2 was lower than the value of 680 cp, 290 dyne/cm 2 when hydroxymethylated product was used alone, and the fluidity was good. As shown in the above examples, by adding the product of the present invention, a single conventional unfractionated or fractionated lignin sulfonate with a molecular weight cut-off of 5000 or more, a single naphthalene sulfonic acid formalin condensate, and the ratio of both to 9:1 to 1: 9
The apparent viscosity of the slurry and the apparent yield value of the slurry were both significantly reduced (Tables 1 to 5), and the fluidity was improved, thus completing the present invention.

Claims (1)

【特許請求の範囲】 1 石炭粉末・水スラリーの調整に際し、流動性
改良剤の少なくとも一部として、ナフタレンスル
ホン酸ホルマリン縮合物若しくはナフタレンスル
ホン酸とリグニンスルホン酸とのホルマリン共縮
合物の何れか1種と、亜硫酸パルプ蒸解排液を分
画分子量10000以上の限外過膜により処理した
純度90%以上のリグニンスルホン酸塩ないしその
誘導体を固形分重量換算比2:8ないし8:2の
割合で併用することを特徴とする石炭・水スラリ
ー流動性改良方法。 2 ナフタレンスルホン酸ホルマリン縮合物若し
くは、ナフタレンスルホン酸とリグニンスルホン
酸とのホルマリン共縮合物の何れか1種と前記高
分子量リグニンスルホン酸塩ないしその誘導体の
合計添加量が、石炭粉末絶乾重量100重量部に対
し、0.2〜2重量部の範囲である特許請求の範囲
第1項記載の石炭・水スラリー流動性の改良方
法。 3 石炭・水スラリーの石炭濃度が60重量%以上
である特許請求の範囲第1項または第2項記載の
石炭・水スラリー流動性の改良方法。
[Scope of Claims] 1. When preparing a coal powder/water slurry, at least a part of the fluidity improver is a naphthalene sulfonic acid formalin condensate or a formalin cocondensate of naphthalene sulfonic acid and lignin sulfonic acid. Seeds and lignin sulfonate or its derivatives with a purity of 90% or more obtained by treating the sulfite pulp cooking effluent with an ultrafiltration membrane with a molecular weight cutoff of 10,000 or more in a solid content weight ratio of 2:8 to 8:2. A method for improving the fluidity of a coal/water slurry characterized by their combined use. 2 The total amount of either one of the naphthalene sulfonic acid formalin condensate or the formalin cocondensate of naphthalene sulfonic acid and lignin sulfonic acid and the high molecular weight lignin sulfonate or its derivative is 100% by absolute dry weight of coal powder. The method for improving the fluidity of a coal/water slurry according to claim 1, wherein the amount is in the range of 0.2 to 2 parts by weight. 3. The method for improving the fluidity of a coal/water slurry according to claim 1 or 2, wherein the coal/water slurry has a coal concentration of 60% by weight or more.
JP14398781A 1981-09-14 1981-09-14 Improving method for fluidity of coal-water slurry Granted JPS5845290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14398781A JPS5845290A (en) 1981-09-14 1981-09-14 Improving method for fluidity of coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14398781A JPS5845290A (en) 1981-09-14 1981-09-14 Improving method for fluidity of coal-water slurry

Publications (2)

Publication Number Publication Date
JPS5845290A JPS5845290A (en) 1983-03-16
JPH0139478B2 true JPH0139478B2 (en) 1989-08-21

Family

ID=15351666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14398781A Granted JPS5845290A (en) 1981-09-14 1981-09-14 Improving method for fluidity of coal-water slurry

Country Status (1)

Country Link
JP (1) JPS5845290A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327280B (en) * 2014-10-10 2017-06-06 华南理工大学 A kind of preparation method of alkali lignin modified polycarboxylic-acid coal water slurry dispersing agent

Also Published As

Publication number Publication date
JPS5845290A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
US4195975A (en) Stabilized fuel slurry
US4552568A (en) Method for preparing coal-water slurry
CN108165331A (en) A kind of Compositional type slurries additive agent
JPH0139478B2 (en)
US4547199A (en) Use of aralkyl polyalkylene glycol ethers for the preparation of aqueous coal slurries
JPS5845289A (en) Improving method for fluidity of coal-water slurry
JPH0128798B2 (en)
CN110776603A (en) Preparation method of polycarboxylic acid mud-resistant water reducer synthesized by sodium lignosulfonate
CN109399992A (en) A kind of aqua retarder
EP0166774B1 (en) Water reducing agent utilized in mortar and concrete
CN1298927A (en) Humic acid additives for water-coal slurry and its preparing process
JPS61245830A (en) Fluid assistant composition for aqueous coal suspension
JPH0132876B2 (en)
JP3192464B2 (en) Cement admixture
NO823752L (en) ADDITIVE FOR CEMENT, MORTAL AND CONCRETE
SU1275088A1 (en) Agent for preventing hydrate formation in producing,preparing and conveying fuel gas
JP2733126B2 (en) Dispersion stabilizer for water slurry of coal powder
JPS59152994A (en) Viscosity reducing agent for coke and water slurry having high concentration
CA1091016A (en) Production of solid fuel-water slurries
JPH0948984A (en) Dispersion stabilizer for coal/water slurry and coal/ water slurry
CN108865301B (en) Preparation method of gasified coal water slurry additive
JPS6243488A (en) Aqueous slurry composition of carbonaceous solid
JPS63223091A (en) Carbonaceous solid water slurry composition
JPH0560518B2 (en)
JPH09137179A (en) Dispersion stabilizer for coal-water slurry and coal-water slurry