JPH0138854Y2 - - Google Patents

Info

Publication number
JPH0138854Y2
JPH0138854Y2 JP11649380U JP11649380U JPH0138854Y2 JP H0138854 Y2 JPH0138854 Y2 JP H0138854Y2 JP 11649380 U JP11649380 U JP 11649380U JP 11649380 U JP11649380 U JP 11649380U JP H0138854 Y2 JPH0138854 Y2 JP H0138854Y2
Authority
JP
Japan
Prior art keywords
target support
target
rotor
anode
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11649380U
Other languages
Japanese (ja)
Other versions
JPS5740248U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11649380U priority Critical patent/JPH0138854Y2/ja
Publication of JPS5740248U publication Critical patent/JPS5740248U/ja
Application granted granted Critical
Publication of JPH0138854Y2 publication Critical patent/JPH0138854Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Description

【考案の詳細な説明】 この考案は回転陽極型X線管に係り、特にその
回転機構の改良に関する。 一般に従来から使用されている回転陽極型X線
管は第1図に示すように構成され、真空外囲器1
内には偏心した陰極(図示せず)と略傘状の陽極
ターゲツト2が対向配設され、陽極ターゲツト2
は回転機構により回転できるようになつてい
る。そして回転機構は、陽極ターゲツト2を固
着した支持柱4を一端に同軸的に突設したロータ
ー5と、このローター5の内側に同軸的に固着さ
れた回転軸6と、この回転軸6と前記ローター5
の間に配設され真空外囲器1に固定された筒状の
固定子7と、この固定子7と前記回転軸6との間
に介在配設されたベアリング8,9とからなつて
いる。 ところが、上記のようなX線管では、陽極ター
ゲツト2とローター5とが熱的に直結されてお
り、陽極ターゲツト2からローター5へ流入する
熱量が多いので、ローター5は600℃近くの高温
となる。従つてローター5と機械的に結合されて
いる回転軸6も400〜500℃の高温となり、回転軸
6に装着されているベアリング8,9が高温にな
ることにより、ベアリング8,9の回転寿命が短
かい。而もX線管の大容量化に伴い、入力が増大
する程その傾向は大である。 この考案は上記事情に鑑みなされたもので、タ
ーゲツト支持体とローターを分離して微小な面積
で機械的に接触させ、両者間の伝導熱量を減じる
ことにより、回転軸及びベアリングの温度を低下
させて、回転機構の長寿命化とX線管の超大容量
化を可能にすると共に、ローターの温度変化があ
つても陽極ターゲツトが常に機械的に堅固に結合
されている回転陽極型X線管を提供することを目
的とする。 以下、図面を参照してこの考案の一実施例を詳
細に説明する。この考案の回転陽極型X線管を示
すと第2図のようになり、従来例と同一箇所は同
一符号を付すことにする。この考案は従来のロー
ター5をローター構体とターゲツト支持体とに分
割したもので、これらは対向面の一部で機械的に
接続されており、熱の伝達が極めて悪くなつてい
るが、同心度、剛性は温度に関係なく保てるよう
に機械的に接続されている。 即ち、図示のように真空外囲器1内には偏心し
た陰極(図示せず)と略傘状の陽極ターゲツト2
が対向配設され、陽極ターゲツト2は回転機構
0により回転できるようになつている。そして回
転機構10は、ナツト11、ターゲツト支持体1
2、ねじ13、ローター構体14、回転軸6、固
定子7、ベアリング8,9等からなつている。 詳述すると、先ずターゲツト支持体12は、後
述の接合部の熱膨脹率より小さい熱膨脹率を有す
る材質からなり、一端は棒状にしてねじ溝12a
が形成されると共に段部12bを有し、他端は鍔
部12cにして周縁は僅か筒状になつている。こ
のようなターゲツト支持体12の前記一端つまり
段部12bには陽極ターゲツト2が嵌合され、ね
じ溝12aにナツト11を螺着して陽極ターゲツ
ト2を固定している。更にターゲツト支持体12
の鍔部12cはローター構体14に固着されてい
る。このローター構体14は第3図及び第4図に
示すように、電磁誘導で回転トルクを発生するた
めのCuでできた筒状のローター部15と、この
ローター部15の一端に鑞付等によつて固着され
た円板状の接合部16とから構成されている。こ
の場合、接合部16には、第3図及び第4図から
明白なように、微小な環状突起17,18が同心
円状に一体に設けられ、この突起17,18がタ
ーゲツト支持体12の鍔部12c裏面に接触して
いる。第3図に示す如く、ターゲツト支持体12
は接合部16の環状突起17の外周側壁に嵌合す
る構造となつており、回転軸6との同心度を保つ
ようしてある。そして、ターゲツト支持体12と
接合部16は、3本のねじ13により固定する
が、ねじ13はゆるみ防止のためにかしめられて
いる。このとき、ねじ13は回転軸6にも共締め
されている。 このようにターゲツト支持体12の鍔部12c
は、全面がローター構体14の接合部16に密着
するのではなく、突起17,18が接触するのみ
で〓間が生じている。つまり、ターゲツト支持体
12とローター構体14とは、局部的に接触して
いる訳けである。更に前記ローター部15の内側
には、回転軸6が同軸的に固着されている。この
回転軸6と前記ローター部15の間には、前記真
空外囲器1に固定された筒状の固定子7が配設さ
れている。この固定子7と前記回転軸6との間に
は、ベアリング8,9が介在配設されている。 この考案の回転陽極型X線管は上記説明及び図
示のように構成され、ターゲツト支持体12とロ
ーター構体14とを熱的に分離しているので、ロ
ーター構体14に結合された回転軸6及びベアリ
ング8,9の温度が低下し、回転機構10の長寿
命化を図ることができる。実験によれば、従来に
比べベアリング8,9の温度がおよそ40%低下
し、X線管の寿命はおよそ3倍延びた。 即ち、陽極ターゲツト2からの伝達熱の減少に
ついて述べると、一般に、伝導によつて伝達され
る熱量は伝導体の断面積に比例する。第3図のよ
うな構造を採用すると接触面積が従来に比して1/
7以下に減少しており、接触面積のうち実験に接
触している面積はごく一部であるので、ターゲツ
ト2から伝導によつて伝達される熱量はきわめて
減少する。そして円板状の接合部16に回転中心
軸に対して同心的に大直径の環状突起17および
小直径の環状突起18を一体形成し、両環状突起
の間の中間部に3本のねじ13を等間隔に設けて
締付け固定してなるため、大小いずれの環状突起
もほぼ同等の圧力でターゲツト支持体の鍔部裏面
に事実上線接触される。したがつて、接合部とタ
ーゲツト支持体とは局部的なよじれ等が発生する
ことなく安定に締付け固定される。一方、ロータ
ー部15表面は表面積が大きいこと、及びその表
面が黒化処理により高輻射率化されており、多量
の熱量を外部に輻射するのでローター部15及び
接合部16の温度は大きく低下する。従つて、ロ
ーター部15又は接合部16に機械的に接続され
ている回転軸6の温度が低下し、回転軸6に接続
されているベアリング8,9の温度も低下する。
ベアリング8,9の表面には固体潤滑材が付着し
てあるが、その蒸発速度が温度の低下とともに急
激に減少する。このために長寿命化、大容量化が
達成できることとなつた。 又、この考案では、ターゲツト支持体12とロ
ーター構体14は回転中心から離れた位置で固定
されているので、回転モーメントに対して強く、
同心度の悪化は認められなかつた。更に、機械的
嵌合のゆるみに起因するふれ回り運動による振動
の発生も認められなかつた。 即ち、ターゲツト支持体12と接合部16の嵌
合について述べると(第5図参照)、接合部16
の材質の熱膨張率をα1、ターゲツト支持体12の
熱膨張率をα2とする。前述のような理由で接合部
16とターゲツト支持体12の間に大きな温度差
が生じ、それぞれの温度がT1,T2となつたとす
る。接触面積Sとα1,α2の関係を適当に選ぶこと
により、次の関係を満すことができる。 Δl=α1T1≒α2T2 …(1) この場合には、温度による延び量が大略同じであ
るため、嵌合のゆるみが生じない。例えばターゲ
ツト支持体12にモリブデン、接合部16に純鉄
を採用することにより、α111.7×10-6/deg,
α25.4×10-6/degであるので、T1=415℃,T2
=900℃で式(1)が成立する。ねじ13の材質とし
てターゲツト支持体12と同一又は熱膨張率が近
い材質を用いれば、式(1)と同様な関係が保たれて
ゆるみを生じない。 尚、上記実施例では、環状突起17,18を接
合部16に設けたが、逆にターゲツト支持体12
の鍔部12c裏面に設けてもよい。 又、環状突起17,18は部分的に切欠きを設
けてもよい。 更に、ターゲツト支持体12と接合部16との
結合は必ずしもねじ止めでなくてもよく、突起1
7,18の微小接触面を鑞付け等により固着する
ようにしてもよい。 また、ターゲツト支持体12と接合部16の同
心度を保つ嵌合は回転中心軸に近い部位にあつて
もよい。 又、第6図はこの考案の変形例を示したもの
で、ターゲツト支持体12とローター構体14
の間に断熱体19を介在配設し、断熱面を2箇所
で作ることにより上記効果の増大を図つている。
この場合、断熱体19の熱膨脹率はターゲツト支
持体12と接合部16の中間の値となるようにす
ると有効である。特にこの変形例では、X線管の
超大容量化が可能となつた。 以上説明したようにこの考案によれば、実用的
価値大なる回転陽極型X線管を提供することがで
きる。
[Detailed Description of the Invention] This invention relates to a rotating anode type X-ray tube, and particularly relates to an improvement in its rotation mechanism. A rotary anode X-ray tube that has been generally used in the past is constructed as shown in Figure 1, with a vacuum envelope 1
Inside, an eccentric cathode (not shown) and a substantially umbrella-shaped anode target 2 are arranged facing each other.
can be rotated by a rotation mechanism 3 . The rotating mechanism 3 includes a rotor 5 having a support column 4 to which an anode target 2 is fixed coaxially protruding from one end, a rotating shaft 6 coaxially fixed to the inside of the rotor 5, and a rotating shaft 6. The rotor 5
It consists of a cylindrical stator 7 disposed between the vacuum envelope 1 and fixed to the vacuum envelope 1, and bearings 8 and 9 interposed between the stator 7 and the rotating shaft 6. . However, in the above-mentioned X-ray tube, the anode target 2 and the rotor 5 are directly connected thermally, and a large amount of heat flows from the anode target 2 to the rotor 5, so the rotor 5 is heated to a high temperature of nearly 600°C. Become. Therefore, the rotating shaft 6, which is mechanically connected to the rotor 5, also reaches a high temperature of 400 to 500°C, and the bearings 8 and 9 mounted on the rotating shaft 6 become hot, which shortens the rotational life of the bearings 8 and 9. is short. However, as the capacity of the X-ray tube increases, this tendency becomes more pronounced as the input increases. This idea was created in view of the above circumstances, and it reduces the temperature of the rotating shaft and bearings by separating the target support and rotor and bringing them into mechanical contact over a small area, thereby reducing the amount of heat conducted between them. In addition to making it possible to extend the life of the rotating mechanism and increase the capacity of the X-ray tube, we have developed a rotating anode X-ray tube in which the anode target is always firmly connected mechanically even when the rotor temperature changes. The purpose is to provide. Hereinafter, one embodiment of this invention will be described in detail with reference to the drawings. The rotating anode type X-ray tube of this invention is shown in FIG. 2, and the same parts as in the conventional example are given the same reference numerals. This idea divides the conventional rotor 5 into a rotor structure and a target support, which are mechanically connected at a part of their opposing surfaces, which results in extremely poor heat transfer. , mechanically connected so that rigidity is maintained regardless of temperature. That is, as shown in the figure, an eccentric cathode (not shown) and a substantially umbrella-shaped anode target 2 are placed inside the vacuum envelope 1.
are arranged facing each other, and the anode target 2 is connected to the rotating mechanism 1.
It can be rotated by 0. The rotation mechanism 10 includes a nut 11 and a target support 1.
2, a screw 13, a rotor structure 14 , a rotating shaft 6, a stator 7, bearings 8, 9, etc. To explain in detail, first, the target support 12 is made of a material having a coefficient of thermal expansion smaller than the coefficient of thermal expansion of the joint portion, which will be described later.
is formed and has a stepped portion 12b, the other end is a flange portion 12c, and the periphery is slightly cylindrical. The anode target 2 is fitted into the one end, that is, the stepped portion 12b, of the target support 12, and the anode target 2 is fixed by screwing the nut 11 into the threaded groove 12a. Additionally, a target support 12
The flange portion 12c is fixed to the rotor structure 14 . As shown in FIGS. 3 and 4, this rotor structure 14 includes a cylindrical rotor portion 15 made of Cu for generating rotational torque by electromagnetic induction, and one end of this rotor portion 15 that is brazed or the like. It is composed of a disk-shaped joint portion 16 that is fixed in place. In this case, as is clear from FIGS. 3 and 4, minute annular protrusions 17 and 18 are integrally provided concentrically on the joint 16, and these protrusions 17 and 18 are attached to the flange of the target support 12. It is in contact with the back surface of the portion 12c. As shown in FIG.
has a structure that fits into the outer peripheral side wall of the annular projection 17 of the joint portion 16, and maintains concentricity with the rotating shaft 6. The target support 12 and the joint 16 are fixed by three screws 13, and the screws 13 are caulked to prevent loosening. At this time, the screw 13 is also fastened to the rotating shaft 6. In this way, the flange 12c of the target support 12
In this case, the entire surface does not come into close contact with the joint 16 of the rotor structure 14 , but only the protrusions 17 and 18 come into contact, creating a gap. In other words, the target support 12 and the rotor structure 14 are in local contact. Furthermore, a rotating shaft 6 is fixed coaxially to the inside of the rotor portion 15. A cylindrical stator 7 fixed to the vacuum envelope 1 is disposed between the rotating shaft 6 and the rotor portion 15. Bearings 8 and 9 are interposed between the stator 7 and the rotating shaft 6. The rotating anode type X-ray tube of this invention is constructed as described above and shown in the drawings, and the target support 12 and the rotor structure 14 are thermally separated. The temperature of the bearings 8 and 9 is reduced, and the life of the rotating mechanism 10 can be extended. According to experiments, the temperature of the bearings 8 and 9 has been reduced by approximately 40% compared to conventional designs, and the life of the X-ray tube has been extended approximately three times. That is, regarding the reduction in heat transferred from the anode target 2, the amount of heat transferred by conduction is generally proportional to the cross-sectional area of the conductor. If the structure shown in Figure 3 is adopted, the contact area will be reduced to 1/1 compared to the conventional one.
7 or less, and since only a small portion of the contact area is in contact with the experiment, the amount of heat transferred from the target 2 by conduction is extremely reduced. Then, a large-diameter annular projection 17 and a small-diameter annular projection 18 are integrally formed concentrically with respect to the rotation center axis on the disc-shaped joint 16, and three screws 13 are installed in the intermediate portion between both annular projections. Since the annular protrusions are arranged at equal intervals and tightened and fixed, both large and small annular protrusions are virtually brought into line contact with the back surface of the flange of the target support with approximately the same pressure. Therefore, the joint portion and the target support are stably tightened and fixed without any local twisting or the like. On the other hand, the surface of the rotor section 15 has a large surface area and has a high emissivity due to blackening treatment, and radiates a large amount of heat to the outside, so the temperature of the rotor section 15 and the joint section 16 decreases significantly. . Therefore, the temperature of the rotating shaft 6 mechanically connected to the rotor section 15 or the joint section 16 decreases, and the temperature of the bearings 8 and 9 connected to the rotating shaft 6 also decreases.
A solid lubricant is attached to the surfaces of the bearings 8 and 9, but its evaporation rate decreases rapidly as the temperature decreases. This has made it possible to achieve longer lifespan and larger capacity. Also, in this invention, the target support 12 and the rotor structure 14 are fixed at a position away from the center of rotation, so they are strong against rotational moment.
No deterioration of concentricity was observed. Furthermore, no vibration was observed due to whirling motion caused by loose mechanical fitting. That is, to describe the fit between the target support 12 and the joint 16 (see FIG. 5), the joint 16
The coefficient of thermal expansion of the material of the target support 12 is α 1 , and the coefficient of thermal expansion of the target support 12 is α 2 . Assume that a large temperature difference occurs between the joint portion 16 and the target support 12 for the reasons described above, and the respective temperatures become T 1 and T 2 . By appropriately selecting the relationship between the contact area S and α 1 , α 2 , the following relationship can be satisfied. Δl=α 1 T 1 ≈α 2 T 2 (1) In this case, since the amount of elongation due to temperature is approximately the same, no loosening of the fit occurs. For example, by using molybdenum for the target support 12 and pure iron for the joint 16, α 1 11.7×10 -6 /deg,
α 2 5.4×10 -6 /deg, so T 1 = 415℃, T 2
Equation (1) holds true at =900℃. If the material of the screw 13 is the same as that of the target support 12 or has a coefficient of thermal expansion similar to that of the target support 12, the same relationship as in equation (1) will be maintained and no loosening will occur. In the above embodiment, the annular protrusions 17 and 18 were provided on the joint portion 16, but conversely, the annular protrusions 17 and 18 were provided on the target support 12.
It may be provided on the back surface of the collar portion 12c. Further, the annular projections 17 and 18 may be partially provided with notches. Furthermore, the connection between the target support 12 and the joint portion 16 does not necessarily have to be screwed;
The minute contact surfaces 7 and 18 may be fixed by brazing or the like. Furthermore, the fitting between the target support 12 and the joint portion 16 to maintain concentricity may be located at a portion close to the rotation center axis. Further, FIG. 6 shows a modification of this invention, in which a heat insulator 19 is interposed between the target support 12 and the rotor structure 14 , and the above effect is achieved by creating heat insulating surfaces at two locations. We are trying to increase it.
In this case, it is effective to set the coefficient of thermal expansion of the heat insulator 19 to a value intermediate between that of the target support 12 and the joint portion 16. In particular, with this modification, it has become possible to increase the capacity of the X-ray tube. As explained above, according to this invention, a rotating anode type X-ray tube with great practical value can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般に使用されている従来の回転陽極
型X線管を示す断面図、第2図はこの考案の一実
施例に係る回転陽極型X線管を示す断面図、第3
図は第2図の要部を拡大して示す断面図、第4図
は第3図のA−A′線に沿つて切断し矢印方向に
見た断面図、第5図はターゲツト支持体と接合部
における温度と伸び量との関係を示す特性曲線
図、第6図はこの考案の変形例を示す断面図であ
る。 1……真空外囲器、2……陽極ターゲツト、6
……回転軸、7……固定子、8,9……ベアリン
グ、10……回転機構、12……ターゲツト支持
体、13……ねじ、14……ローター構体、15
……ローター部、16……接合部、17,18…
…環状突起、19……断熱体。
FIG. 1 is a cross-sectional view showing a conventional rotating anode X-ray tube that is commonly used, FIG. 2 is a cross-sectional view showing a rotating anode X-ray tube according to an embodiment of this invention, and FIG.
The figure is an enlarged sectional view of the main part of Fig. 2, Fig. 4 is a sectional view taken along line A-A' in Fig. 3 and viewed in the direction of the arrow, and Fig. 5 is a cross-sectional view of the target support. A characteristic curve diagram showing the relationship between the temperature and the amount of elongation at the joint, and FIG. 6 is a sectional view showing a modification of this invention. 1... Vacuum envelope, 2... Anode target, 6
... Rotating shaft, 7 ... Stator, 8, 9 ... Bearing, 10 ... Rotating mechanism, 12 ... Target support, 13 ... Screw, 14 ... Rotor structure, 15
...Rotor part, 16...Joint part, 17, 18...
...Annular projection, 19...Insulator.

Claims (1)

【実用新案登録請求の範囲】 陽極ターゲツト2が固定されたターゲツト支持
体12と、このターゲツト支持体12が固定され
るローター構体14と、ベアリング8,9を介し
て上記ローター構体14が回転自在に支持された
固定子7とを具備する回転陽極型X線管におい
て、 上記ローター構体14は、回転軸6、円筒状ロ
ーター部15、およびこのローター部15の上記
ターゲツト側端部に固着された円板状の接合部1
6を有するとともに、 前記接合部16とターゲツト支持体12とが、
直接又は他の断熱体19を介し、これら接合部、
ターゲツト支持体又は断熱体に回転中心軸に対し
同心的に設けられた大直径および小直径の環状突
起17,18により相互に接し、且つこれら両環
状突起17,18の中間位置を貫通して設けられ
た複数個のねじ13により相互に締付け固定され
てなることを特徴とする回転陽極X線管。
[Claims for Utility Model Registration] A target support 12 to which the anode target 2 is fixed, a rotor structure 14 to which the target support 12 is fixed, and the rotor structure 14 is rotatable via bearings 8 and 9. In a rotary anode X-ray tube comprising a supported stator 7, the rotor structure 14 includes a rotating shaft 6, a cylindrical rotor section 15, and a circular tube fixed to the target side end of the rotor section 15. Plate joint 1
6, and the joint portion 16 and the target support 12 are
Directly or through another insulator 19, these joints,
Annular protrusions 17 and 18 of a large diameter and a small diameter are provided on the target support or the heat insulator concentrically with respect to the rotation center axis, and are in contact with each other, and are provided through an intermediate position between the annular protrusions 17 and 18. A rotating anode X-ray tube characterized in that the rotating anode X-ray tube is mutually tightened and fixed by a plurality of screws 13.
JP11649380U 1980-08-18 1980-08-18 Expired JPH0138854Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11649380U JPH0138854Y2 (en) 1980-08-18 1980-08-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11649380U JPH0138854Y2 (en) 1980-08-18 1980-08-18

Publications (2)

Publication Number Publication Date
JPS5740248U JPS5740248U (en) 1982-03-04
JPH0138854Y2 true JPH0138854Y2 (en) 1989-11-20

Family

ID=29477338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11649380U Expired JPH0138854Y2 (en) 1980-08-18 1980-08-18

Country Status (1)

Country Link
JP (1) JPH0138854Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173996B1 (en) * 1997-11-25 2001-01-16 General Electric Company Compliant joint with a coupling member for interfacing dissimilar metals in X-ray tubes

Also Published As

Publication number Publication date
JPS5740248U (en) 1982-03-04

Similar Documents

Publication Publication Date Title
US3795832A (en) Target for x-ray tubes
EP0149869B1 (en) X-ray tube comprising a helical-groove bearing
EP0138042B2 (en) Thermally compensated x-ray tube bearings
CA1131685A (en) Rotating anode x-ray tube with improved thermal capacity
US3753021A (en) X-ray tube anode target
JPH0415981B2 (en)
US4679220A (en) X-ray tube device with a rotatable anode
US4115718A (en) Rotary-anode X-ray tube
US4920551A (en) Rotating anode X-ray tube
JPH0138854Y2 (en)
US3634870A (en) Rotating anode for x-ray generator
US2640168A (en) Electron tube
JPS6348929Y2 (en)
JPS6348928Y2 (en)
JPH0414844Y2 (en)
JPH0622106B2 (en) Rotating anode X-ray tube
JPS5843176Y2 (en) rotating anode x-ray tube
JPH0330247A (en) Rotating anode x-ray tube
JPH0658793B2 (en) Rotating anode for X-ray tube
JPH0720836Y2 (en) Rotating anode X-ray tube
JPS58181261A (en) Rotary-anode x-ray tube
JPS587972Y2 (en) rotating anode x-ray tube
JPS58175249A (en) Rotary anode x-ray tube
JPH1050243A (en) Rotary anode type x-ray tube
JPS592143B2 (en) Structure of rotating anode X-ray tube