JPH0138963Y2 - - Google Patents

Info

Publication number
JPH0138963Y2
JPH0138963Y2 JP1983080842U JP8084283U JPH0138963Y2 JP H0138963 Y2 JPH0138963 Y2 JP H0138963Y2 JP 1983080842 U JP1983080842 U JP 1983080842U JP 8084283 U JP8084283 U JP 8084283U JP H0138963 Y2 JPH0138963 Y2 JP H0138963Y2
Authority
JP
Japan
Prior art keywords
dielectric
resonator
electrodes
capacitance
resonators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983080842U
Other languages
Japanese (ja)
Other versions
JPS59187203U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8084283U priority Critical patent/JPS59187203U/en
Publication of JPS59187203U publication Critical patent/JPS59187203U/en
Application granted granted Critical
Publication of JPH0138963Y2 publication Critical patent/JPH0138963Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、誘電体同軸共振器の結合構造に関
する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a coupling structure for dielectric coaxial resonators.

〔背景技術とその問題点〕[Background technology and its problems]

誘電体同軸共振器は、使用誘電体の比誘電率が
大きいほど、電磁界エネルギーが共振器内に閉じ
込められる割合が大きい。このため、カツトオフ
空間に電磁界エネルギーが漏洩しないように実際
の機器設計をし、Qの低下を防止しないと誘電体
共振器を用いた意味が失われてしまう。しかしな
がら、実際には、共振器を動作させるためには、
共振器にエネルギーを入出させるための構造が必
要であり、この構造によつてストレー容量などが
発生し、Qを低下させている。したがつて、誘電
体同軸共振器においては、極力ストレー容量を減
らしてQの低下がない構造をとる必要がある。
In a dielectric coaxial resonator, the larger the dielectric constant of the dielectric used, the greater the rate at which electromagnetic field energy is confined within the resonator. Therefore, unless the actual equipment is designed so that the electromagnetic field energy does not leak into the cut-off space and the Q decrease is prevented, the meaning of using a dielectric resonator will be lost. However, in reality, in order to operate the resonator,
A structure is required to allow energy to enter and exit the resonator, and this structure generates stray capacitance, which lowers the Q. Therefore, in a dielectric coaxial resonator, it is necessary to reduce the stray capacitance as much as possible and adopt a structure that does not reduce Q.

一方、従来の誘電体同軸共振器は、第1図及び
第2図に示すような構造となつている。同図にお
いて、1,2,3,4は誘電体を内・外導体間に
存在させた誘電体同軸共振器で、その軸が平行に
なるように並べてある。5は誘電体基板で、誘電
体同軸共振器1〜4の軸に平行な向きに取り付け
られており、その一面にのみコンデンサ電極6,
7,8,9,10,11を設けてある。コンデン
サ電極6〜9は、各共振器1〜4の内導体に導通
固定されたターミナルに接続される。コンデンサ
電極10,11は外部回路に接続される。このよ
うに誘電体基板5の一面のみのコンデンサ電極6
〜9で共振器1〜4間の容量結合を得ているもの
では、両電極の対向長さが容量に関与しており、
それ以外の部分は必要な容量に関与しないので、
この不要部分を極力省略することによつてストレ
ー容量を小さくできる。しかしながら、この誘電
体同軸共振器をケース(図示せず)内に納めた場
合、従来例の構造ではコンデンサ電極6〜8はケ
ースの内面と対向することになり、このためスト
レー容量を発生させ、Q低下の原因となつてい
る。また、通常、コンデンサ電極10,6間、コ
ンデンサ電極9,11間の静電容量値は、共振器
間の静電容量値に比べて大きな値(例えば、3〜
4倍)に設定するので、入出力部の構造が共振器
の段間結合と同様な構造だと、コンデンサ電極間
距離をきわめて小さくする必要があり、精度が得
にくいためにコンデンサ電極形成時の製造誤差に
よる静電容量値のばらつきが大きくなつて、製品
間の特性(フイルタなら通過帯域特性)のばらつ
きが目立つ欠点があり、結局必要容量を得るのが
困難であつた。
On the other hand, a conventional dielectric coaxial resonator has a structure as shown in FIGS. 1 and 2. In the figure, numerals 1, 2, 3, and 4 are dielectric coaxial resonators in which a dielectric material is present between inner and outer conductors, and are arranged so that their axes are parallel to each other. Reference numeral 5 denotes a dielectric substrate, which is attached in a direction parallel to the axes of the dielectric coaxial resonators 1 to 4, and capacitor electrodes 6,
7, 8, 9, 10, and 11 are provided. The capacitor electrodes 6-9 are connected to terminals electrically fixed to the inner conductors of the respective resonators 1-4. Capacitor electrodes 10, 11 are connected to an external circuit. In this way, the capacitor electrode 6 on only one side of the dielectric substrate 5
~9 to obtain capacitive coupling between resonators 1 to 4, the opposing length of both electrodes is involved in the capacitance,
Other parts do not contribute to the required capacity, so
By omitting this unnecessary part as much as possible, the stray capacity can be reduced. However, when this dielectric coaxial resonator is housed in a case (not shown), in the conventional structure, the capacitor electrodes 6 to 8 face the inner surface of the case, which causes stray capacitance. This causes a decrease in Q. Further, the capacitance values between the capacitor electrodes 10 and 6 and between the capacitor electrodes 9 and 11 are usually larger values (for example, 3 to 3) compared to the capacitance value between the resonators.
4 times), so if the structure of the input/output section is similar to the interstage coupling of a resonator, the distance between the capacitor electrodes needs to be extremely small, which makes it difficult to obtain precision, so when forming the capacitor electrodes. This has the disadvantage that variations in capacitance values due to manufacturing errors become large, and variations in characteristics (passband characteristics in the case of filters) between products become noticeable, making it difficult to obtain the required capacitance.

〔考案が解決しようとする課題〕[The problem that the idea attempts to solve]

この考案の目的は、ストレー容量によるQの低
下を小さくすることにあり、また上記のような静
電容量値のばらつきがなくて特性の安定な誘電体
同軸共振器の結合構造を提供することにある。
The purpose of this invention is to reduce the reduction in Q due to stray capacitance, and to provide a dielectric coaxial resonator coupling structure with stable characteristics without the above-mentioned variations in capacitance value. be.

〔課題を解決するための手段〕[Means to solve the problem]

この考案の誘電体同軸共振器の結合構造は、二
以上の誘電体同軸共振器と、誘電体同軸共振器の
軸に対して垂直に配置された誘電体基板とを備
え、前記誘電体基板の誘電体共振器が配置された
側の表面にのみ誘電体共振器と導通した二以上の
コンデンサ電極を配列し、前記誘電体基板の反対
側の表面に外部回路と接続されるコンデンサ電極
を設けると共にこの外部回路と接続されるコンデ
ンサ電極と前記誘電体同軸共振器と導通したコン
デンサ電極のうちいずれかとを互いにほぼ全面を
対向させたことを特徴としている。
The dielectric coaxial resonator coupling structure of this invention includes two or more dielectric coaxial resonators and a dielectric substrate disposed perpendicularly to the axis of the dielectric coaxial resonators, and the dielectric substrate has two or more dielectric coaxial resonators. Two or more capacitor electrodes electrically connected to the dielectric resonator are arranged only on the surface on which the dielectric resonator is arranged, and a capacitor electrode connected to an external circuit is provided on the opposite surface of the dielectric substrate. A feature of the present invention is that the capacitor electrode connected to the external circuit and the capacitor electrode electrically connected to the dielectric coaxial resonator are arranged to face each other on substantially the entire surface.

〔作用〕[Effect]

本考案は、基本的には、共振器の段間結合部分
では誘電体基板の一面だけにコンデンサ電極を設
けてストレー容量を小さくすると共に入出力部分
では誘電体基板の両面で対向するコンデンサ電極
を設けて比較的大きな静電容量を得るようにした
ものである。さらに、本考案にあつては、誘電体
基板を誘電体同軸共振器の軸と垂直に配置し、共
振器の配置された側の表面に共振器と導通したコ
ンデンサ電極を設けているので、この誘電体同軸
共振器をケース内に納めた場合、段間結合部分の
電極がケースの内面と近接して対向することがな
く、この部分に生じるストレー容量を一層小さく
でき、Qの低下を防止できるものである。また、
入出力部においては、基板の厚み間で発生する静
電容量によつて入出力段の結合を行えるように基
板の表裏で電極を対向させているので、初段ある
いは最終段の共振器と外部回路との結合静電容量
値のばらつきが小さくなつて特性が安定になる。
しかも、入出力部分で基板を挾んでいる対向電極
は互いにほぼ全面を対向させられているので、こ
の両電極間からの電磁界エネルギーの漏れが少な
く、従つてこの部分でのストレー容量も小さくな
つてQの低下が防止される。
Basically, the present invention is to reduce stray capacitance by providing a capacitor electrode on only one side of the dielectric substrate in the interstage coupling part of the resonator, and to reduce stray capacitance by providing capacitor electrodes facing each other on both sides of the dielectric substrate in the input/output part. It is designed to obtain a relatively large capacitance. Furthermore, in the present invention, the dielectric substrate is arranged perpendicularly to the axis of the dielectric coaxial resonator, and a capacitor electrode that is electrically connected to the resonator is provided on the surface on the side where the resonator is arranged. When a dielectric coaxial resonator is housed in a case, the electrodes in the interstage coupling part do not come close to facing the inner surface of the case, making it possible to further reduce the stray capacitance that occurs in this part and prevent a drop in Q. It is something. Also,
In the input/output section, the electrodes are opposed on the front and back sides of the board so that the input/output stage can be coupled by capacitance generated between the thicknesses of the board, so that the resonator in the first or final stage and the external circuit can be connected. The variation in the coupling capacitance value between the capacitance and the capacitance is reduced, and the characteristics become stable.
Moreover, since the opposing electrodes that sandwich the board at the input/output section are facing each other on almost the entire surface, there is little leakage of electromagnetic field energy from between these two electrodes, and therefore the stray capacitance in this area is also small. This prevents a decrease in Q.

〔実施例〕〔Example〕

第3図及び第4図において、第1図及び第2図
と同一部分には同一番号を付して説明を省略す
る。
In FIGS. 3 and 4, the same parts as in FIGS. 1 and 2 are given the same numbers, and explanations thereof will be omitted.

12は誘電体基板、13,14は一対の対向電
極、15,16は別の一対の対向電極であり、電
極13,15には外部回路が接続される。いずれ
も一対の対向電極は、互いにほぼ全面で対向して
いる。誘電体基板12は、その主平面が共振器1
〜4の軸に対し垂直になるように配置されてお
り、このため小形化が図られている。また、各共
振器1〜4に導通している電極7,8,14,1
6は、誘電体基板12の共振器側の表面に配列さ
れている。
12 is a dielectric substrate, 13 and 14 are a pair of opposing electrodes, 15 and 16 are another pair of opposing electrodes, and the electrodes 13 and 15 are connected to an external circuit. In both cases, the pair of opposing electrodes face each other over almost the entire surface. The main plane of the dielectric substrate 12 is the resonator 1
It is arranged so as to be perpendicular to the axis of .about.4, thereby achieving miniaturization. In addition, electrodes 7, 8, 14, 1 which are electrically connected to each resonator 1 to 4
6 are arranged on the surface of the dielectric substrate 12 on the resonator side.

このような構成により、外部回路と共振器1と
は、誘電体基板12の対向面に設けたコンデンサ
電極13,14間に生じる静電容量が結合され、
共振器1,2は、誘電体基板12の一方表面に位
置するコンデンサ電極14,7間に生じる静電容
量で結合され、以下同様に、共振器2,3間はコ
ンデンサ電極7,8間に生じる静電容量で結合さ
れ、共振器3,4間はコンデンサ電極8,16間
に生じる静電容量で結合され、共振器4と外部回
路とは、誘電体基板12の対向面に設けたコンデ
ンサ電極16,15間に生じる静電容量で結合さ
れる。しかして、共振器1〜4の段間結合のため
の電極7,8,14,16は同じ面に隣接して配
列されているので、容量結合に必要な対向長さの
部分以外の部分を省略してストレー容量を小さく
でき、さらにケースに収納された時に電極7,
8,14,16がケースから離れた位置にあるの
で、一層ストレー容量を小さくできる。また、対
向電極13,14及び15,16によつて大きな
入出力容量を得ることができる。入出力部分では
電極13,15のためにある程度ストレー容量が
大きくなるが、入出力容量は段間の結合容量に比
べて大きな値をとるので、ストレー容量が増大し
ても段間部分ほど共振周波数に与える影響も少な
く、また外部Q,Qeをとつているので、ストレ
ー容量の増加によるQ低下が全体のQの低下に占
める割合はある程度は無視できる。しかし、本考
案では、対向電極のほぼ全面を対向させることで
対向電極間からの電磁界エネルギーの漏れを小さ
くし、できるだけストレー容量を小さくし、Qの
改善を行つている。
With such a configuration, the external circuit and the resonator 1 are coupled by the capacitance generated between the capacitor electrodes 13 and 14 provided on the opposing surfaces of the dielectric substrate 12.
Resonators 1 and 2 are coupled by capacitance generated between capacitor electrodes 14 and 7 located on one surface of dielectric substrate 12, and similarly, between resonators 2 and 3 is coupled between capacitor electrodes 7 and 8. The resonators 3 and 4 are coupled by the capacitance generated between the capacitor electrodes 8 and 16. They are coupled by the capacitance generated between the electrodes 16 and 15. Since the electrodes 7, 8, 14, and 16 for interstage coupling of the resonators 1 to 4 are arranged adjacent to each other on the same surface, the electrodes 7, 8, 14, and 16 for interstage coupling of the resonators 1 to 4 are arranged adjacently on the same plane, so that the electrodes 7, 8, 14, and 16 for interstage coupling of the resonators 1 to 4 are arranged adjacently on the same plane, so that the electrodes 7, 8, 14, and 16 are By omitting this, the stray capacity can be reduced, and furthermore, when stored in the case, the electrode 7,
Since 8, 14, and 16 are located away from the case, the storage capacity can be further reduced. Moreover, large input/output capacitance can be obtained by the counter electrodes 13, 14 and 15, 16. In the input/output section, the stray capacitance increases to some extent due to the electrodes 13 and 15, but since the input/output capacitance takes a larger value compared to the coupling capacitance between the stages, even if the stray capacitance increases, the resonant frequency decreases in the interstage part. Since the external Q and Qe are taken into account, the proportion of the Q reduction due to the increase in stray capacity to the overall Q reduction can be ignored to some extent. However, in the present invention, the leakage of electromagnetic field energy from between the opposing electrodes is reduced by making almost the entire surfaces of the opposing electrodes face each other, and the stray capacitance is made as small as possible, thereby improving Q.

〔効果〕〔effect〕

以上の実施例からも明らかなように、この考案
によると、共振器の段間結合部分においてはスト
レー容量が小さくてQの低下が少なく、かつ入出
力部分においては必要な大きさの静電容量を得る
ことができる。しかも、初段あるいは最終段の共
振器と外部回路との結合静電容量値のばらつきが
小さくなつて特性が安定になる。また、入出力部
分及び段間結合部分のいずれにおいても、一層ス
トレー容量を小さくしているので、より一層Qの
低下を防止できる。
As is clear from the above embodiments, according to this invention, stray capacitance is small in the interstage coupling portion of the resonator, resulting in little reduction in Q, and the necessary amount of capacitance is achieved in the input and output portions. can be obtained. Furthermore, variations in the coupling capacitance value between the first-stage or final-stage resonator and the external circuit are reduced, resulting in stable characteristics. Further, since the stray capacitance is further reduced in both the input/output portion and the interstage coupling portion, it is possible to further prevent a decrease in Q.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の平面図、第2図は同上の側面
図、第3図は本考案の一実施例の平面図、第4図
は第3図のA−A線断面図である。 1〜4は誘電体同軸共振器、12は誘電体基
板、7,8,13〜16はコンデンサ電極。
1 is a plan view of the conventional example, FIG. 2 is a side view of the same, FIG. 3 is a plan view of an embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along the line A--A in FIG. 3. 1 to 4 are dielectric coaxial resonators, 12 is a dielectric substrate, and 7, 8, and 13 to 16 are capacitor electrodes.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 二以上の誘電体同軸共振器と、誘電体同軸共振
器の軸に対して垂直に配置された誘電体基板とを
備え、前記誘電体基板の誘電体共振器が配置され
た側の表面にのみ誘電体共振器と導通した二以上
のコンデンサ電極を配列し、前記誘電体基板の反
対側の表面に外部回路と接続されるコンデンサ電
極を設けると共にこの外部回路と接続されるコン
デンサ電極と前記誘電体同軸共振器と導通したコ
ンデンサ電極のうちいずれかとを互いにほぼ全面
を対向させたことを特徴とする誘電体同軸共振器
の結合構造。
comprising two or more dielectric coaxial resonators and a dielectric substrate arranged perpendicularly to the axis of the dielectric coaxial resonators, and only on the surface of the dielectric substrate on the side where the dielectric resonators are arranged. Arranging two or more capacitor electrodes electrically connected to a dielectric resonator, providing a capacitor electrode connected to an external circuit on the opposite surface of the dielectric substrate, and also providing a capacitor electrode connected to the external circuit and the dielectric. A coupling structure for a dielectric coaxial resonator, characterized in that one of the capacitor electrodes electrically connected to the coaxial resonator faces each other on almost the entire surface.
JP8084283U 1983-05-27 1983-05-27 Coupling structure of dielectric coaxial resonator Granted JPS59187203U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8084283U JPS59187203U (en) 1983-05-27 1983-05-27 Coupling structure of dielectric coaxial resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8084283U JPS59187203U (en) 1983-05-27 1983-05-27 Coupling structure of dielectric coaxial resonator

Publications (2)

Publication Number Publication Date
JPS59187203U JPS59187203U (en) 1984-12-12
JPH0138963Y2 true JPH0138963Y2 (en) 1989-11-21

Family

ID=30210819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8084283U Granted JPS59187203U (en) 1983-05-27 1983-05-27 Coupling structure of dielectric coaxial resonator

Country Status (1)

Country Link
JP (1) JPS59187203U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114322B2 (en) * 1987-02-04 1995-12-06 株式会社村田製作所 Circuit pattern determination method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535560A (en) * 1978-09-04 1980-03-12 Matsushita Electric Ind Co Ltd Coaxial type filter
JPS56107601A (en) * 1980-01-30 1981-08-26 Matsushita Electric Ind Co Ltd Coaxial filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535560A (en) * 1978-09-04 1980-03-12 Matsushita Electric Ind Co Ltd Coaxial type filter
JPS56107601A (en) * 1980-01-30 1981-08-26 Matsushita Electric Ind Co Ltd Coaxial filter

Also Published As

Publication number Publication date
JPS59187203U (en) 1984-12-12

Similar Documents

Publication Publication Date Title
US4937542A (en) Dielectric filter
US5079528A (en) Dielectric filter
JPH09252206A (en) Dielectric filter
JPH0138963Y2 (en)
JPH0255402A (en) Dielectric filter
JPS6364404A (en) Dielectric filter
JPH0795642B2 (en) Dielectric filter
JPS6390203A (en) Dielectric filter
JPS63313901A (en) Waveguide type dielectric filter
JPH05199011A (en) Dielectric resonator and its manufacture
JP2000124705A (en) Double band filter
JPH0478202B2 (en)
JPH0865007A (en) High frequency filter
JPS60248004A (en) Resonator
JPH04160901A (en) Dielectric filter
JPH0713282Y2 (en) Band elimination filter
JPH0715206Y2 (en) Dielectric filter
JP3314801B2 (en) Dielectric filter
JPH0543521Y2 (en)
JPH11136001A (en) Laminated stripline filter improved in frequency characteristic
JPH062322Y2 (en) Dielectric filter
JPH03136402A (en) Dielectric filter
JPH01173902A (en) Dielectric filter
JPH03187501A (en) Interdigital filter
JPS5942729Y2 (en) Distributed constant filter