JPH0136108Y2 - - Google Patents

Info

Publication number
JPH0136108Y2
JPH0136108Y2 JP8833583U JP8833583U JPH0136108Y2 JP H0136108 Y2 JPH0136108 Y2 JP H0136108Y2 JP 8833583 U JP8833583 U JP 8833583U JP 8833583 U JP8833583 U JP 8833583U JP H0136108 Y2 JPH0136108 Y2 JP H0136108Y2
Authority
JP
Japan
Prior art keywords
container
diluted
sample
pipette
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8833583U
Other languages
Japanese (ja)
Other versions
JPS5920376U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8833583U priority Critical patent/JPS5920376U/en
Publication of JPS5920376U publication Critical patent/JPS5920376U/en
Application granted granted Critical
Publication of JPH0136108Y2 publication Critical patent/JPH0136108Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【考案の詳細な説明】 本考案は流体中に懸濁状態で浮遊する微粒子を
検出し計数する装置に関するものであり、微粒子
計数に際し必要な希釈装置を一体化させ少なくと
も2回以上の多段の希釈が行えるような自動微粒
子計測装置を提供することを目的とするものであ
る。
[Detailed description of the invention] The present invention relates to a device for detecting and counting fine particles suspended in a fluid.It integrates a dilution device necessary for particle counting and performs multi-stage dilution at least two times. The purpose of this invention is to provide an automatic particulate measurement device that can perform the following steps.

従来から被計測微粒子を適当な希釈液で希釈し
た試料を微粒子が同時に2個以上通過できない程
度に狭隘に形成された微細孔に通過させ、微粒子
の通過時において微細孔内の物理的性状例えば微
粒子と希釈液との誘電率の相違に基づく静電容量
変化等をとらえ、これを電気的な出力信号として
取り出し、計測することが行われるている。しか
し、通例微粒子検出部分を通過させる試料は予め
別途の希釈手段で調整されたものであり、希釈後
直ちに行われることがない。従つて微粒子が例え
ば血球の場合等では希釈放置されることによつて
試料中のヘマトクリツト値またはその他の誤差が
生じる場合がある。
Conventionally, a sample in which the particles to be measured are diluted with an appropriate diluent is passed through a micropore formed so narrow that two or more particles cannot pass through at the same time. Capacitance changes based on the difference in permittivity between the dielectric constant and the diluent are captured, and this is extracted and measured as an electrical output signal. However, the sample that is passed through the particulate detection section is usually prepared in advance using a separate dilution means, and is not diluted immediately after dilution. Therefore, in the case where the fine particles are, for example, blood cells, if the fine particles are left diluted, errors in the hematocrit value or other errors may occur in the sample.

さらに周知の如く、サンプルが血液で赤血球の
みを計数する場合は、サンプル0.001mlに対し、
80mlの希釈液を混合して8万倍希釈液を作ればよ
いが、mlの単位において小数点以下第3位の量を
吸引するにはマイクロピペツトを必要とし、それ
よりもサンプルザーリピペツトで0.02ml吸引し、
これに16mlの希釈液を加えて800倍希釈液を作り、
さらにこの800倍希釈液から0.2mlを採取して20ml
の希釈液を加えれば8万倍希釈液が得られる。こ
の二段式の希釈方法は白血球の計測を行うとき赤
血球溶解液を加えるに際し、0.1mlの該液に対し、
800倍希釈液が使用されることから、赤血球、白
血球の同時測定にはこの二段希釈法が必要とな
る。
Furthermore, as is well known, when the sample is blood and only red blood cells are counted, for 0.001ml of sample,
You can make an 80,000-fold diluted solution by mixing 80 ml of diluted solution, but a micropipette is required to aspirate an amount to the third decimal place in ml, and it is better to use a sampler pipette. Aspirate 0.02ml,
Add 16ml of diluted liquid to this to make an 800-fold diluted liquid,
Furthermore, collect 0.2 ml from this 800-fold diluted solution and make 20 ml.
If you add a diluted solution of , you can obtain an 80,000-fold diluted solution. This two-stage dilution method involves adding red blood cell lysate to 0.1 ml of the solution when measuring white blood cells.
Since an 800-fold dilution solution is used, this two-stage dilution method is necessary for simultaneous measurement of red blood cells and white blood cells.

本考案は上記欠点および必要によりなされたも
のであり、以下図面の実施例に基づいて本考案を
説明する。
The present invention was developed in view of the above-mentioned drawbacks and needs, and will be described below based on the embodiments shown in the drawings.

図面に示す如く、この考案に係る自動微粒子計
測装置の構成は微粒子懸濁液1(以下サンプルと
いう)を収容したサンプルカツプ1aからサンプ
ル1を吸引するピペツト2を備えたピペツテイン
グ手段3と、吸引したサンプルに対し希釈液4を
予め定められた倍率に混合して吐出する希釈混合
液吐出手段5と、希釈されたサンプルをうける受
け口6を一部に備えた微粒子検出のための検出容
器7と、この検出容器7内に放出された希釈後の
サンプル中に浸漬された実質的に微粒子を1個宛
通過せしめる程度に狭隘になされた微細孔8を有
し、この微細孔8を被測微粒子が通過する際に生
ずる微細孔8内の物理的性状の変化をとらえる検
出器9と、この検出器9からの出力信号を電気パ
ルス信号に変換する検出回路27と、前記パルス
を計測する計数手段10と、計数後の表示回路
と、さらにサンプルカツプ1a、第一段希釈後の
希釈サンプルカツプ21およびロート24を配設
した試料供給装置11と検出器内を通過する試料
の量を制御する定量制御手段29と、廃液管30
と、バルブ31と、廃液容器32とを備え、さら
にピペツテイング手段3はピペツト2とこのピペ
ツトを支承する切換弁12、吸引用のシリンダ1
3およびその駆動部14から成り、一方希釈混合
液吐出手段5は希釈液容器15とこれに浸漬され
逆流防止弁25を備えた吸引管16、吸引および
排出用シリンダ17、吸引管16およびシリンダ
17に続き逆流防止弁25を備えた排出管18お
よびバイパス管19、バイパス管19の一方の管
に続くバイパスピペツト20を包含している。ま
た、上記した切換弁12は回転部12aと固定部
12bとから成り、回転部12aは軸12cを中
心に半回転ずつ間欠回転し、これに前記ピペツト
2とバイパスピペツト20が平行して下方に垂下
している。即ち、図の実線の状態ではバイパスピ
ペツト20は閉塞され、ピペツト2のみシリンダ
13に連通しているが、回転部12aを半回転し
て鎖線の状態にすると、バイパスピペツト20お
よびピペツト2はバイパス管19の2本の管に接
続される。
As shown in the drawings, the automatic particle counting device according to this invention has a structure including a pipetting means 3 equipped with a pipette 2 for aspirating a sample 1 from a sample cup 1a containing a particle suspension 1 (hereinafter referred to as sample), and A diluted mixture discharge means 5 that mixes and discharges a diluted liquid 4 at a predetermined ratio with respect to the sample, and a detection container 7 for detecting particulates that partially includes a receptacle 6 for receiving the diluted sample. This detection container 7 has a fine hole 8 which is narrow enough to allow each fine particle immersed in the diluted sample released into the detection container 7 to pass through. A detector 9 that detects changes in physical properties within the micropore 8 that occur when passing through the hole, a detection circuit 27 that converts the output signal from the detector 9 into an electrical pulse signal, and a counting means 10 that measures the pulse. , a display circuit after counting, a sample supply device 11 including a sample cup 1a, a diluted sample cup 21 after first dilution, and a funnel 24, and quantitative control for controlling the amount of sample passing through the detector. Means 29 and waste liquid pipe 30
The pipetting means 3 includes a pipette 2, a switching valve 12 supporting the pipette, and a cylinder 1 for suction.
3 and its driving part 14, while the diluted mixed liquid discharge means 5 consists of a diluted liquid container 15, a suction tube 16 immersed in the diluted liquid container 15 and equipped with a non-return valve 25, a suction and discharge cylinder 17, a suction tube 16 and a cylinder 17. A discharge pipe 18 and a bypass pipe 19 are provided with a non-return valve 25, and a bypass pipette 20 is connected to one of the bypass pipes 19. The switching valve 12 described above is composed of a rotating part 12a and a fixed part 12b, and the rotating part 12a rotates intermittently by half a rotation around a shaft 12c. hanging down. That is, in the state shown by the solid line in the figure, the bypass pipette 20 is closed and only the pipette 2 is in communication with the cylinder 13, but when the rotating part 12a is turned half a turn to the state shown by the chain line, the bypass pipette 20 and the pipette 2 are closed. It is connected to two pipes of the bypass pipe 19.

さらに、上記試料供給装置11は第2図に示す
如く、サンプルカツプ1aとさらに容積の大きい
一段希釈後の希釈サンプルカツプ21を配列した
プレート22とサンプルカツプ1aをプレート2
2を貫通して上下に移送するサンプルカツプ移送
手段(詳細図示せず)とで形成され各カツプの中
心を結ぶ線上に設けた軸23を中心に矢符A方向
に移動し、かつ全体を矢符B方向、C方向にも移
動し得るプレート22上には軸23を中心とする
円弧上に希釈サンプルカツプ21に隣接して上下
が開口したロート24が固定されており、このロ
ート24の下端開口部は前記検出容器7の受け口
6の真上に位置するよう移動可能に構成されてい
る。
Further, as shown in FIG. 2, the sample supply device 11 further includes a plate 22 in which sample cups 1a and diluted sample cups 21 after one-stage dilution having a larger volume are arranged, and a plate 22 in which sample cups 1a are arranged.
The sample cup transfer means (details not shown) is formed by penetrating the sample cup 2 and transferring the sample cup up and down (details not shown). On the plate 22, which can also move in the directions B and C, is fixed a funnel 24 adjacent to the diluted sample cup 21 on an arc centered on a shaft 23, and which is open at the top and bottom. The opening is configured to be movable so as to be located directly above the socket 6 of the detection container 7.

次にその作動について述べると、まずサンプル
1をピペツト2から駆動部14の働きによつて微
量吸引される。このとき駆動部14の動きに応じ
て吸引シリンダ13は微量だけ動き、サンプルは
定量吸引される。このときサンプル1は、ピペツ
ト2の先端部のみに吸引され、サンプルの粘度が
高いため、ほとんど希釈液との混合は行われな
い。次に切換弁12の回転部12aが軸12cを
中心に半回転し、第1図に示す実線の状態から鎖
線で示す状態になり、駆動部14およびシリンダ
17の作動により希釈液4が定量吸引されると直
ちにシリンダ17のピストンが上昇し、管内の希
釈液はサンプルともどもピペツト2およびバイパ
スピペツト20から希釈サンプルカツプ21に放
射される。
Next, the operation will be described. First, a small amount of the sample 1 is aspirated from the pipette 2 by the action of the drive section 14. At this time, the suction cylinder 13 moves by a small amount in accordance with the movement of the drive unit 14, and a fixed amount of the sample is suctioned. At this time, the sample 1 is sucked only into the tip of the pipette 2, and since the sample has a high viscosity, it is hardly mixed with the diluent. Next, the rotating part 12a of the switching valve 12 rotates half a turn around the shaft 12c, and the state shown by the solid line in FIG. Immediately, the piston of the cylinder 17 rises, and the diluent in the tube is ejected together with the sample from the pipette 2 and the bypass pipette 20 into the diluted sample cup 21.

次に、回転部12aが元の状態にもどり、シリ
ンダ13のピストンをもとの状態に上昇させ、余
分な希釈液をサンプルカツプ1aに噴出させ、ピ
ペツト2内の洗浄を行い、サンプルカツプ1aを
前記サンプルカツプ移送手段によりプレート22
の下方へ下降させ、試料供給装置11が第2図の
矢符B方向に上つたのちC方向に移動し、ピペツ
ト2の直下に希釈サンプルカツプ21が位置し、
さらにB方向に上昇してピペツト2により吸引さ
れる。このとき、サンプル1は、ピペツト2内に
は残留しておらず、希釈サンプルがピペツト2の
先端にのみ吸引される。そののち、試料供給装置
11は下降し、プレート22を軸23を中心にA
方向へ移動させたのち、C方向の元の位置へもど
る。従つて、このとき受け口6の上方にはロート
24が位置する。
Next, the rotating part 12a returns to its original state, raises the piston of the cylinder 13 to its original state, squirts excess diluent into the sample cup 1a, cleans the inside of the pipette 2, and removes the sample cup 1a. The plate 22 is moved by the sample cup transfer means.
2, the sample supply device 11 moves upward in the direction of arrow B in FIG.
It further rises in the direction B and is sucked by the pipette 2. At this time, sample 1 does not remain in pipette 2, and the diluted sample is aspirated only at the tip of pipette 2. After that, the sample supply device 11 descends and moves the plate 22 around the axis 23 at A
After moving in the C direction, it returns to its original position in the C direction. Therefore, at this time, the funnel 24 is located above the socket 6.

希釈サンプルを定量吸引すると、再び回転部1
2aは鎖線の位置にもどり、このとき同時にシリ
ンダ17には希釈液4が吸引される。
When a fixed amount of the diluted sample is aspirated, the rotating part 1
2a returns to the position indicated by the chain line, and at the same time, the diluent 4 is sucked into the cylinder 17.

次に、シリンダ17内のピストンが再び上昇
し、管内の希釈液は希釈サンプルともどもピペツ
ト2およびバイパスピペツト20から噴出され
る。希釈液はこのとき逆流防止弁25,26によ
つて一方向のみ流れるので定量のサンプルと定量
の希釈液はロート24、受け口6を経て検出容器
7内に流動する。検出器9の下部に設けた微細孔
8はその液面下にあり、定量制御部29の作動に
より二段希釈サンプルが微細孔を通じて吸引され
るとき粒子が検出され、計数される。
Next, the piston in the cylinder 17 rises again, and the diluent in the tube is ejected from the pipette 2 and the bypass pipette 20 together with the diluted sample. At this time, the diluent flows in only one direction due to the non-return valves 25 and 26, so a fixed amount of the sample and a fixed amount of the diluent flow into the detection container 7 through the funnel 24 and the socket 6. The fine holes 8 provided at the bottom of the detector 9 are below the liquid level, and when the two-stage diluted sample is sucked through the fine holes by the operation of the quantitative control section 29, particles are detected and counted.

次のサンプルを測定するときは、バルブ31を
開いて廃液容器32に残液を排出し切換弁の回転
部12aを元の状態にもどす。この直前において
ピペツト2内には希釈液4が充満しているからシ
リンダ13のピストンを押し上げると、ピペツト
2内の希釈液が放出され、ピペツトの洗浄が行え
る。さらに、使用済みの希釈サンプルカツプ21
を取り除いたのち、プレート22は軸23を中心
に矢符Aと反対方向に移動し初期状態にもどる。
希釈サンプルカツプ21は次のサンプル用に新し
いものをセツトしておく。次のサンプルカツプ1
aは待機するピペツト2の下方にプレート22の
下方から移送され、ついでサンプルカツプ移送手
段によりB方向にもち上げられる。
When measuring the next sample, the valve 31 is opened, the remaining liquid is discharged into the waste liquid container 32, and the rotating part 12a of the switching valve is returned to its original state. Immediately before this, the pipette 2 is filled with the diluent 4, so when the piston of the cylinder 13 is pushed up, the diluent in the pipette 2 is released and the pipette can be cleaned. Furthermore, used diluted sample cups 21
After removing the plate 22, the plate 22 moves in the direction opposite to the arrow A around the shaft 23 and returns to its initial state.
A new diluted sample cup 21 is set for the next sample. Next sample cup 1
A is transferred from below the plate 22 to the waiting pipette 2, and then lifted in the direction B by the sample cup transfer means.

この考案は以上のように微粒子計測装置と希釈
装置とを共に自動化された状態で一体にしたもの
であるから、サンプルを希釈し、計測装置へセツ
トしていた従来の手間が省けるばかりでなく、希
釈後直ちに計測されるから、希釈後放置されるこ
とによつて生ずる種々の測定誤差が解消される。
また、一段および二段希釈が自動的にかつ連続し
て行えるとともに残留希釈液によりピペツト等の
洗浄が可能でコンタミネーシヨンの問題も改善さ
れ、二つのピペツトによる噴射によつてサンプル
と希釈液の混合が充分に行えるのみならず、1本
のピペツトを吸引、吐出兼用とした場合などと比
較し、吸引用ピペツトを微量定量が確実に行える
毛細管状のものにすることが可能であり、一方バ
イパス用のピペツトにより、大部分の希釈液を急
速に吐出することが可能であり、希釈精度および
希釈スピードの面ではるかに優れた効果があり、
短時間のうちに多数のサンプルを連続して自動的
に計測することができる等優れた効果を種々得ら
れるものである。
As described above, this invention integrates a particle measuring device and a diluting device in an automated manner, so it not only eliminates the conventional effort of diluting the sample and setting it in the measuring device. Since measurement is performed immediately after dilution, various measurement errors caused by leaving the solution unattended after dilution are eliminated.
In addition, one-stage and two-stage dilution can be performed automatically and continuously, and the residual diluent can be used to clean pipettes, which improves the problem of contamination. Not only can sufficient mixing be achieved, but compared to the case where a single pipette is used for both suction and discharge, the suction pipette can be made into a capillary tube that can reliably dispense minute amounts, while bypass A pipette for use in dilutions allows for rapid dispensing of most diluted liquids, which is much more effective in terms of dilution accuracy and dilution speed.
Various excellent effects can be obtained, such as being able to automatically measure a large number of samples in succession in a short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの考案の一例を示した第1図は全体を
示す説明図、第2図は試料供給盤の詳細図であ
る。 1……サンプル、3……ピペツテイング手段、
4……希釈液、5……希釈混合吐出手段、6……
受け口、7……検出容器、8……微細孔、9……
検出器、11……試料供給装置。
The drawings show an example of this invention. FIG. 1 is an explanatory diagram showing the whole, and FIG. 2 is a detailed diagram of the sample supply board. 1... Sample, 3... Pipetting means,
4... Diluent, 5... Dilution mixing and discharging means, 6...
Receptacle, 7...detection container, 8...microhole, 9...
Detector, 11... sample supply device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 微粒子懸濁液および第一段希釈後の微粒子懸濁
液を定量吸引するピペツテイング手段と、吸引さ
れた定量の微粒子懸濁液もしくは第一段希釈後の
前記液とともに予め定められた倍率の量の希釈液
を吐出する希釈混合液吐出手段と、前記希釈混合
液吐出手段の下方に移送され第一段希釈後の微粒
子懸濁液をうける容器と、前記容器の位置に交互
に移送されるロートと、このロートの下端開口部
の下方に位置する受け口を備えた検出容器と、こ
の検出容器内に収容された前記希釈後の微粒子懸
濁液中に浸漬され実質的に微粒子を1個宛通過せ
しめる程度に狭隘になされた微細孔を有し、この
微細孔を被測微粒子が通過する際に生ずる微細孔
内の物理的性状の変化をとらえる微粒子検出手段
とを含んで構成される自動微粒子計測装置におい
て、上記ピペツテイング手段は、先端にのみ微粒
子懸濁液および一段希釈後の微粒子懸濁液を吸引
するピペツト2と、このピペツトを軸12cを中
心に回動可能な回転部12aに支承する切換弁1
2と、試料吸引および洗浄用希釈液排出シリンダ
13およびその駆動部14から構成され、上記希
釈混合排出手段は希釈液容器15と、これに浸漬
され逆流防止弁25を備えた吸引管16と、希釈
液の吸引排出用シリンダ17と、吸引管16およ
びシリンダ17に続き逆流防止弁25を備えた希
釈液を排出する排出管18と、分岐し一方が吸引
ピペツトに続くバイパス管19と、前記バイパス
管19の残りの一方の管に続き、前記切換弁12
の回転部12aに支承されたバイパスピペツト2
0とで構成され、さらに、上記一段希釈後の微粒
子懸濁液をうける容器と、上記ロートと、微粒子
懸濁液のサンプルカツプとを保持するプレート
と、上記サンプルカツプを上記プレートを貫通し
て上下に移送するサンプルカツプ移送手段とで形
成され、上記容器およびサンプルカツプの各中心
を結ぶ線上に設けた軸を中心とする上記プレート
上の円弧上に上記容器と上記ロートとが配置さ
れ、上記プレートをプレート平面方向とプレート
平面に垂直方向と上記軸を中心とする上記円弧方
向とに移動可能に設けた試料供給装置を備えてな
る自動微粒子計測装置。
pipetting means for aspirating a fixed amount of the fine particle suspension and the fine particle suspension after the first stage dilution; A diluted mixed liquid discharge means for discharging a diluted liquid; a container transferred below the diluted mixed liquid discharge means to receive the first-stage diluted particulate suspension; and a funnel alternately transferred to the position of the container. , a detection container having a receptacle located below the lower end opening of the funnel, and a detection container immersed in the diluted particulate suspension contained in the detection container, allowing substantially one particulate to pass through. An automatic particulate measuring device comprising a particulate detection means that has a fine pore that is narrowed to a certain extent and detects changes in physical properties within the fine pore that occur when a measured particulate passes through the fine pore. In this case, the pipetting means includes a pipette 2 that aspirates the microparticle suspension and the microparticle suspension after one stage dilution only at the tip thereof, and a switching valve that supports the pipette in a rotary part 12a that is rotatable about a shaft 12c. 1
2, a diluent discharge cylinder 13 for sample suction and cleaning, and its drive unit 14, and the dilution mixing and discharge means includes a diluent container 15, a suction pipe 16 immersed in the diluent container 15 and equipped with a backflow prevention valve 25; A cylinder 17 for sucking and discharging the diluted liquid, a discharge pipe 18 for discharging the diluted liquid which is connected to the suction pipe 16 and the cylinder 17 and equipped with a check valve 25, a bypass pipe 19 that is branched and one side of which is connected to the suction pipette, and the bypass pipe 18. Continuing to the remaining one of the pipes 19, the switching valve 12
Bypass pipette 2 supported on rotating part 12a of
0, further comprising: a container for receiving the fine particle suspension after the first dilution; a plate for holding the funnel; and a sample cup for the fine particle suspension; and a plate for holding the sample cup for the fine particle suspension; the container and the funnel are arranged on an arc on the plate centered on an axis provided on a line connecting the centers of the container and the sample cup; An automatic particulate measuring device comprising a sample supply device that allows a plate to be moved in a plane direction of the plate, a direction perpendicular to the plane of the plate, and an arcuate direction centered on the axis.
JP8833583U 1983-06-08 1983-06-08 Automatic particle counting device Granted JPS5920376U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8833583U JPS5920376U (en) 1983-06-08 1983-06-08 Automatic particle counting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8833583U JPS5920376U (en) 1983-06-08 1983-06-08 Automatic particle counting device

Publications (2)

Publication Number Publication Date
JPS5920376U JPS5920376U (en) 1984-02-07
JPH0136108Y2 true JPH0136108Y2 (en) 1989-11-02

Family

ID=30218247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8833583U Granted JPS5920376U (en) 1983-06-08 1983-06-08 Automatic particle counting device

Country Status (1)

Country Link
JP (1) JPS5920376U (en)

Also Published As

Publication number Publication date
JPS5920376U (en) 1984-02-07

Similar Documents

Publication Publication Date Title
AU645282B2 (en) Automated dispensing and diluting system
EP0739478A1 (en) Method and apparatus for analysing a liquid sample
US4871683A (en) Apparatus and method using a new reaction capsule
JPH01259257A (en) Immune agglutination measuring instrument
US3976429A (en) Backwash system for diluting apparatus
US4434672A (en) Sampling device
JPH04115136A (en) Particle measuring apparatus
JP2014070915A (en) Liquid sucking method, and solid phase washing method using the same
JPH0136108Y2 (en)
JP2000121650A (en) Automatic chemical analyzer
JPS645226Y2 (en)
JP2001514732A (en) Means and method for cleaning a reaction vessel
CA1043128A (en) Liquid proportioning system in a liquid sample analyzer
JPH02243960A (en) System for operating dispenser of analysis apparatus
JPS6365370A (en) Sample pipetting device
JPS61234336A (en) Liquid distribution
JP2796352B2 (en) Particle counting device
JP3952182B2 (en) Liquid level detection method in dispenser
CN218601291U (en) Buffer solution assembly of sample analyzer and sample analyzer
JPH0477670A (en) Quantitative analysis using antigen/antibody reaction
CN219475624U (en) Waste liquid tank mechanism and full-automatic inspection instrument
JPS5832137A (en) Sucking and dispensing nozzle
JPH0139551B2 (en)
JPH10263421A (en) Disposable pipet chip for powder distribution and apparatus
JPH034241B2 (en)