JPH0136119Y2 - - Google Patents

Info

Publication number
JPH0136119Y2
JPH0136119Y2 JP13700682U JP13700682U JPH0136119Y2 JP H0136119 Y2 JPH0136119 Y2 JP H0136119Y2 JP 13700682 U JP13700682 U JP 13700682U JP 13700682 U JP13700682 U JP 13700682U JP H0136119 Y2 JPH0136119 Y2 JP H0136119Y2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
detection signal
sensor
curve
oxygen detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13700682U
Other languages
Japanese (ja)
Other versions
JPS5941754U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13700682U priority Critical patent/JPS5941754U/en
Publication of JPS5941754U publication Critical patent/JPS5941754U/en
Application granted granted Critical
Publication of JPH0136119Y2 publication Critical patent/JPH0136119Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 本考案は、被測定液の中に溶存する溶存酸素の
量を測定して表示する溶存酸素測定装置に関す
る。
[Detailed Description of the Invention] The present invention relates to a dissolved oxygen measuring device that measures and displays the amount of dissolved oxygen dissolved in a liquid to be measured.

このような溶存酸素測定装置における検出器の
検出原理としては、いわゆるポーラログラフ式と
いわゆるガルバニツクセル式に大別されるが、い
ずれの方式も電気化学的に被測定液中の溶存酸素
量を検出するものである。また、いずれの方式の
場合も被測定液中で溶存酸素量を検出するため、
該被測定液の温度をサーミスタ等の温度センサー
で検出し、該検出された温度信号でもつて上記溶
存酸素量の検出信号を補正しなければならなかつ
た。このような理由のために、上記溶存酸素量の
検出信号が溶存酸素測定装置で表示されるまでの
いわゆる検出応答時間は、一般に長く、例えば90
%応答するのに数十秒乃至数分も要するという欠
点があつた。
The detection principle of the detector in such a dissolved oxygen measurement device can be roughly divided into the so-called polarographic method and the so-called galvanic cell method, but both methods electrochemically detect the amount of dissolved oxygen in the liquid to be measured. It is something to do. In addition, in both methods, since the amount of dissolved oxygen is detected in the liquid to be measured,
It was necessary to detect the temperature of the liquid to be measured with a temperature sensor such as a thermistor, and to correct the detection signal of the amount of dissolved oxygen using the detected temperature signal. For this reason, the so-called detection response time until the above-mentioned dissolved oxygen amount detection signal is displayed on the dissolved oxygen measurement device is generally long, e.g.
The disadvantage was that it took several tens of seconds to several minutes to respond.

本考案は、かかる欠点に鑑みてなされたもので
あり、その目的は、上記応答時間の短い優れた溶
存酸素測定装置を提供することにある。
The present invention was devised in view of these drawbacks, and its purpose is to provide an excellent dissolved oxygen measuring device with a short response time.

以下、本考案について図を用いて詳細に説明す
る。第1図は、本考案の理解を助けるために例示
するものであつて、ガルバニルセル式の溶存酸素
計の原理を示す溶存酸素センサーの構成断面図で
ある。第1図において、溶存酸素センサーは、例
えばプラスチツクでなる円筒形容器1と、この底
部に配置され穴のあいた例えば銀などでなる貴全
属電極2と、内部に配置され例えば鉛などでなる
卑金属電極3と、これらの電極2,3の間に満た
され例えば苛性カリを主成分とする水溶液でなる
電解液4と、上記円筒形容器1の底部外側に装着
された隔膜5とから構成されている。また、該隔
膜5は酸素分子を通過させる性質のもので、円筒
形容器1を被測定液6の中に浸すと、この隔膜5
を介して溶存酸素が透過し、貴金属電極2の表面
で下式(1)のような反応が起り、電流が流れる。該
電流は溶存酸素の分圧比に比例して変化するの
で、上記両電極2,3の間に一定の抵抗器Rを接
続し、これに流れる電流Iの大きさから溶存酸素
量が検出されるようになつている。
Hereinafter, the present invention will be explained in detail using figures. FIG. 1 is a cross-sectional view of the structure of a dissolved oxygen sensor showing the principle of a galvanic cell type dissolved oxygen meter, which is exemplified to help understand the present invention. In FIG. 1, the dissolved oxygen sensor includes a cylindrical container 1 made of, for example, plastic, a noble metal electrode 2 made of, for example, silver and having a hole arranged at the bottom thereof, and a base metal electrode made of, for example, lead, arranged inside. It consists of an electrode 3, an electrolytic solution 4 filled between the electrodes 2 and 3 and made of an aqueous solution containing, for example, caustic potash as a main component, and a diaphragm 5 attached to the outside of the bottom of the cylindrical container 1. . Further, the diaphragm 5 has a property of allowing oxygen molecules to pass through, and when the cylindrical container 1 is immersed in the liquid to be measured 6, the diaphragm 5
Dissolved oxygen permeates through the noble metal electrode 2, and a reaction as shown in the following formula (1) occurs on the surface of the noble metal electrode 2, causing a current to flow. Since the current changes in proportion to the partial pressure ratio of dissolved oxygen, a constant resistor R is connected between the electrodes 2 and 3, and the amount of dissolved oxygen is detected from the magnitude of the current I flowing through it. It's becoming like that.

O2+2H2O+4e-→4OH- …(1) また、第2図は本考案実施例のブロツク構成説
明図である。第2図において、7は例えば第1図
を用いて詳述したように構成され被測定液の中に
溶存する溶存酸素量を検出する溶存酸素センサ
ー、8は溶存酸素センサー7の所定部分(例えば
側壁等)に装着され溶存酸素センサー7の近傍に
存在する上記被測定液の温度を検出する例えばサ
ーミスタでなる温度センサー、9は上記溶存酸素
センサー7および温度センサー8を有する測定セ
ル、10は上記溶存酸素センサー7および温度セ
ンサー8からの夫々の出力信号を受け順次切換え
て送出するマルチプレクサ、11はマルチプレク
サ10からの出力信号を受けてA/D変換する
A/D変換器、12は溶存酸素センサー7につい
て最終溶存酸素検出信号値に至るまでの検出時間
tと溶存酸素検出信号Vとの関係を示す溶存酸素
検出応答特性曲線が種々の条件毎(例えば各温度
毎など)に予め作成され、それら複数個の溶存酸
素検出応答特性曲線記憶されているメモリ、13
は入出力インターフエイス、14は入出力インタ
ーフエイス13を介してマルチプレクサ10を制
御すると共に該入出力インターフエイス13を介
して入力されるA/D変換器11からの出力信号
のうち上記溶存酸素センサー7から供給される溶
存酸素検出信号に基づき上記メモリ12から所望
の溶存酸素検出応答特性曲線を呼び出し、該特性
曲線の最終値から上記溶存酸素検出信号の最終値
を予測し上記溶存酸素量を示す信号となして出力
するマイクロプロセツサ(以下「CPU」と略
す)、15はCPU15の出力信号を表示する表示
器である。尚、第3図は上記メモリ12内に記憶
されている溶存酸素検出応答特性曲線の一例を示
す応答特性図である。
O 2 +2H 2 O+4e - →4OH - (1) FIG. 2 is an explanatory diagram of the block configuration of the embodiment of the present invention. In FIG. 2, 7 is a dissolved oxygen sensor configured as described in detail with reference to FIG. 1, and detects the amount of dissolved oxygen dissolved in the liquid to be measured; 9 is a measurement cell having the dissolved oxygen sensor 7 and temperature sensor 8; A multiplexer that receives and sequentially switches output signals from the dissolved oxygen sensor 7 and temperature sensor 8 and sends them out; 11 is an A/D converter that receives the output signal from the multiplexer 10 and performs A/D conversion; 12 is a dissolved oxygen sensor Regarding No. 7, dissolved oxygen detection response characteristic curves showing the relationship between the detection time t until reaching the final dissolved oxygen detection signal value and the dissolved oxygen detection signal V are created in advance for each various conditions (for example, for each temperature), and a memory storing a plurality of dissolved oxygen detection response characteristic curves; 13;
14 is an input/output interface that controls the multiplexer 10 through the input/output interface 13 and outputs the dissolved oxygen sensor among the output signals from the A/D converter 11 that are input through the input/output interface 13. A desired dissolved oxygen detection response characteristic curve is called from the memory 12 based on the dissolved oxygen detection signal supplied from 7, and the final value of the dissolved oxygen detection signal is predicted from the final value of the characteristic curve to indicate the amount of dissolved oxygen. A microprocessor (hereinafter abbreviated as "CPU") outputs a signal, and 15 is a display that displays the output signal of the CPU 15. Incidentally, FIG. 3 is a response characteristic diagram showing an example of a dissolved oxygen detection response characteristic curve stored in the memory 12.

以下、第2図および第3図を用いながら本考案
実施例の動作について説明する。第2図におい
て、溶存酸素センサー7および温度センサー8で
夫々検出された溶存酸素検出信号および温度検出
信号は、マルチプレクサ10へ入力され順次切換
えられてA/D変換器11へ入力されてA/D変
換され、その後、入出力インターフエイス13を
経てCPU14へ入力される。該CPU14におい
て、上記溶存酸素検出信号の初期所定時間(第3
図のΔt、例えば数秒間)における曲がり(第3
図の特性曲線のうちのA部分)が検出され、該曲
がりと初期所定時間Δtにおける曲がりが合致す
る溶存酸素検出応答特性曲線(第3の破線B)
が、上記メモリ12に記憶されている複数個の溶
存酸素検出応答特性曲線の中から呼び出される。
また、該特性曲線の最終値(第3図の出力V2
から上記溶存酸素検出信号の最終値が出力V2
なると予想し、該予想値V2が上記溶存酸素量の
値とみなされて例えば上記初期所定時間Δtのの
ちCPU14から表示器15へ出力される。従つ
て、表示器15には上記溶存酸素検出信号が実際
に最終値V2を示すまで待つことなく、上記初期
所定時間Δt経過後瞬時に上記溶存酸素量の値が
表示されるようになる。尚、表示器15では、
CPU14へ上記温度センサー8から供給される
温度検出信号に基づき、上記被測定液の温度も一
緒に表示されることが多い。また、上記メモリ1
2に記憶されている溶存酸素検出応答特性曲線群
の中から溶存酸素検出信号の初期所定時間におけ
る曲がりと初期所定時間における曲がりが合致す
る溶存酸素検出応答性曲線が上述のようにして呼
び出されるが、CPU14内で予めセツテングさ
れているプログラムに従い必要な演算(溶存酸素
検出信号の予測)を行うため、溶存酸素検出信号
の最終値として予測された溶存酸素検出応答特性
曲線の最終溶存酸素検出信号を溶存酸素量として
算出するために必要な情報まで上記メモリ12に
記憶されている必要はない。
The operation of the embodiment of the present invention will be described below with reference to FIGS. 2 and 3. In FIG. 2, dissolved oxygen detection signals and temperature detection signals respectively detected by dissolved oxygen sensor 7 and temperature sensor 8 are input to multiplexer 10, sequentially switched, and input to A/D converter 11 to A/D converter 11. The data is converted and then input to the CPU 14 via the input/output interface 13. In the CPU 14, the initial predetermined time (third
Δt in the figure, for example several seconds)
Part A of the characteristic curve in the figure is detected, and the dissolved oxygen detection response characteristic curve (third broken line B) in which the bend matches the bend at the initial predetermined time Δt
is called out from among the plurality of dissolved oxygen detection response characteristic curves stored in the memory 12.
Also, the final value of the characteristic curve (output V 2 in Figure 3)
Therefore, it is predicted that the final value of the dissolved oxygen detection signal will be the output V 2 , and the predicted value V 2 is regarded as the value of the dissolved oxygen amount and is output from the CPU 14 to the display 15 after the initial predetermined time Δt. Ru. Therefore, the value of the amount of dissolved oxygen is displayed on the display 15 instantly after the initial predetermined time Δt has elapsed, without waiting until the dissolved oxygen detection signal actually indicates the final value V2 . In addition, on the display 15,
Based on the temperature detection signal supplied from the temperature sensor 8 to the CPU 14, the temperature of the liquid to be measured is often also displayed. In addition, the memory 1
A dissolved oxygen detection response curve whose curve at the initial predetermined time of the dissolved oxygen detection signal matches the curve at the initial predetermined time is called out as described above from among the group of dissolved oxygen detection response characteristic curves stored in step 2. In order to perform necessary calculations (prediction of dissolved oxygen detection signal) according to a program set in advance in the CPU 14, the final dissolved oxygen detection signal of the predicted dissolved oxygen detection response characteristic curve is used as the final value of the dissolved oxygen detection signal. It is not necessary that the information necessary for calculating the amount of dissolved oxygen be stored in the memory 12.

以上詳しく説明したような本考案の実施例によ
れば、CPU14へ供給される溶存酸素検出信号
の初期所定時間における曲がりに基づき該検出信
号の最終値を予測して表示するような構成である
ため、前記従来例に比し極めて短時間で被測定液
中の溶存酸素量を知ることができるという大きな
利点がある。
According to the embodiment of the present invention as described in detail above, the final value of the dissolved oxygen detection signal supplied to the CPU 14 is predicted and displayed based on the curve at the initial predetermined time. This method has the great advantage of being able to determine the amount of dissolved oxygen in the liquid to be measured in an extremely short time compared to the conventional example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶存酸素センサーの構成断面図、第2
図は本考案実施例のブロツク構成説明図、第3図
は溶存酸素検出応答特性曲線の一例を示す応答特
性図である。 1……円筒形容器、2……貴金属電極、3……
劣金属電極、4……電解液、5……隔膜、6……
被測定液、7……溶存酸素センサー、8……温度
センサー、9……測定セル、10……マルチプレ
クサ、11……A/D変換器、12……メモリ、
13……入出力インターフエイス、14……マイ
クロプロセツサ、15……表示器。
Figure 1 is a sectional view of the structure of the dissolved oxygen sensor, Figure 2
The figure is an explanatory diagram of the block configuration of the embodiment of the present invention, and FIG. 3 is a response characteristic diagram showing an example of a dissolved oxygen detection response characteristic curve. 1...Cylindrical container, 2...Precious metal electrode, 3...
Inferior metal electrode, 4... Electrolyte, 5... Diaphragm, 6...
Liquid to be measured, 7...Dissolved oxygen sensor, 8...Temperature sensor, 9...Measurement cell, 10...Multiplexer, 11...A/D converter, 12...Memory,
13...Input/output interface, 14...Microprocessor, 15...Display device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定液の溶存酸素量を検出する溶存酸素セン
サーと該センサー近傍の液温を検出する温度セン
サーを有する測定セルと、前記溶存酸素センサー
について最終溶存酸素検出信号値に至るまでの検
出時間tと溶存酸素検出信号Vとの関係を示す溶
存酸素検出応答特性曲線が種々の条件毎に予め作
成され、それら複数個の溶存酸素検出応答特性曲
線が記憶されているメモリと、前記溶存酸素セン
サーおよび温度センサーでそれぞれ検出された溶
存酸素検出信号および温度検出信号が供給される
と共に前記溶存酸素検出信号の初期所定時間にお
ける曲がりに基ずき該曲がりと初期所定時間にお
ける曲がりが合致する溶存酸素検出応答特性曲線
を前記メモリから呼び出し該特性曲線の最終値か
ら前記溶存酸素検出信号の最終値を予測し前記溶
存酸素量を示す信号として出力するマイクロプロ
セツサと、該マイクロプロセツサの出力を受けて
前記溶存酸素量を表示する表示器とを具備するこ
とを特徴とする溶存酸素測定装置。
A measurement cell having a dissolved oxygen sensor that detects the amount of dissolved oxygen in a liquid to be measured and a temperature sensor that detects the temperature of the liquid near the sensor, and a detection time t for the dissolved oxygen sensor to reach a final dissolved oxygen detection signal value. Dissolved oxygen detection response characteristic curves showing the relationship with the dissolved oxygen detection signal V are created in advance for each of various conditions, and a memory in which a plurality of these dissolved oxygen detection response characteristic curves are stored, the dissolved oxygen sensor and the temperature A dissolved oxygen detection response characteristic in which a dissolved oxygen detection signal and a temperature detection signal respectively detected by the sensor are supplied, and the curve at the initial predetermined time matches the curve at the initial predetermined time based on the curve at the initial predetermined time of the dissolved oxygen detection signal. a microprocessor that reads a curve from the memory, predicts the final value of the dissolved oxygen detection signal from the final value of the characteristic curve, and outputs the predicted value as a signal indicating the amount of dissolved oxygen; 1. A dissolved oxygen measuring device comprising: a display device that displays the amount of dissolved oxygen.
JP13700682U 1982-09-09 1982-09-09 Dissolved oxygen measuring device Granted JPS5941754U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13700682U JPS5941754U (en) 1982-09-09 1982-09-09 Dissolved oxygen measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13700682U JPS5941754U (en) 1982-09-09 1982-09-09 Dissolved oxygen measuring device

Publications (2)

Publication Number Publication Date
JPS5941754U JPS5941754U (en) 1984-03-17
JPH0136119Y2 true JPH0136119Y2 (en) 1989-11-02

Family

ID=30307866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13700682U Granted JPS5941754U (en) 1982-09-09 1982-09-09 Dissolved oxygen measuring device

Country Status (1)

Country Link
JP (1) JPS5941754U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077828B2 (en) * 2008-04-15 2012-11-21 横河電機株式会社 Electrochemical sensor

Also Published As

Publication number Publication date
JPS5941754U (en) 1984-03-17

Similar Documents

Publication Publication Date Title
JP2702286B2 (en) Biosensing meter with pluggable memory key
EP0027005B1 (en) A method of electrochemical sensing and a sensor for oxygen, halothane and nitrous oxide
KR100221007B1 (en) Electrochemical gas sensors and methods for sensing electrochemical active gases in gas mixtures
JPH0136119Y2 (en)
KR850008718A (en) Electric moisture measuring device and how to measure and display moisture
JP2850514B2 (en) PH meter with life expectancy display
JPH0136118Y2 (en)
US4168220A (en) Method for detecting the fouling of a membrane covered electrochemical cell
JP5077828B2 (en) Electrochemical sensor
JP4322555B2 (en) Residual chlorine concentration measuring method and residual chlorine concentration measuring device
JPS62168045A (en) Component measuring method
JP5790923B2 (en) Na + concentration measurement system using pH meter
JPS5928356Y2 (en) Diaphragm electrode
JP2001242143A (en) Base substance determination apparatus
JP2004177163A (en) Galvanic cell type dissolved oxygen sensor
JPH10111274A (en) Residual chlorine meter
JPH04155254A (en) Detector
JPS5881980A (en) Aluminum surface cleaning method and device
JPH0323202Y2 (en)
SU470738A1 (en) The method of automatic control of the concentration of gases in liquid and gaseous media
JPH0330851Y2 (en)
JP2005221399A (en) Conditioning unit for electrochemical sensor
TW201929774A (en) Detection device and detection method
JPS5862532A (en) Pressure-electric resistance converter
JPS6329216B2 (en)