JPH0135681B2 - - Google Patents

Info

Publication number
JPH0135681B2
JPH0135681B2 JP56111302A JP11130281A JPH0135681B2 JP H0135681 B2 JPH0135681 B2 JP H0135681B2 JP 56111302 A JP56111302 A JP 56111302A JP 11130281 A JP11130281 A JP 11130281A JP H0135681 B2 JPH0135681 B2 JP H0135681B2
Authority
JP
Japan
Prior art keywords
membrane
silicone
permeable membrane
silicone particles
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56111302A
Other languages
Japanese (ja)
Other versions
JPS5814906A (en
Inventor
Yoshito Hamamoto
Osamu Kusudo
Shiro Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP56111302A priority Critical patent/JPS5814906A/en
Publication of JPS5814906A publication Critical patent/JPS5814906A/en
Publication of JPH0135681B2 publication Critical patent/JPH0135681B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透過性膜、とくにポリビニルアルコー
ル(以下PVAと記す)系重合体の微細構造膜を
基材とする透過性膜に関する。 近年、分離操作において、選択的な透過性を有
する膜を用いる技術が目ざましい発展を見せてい
る。このような膜分離技術は、コロイド性物質の
分離、海水の淡水化等、一般工業用途への応用は
もとより、最近は、人工腎臓、人工肺、人工肝臓
等医療分野においても一部実用化されている。し
かし、現在使用されている膜は、用途によつて
は、透過性、あるいはその他の性質において必ず
しも満足すべきものとは言い難く、特に医療分野
に関しては、膜本来の透過特性はもとより、生体
に対する無害性等具備すべき条件が厳しく、かつ
多岐に渡るだけに問題も多い。 特に最近のいわゆる人工臓器の著しい発展に伴
ない、血液を直接、膜を用いて処理し、透析、分
別等の操作を行なうことが実用化され、社会的に
不可欠なものとなつてきており、これら技術を利
用した治療法、医療器機は今後一層多方面に渡り
重要性を増すと考えられている。 この種問題の一つに腹水症がある。近年、肝硬
変、内臓癌、あるいはネフローゼ等が原因して腹
水症に苦しんでいる患者は相当数にのぼり、増加
傾向すら示している。従来、このような患者に対
し、しばしば、腹水穿刺による排液法が適用され
てきたが、これでは、一時的に楽にはなるが、再
貯留し易く、また腹水中の蛋白質等の栄養分も同
時に喪失することになり、患者の症状は返つて増
悪することが多く問題であつた。これに対し最
近、自家腹水を膜を用いて、細胞・細菌類を除去
し、かつ有用蛋白成分を濃縮後再静注する治療法
が臨床的に高く評価されつつあり、その為の治療
装置の開発が望まれるようになつた。 また血液は血球成分と血漿からなるものであ
り、これらが混合したいわゆる全血で保存輸血等
が行われている。しかし最近の医学の進歩により
該成分を分離し、各症例に対し必要な成分のみを
輸血したり、成分単位で保存する技術が開発され
つつある。例えば前述した人工肝臓においても、
全血から分離された血漿を吸着剤等で処理する技
術が望ましいとされる面もある。 かゝる要求に対し、全血から血球成分に損傷を
与えず血漿を効率よく分離できる膜の開発が望ま
れている。 また分離された血漿からアルブミン、γグロブ
リンなどの蛋白質を分画する方法も種々考えられ
ており、さらにまた人工腎臓に関しても、現在主
流をなしている透析システム用の膜はもとより、
過型人工腎用の生体適合性にすぐれた過効率
のよい限外過膜が望まれていることは周知の通
りである。 このように、生体中の特定の蛋白成分、酵素細
胞成分等を膜により分別する治療システムの有用
性が多岐に渡り認識されつつある今日、これに対
応するすぐれた各種分画膜が所望されるととも
に、所望の分画性を容易に達成しうる簡便かつ有
効なこの種分離膜の製造法が望まれている。 本発明は微細構造膜の特性を損うことなく、し
かも蛋白質の分画性を自由に変えうる簡便かつ有
効な方法について種々検討した結果、得られたも
のである。 すなわち本発明は、平均孔径0.01〜2μの微細構
造を有する膜の片面または両面にシリコーン粒子
が微細孔を閉塞せずに相互に結合して付着してい
ることを特徴とする透過性膜である。 本発明の透過性膜は後述する実施例からも明ら
かなようにシリコーン粒子の付着量を変えること
によつて蛋白質などの分画性を自由に変えること
ができ、また透水性能も実用上差しつかえないよ
うな範囲にとどめることができる。さらに本発明
の透過性膜はシリコーンを膜表面に有するので抗
体液凝固性(抗血液凝固性など)に優れており、
また溶出物も少ない。 本発明において微細構造を有する膜の表面(片
面または両面)にシリコーン粒子が付着している
とはシリコーン粒子が相互に結合して、それが単
層または積層状となつて膜表面および膜表面の微
細孔面に付着している状態をいう。またシリコー
ン粒子は粒子相互が結合した状態で表面全体にわ
たり均一に、しかも均一な厚さで付着しているの
が好ましいが、多少不均一なところがあつても構
わない。粒子シリコーンの付着層の平均厚さは大
旨0.01〜20μである。またシリコーン粒子は膜表
面に主に付着するが、一部は膜内部の微細孔に浸
入して付着してもよい。このようにシリコーン粒
子が膜表面に主に付着しているので、膜の透水性
はシリコーン粒子の付着のない微細構造を有する
膜にくらべて著しい低下はない。またシリコーン
は粒子状で付着しているので粒子の大きさを変え
ることにより、また粒子の付着量を変えることに
より分画性、とくに蛋白質の分画性を自由に変え
ることができる。シリコーン粒子の大きさは0.01
〜1μ、好ましくは0.02〜0.5μである。 シリコーンの付着量は膜基材に対し0.01〜8重
量%、好ましくは0.01〜2重量%である。0.01重
量%以下ではシリコーンの付着効果はほとんど認
められず、また8重量%以上では膜の透水性の大
巾な低下がある。 次に微細構造を有する膜表面にシリコーン粒子
を付着させる方法としては、微細構造を有する膜
をシリコーン粒子の懸濁液に浸漬し、次いで膜表
面に付着した懸濁液中の溶剤が蒸発しないような
雰囲気下で液切りし、次に乾燥する方法がある。 ここでシリコーン粒子の懸濁液とは架橋型の二
液型のシリコーン粒子の溶液または一液型のシリ
コーン粒子の溶液であり、好ましくは常温架橋型
で一液型のシリコーン粒子の溶液である。またこ
こでシリコーンとしては
The present invention relates to a permeable membrane, particularly a permeable membrane having a microstructured membrane of a polyvinyl alcohol (hereinafter referred to as PVA) polymer as a base material. In recent years, remarkable progress has been made in the use of selectively permeable membranes in separation operations. Such membrane separation technology has not only been applied to general industrial applications such as separation of colloidal substances and desalination of seawater, but also has recently been put into practical use in some medical fields such as artificial kidneys, artificial lungs, and artificial livers. ing. However, the membranes currently in use are not necessarily satisfactory in terms of permeability or other properties depending on the application. Especially in the medical field, membranes that are not inherently permeable but harmless to living organisms are difficult to say. The conditions that must be met, such as gender, are strict and diverse, so there are many problems. In particular, with the recent remarkable development of so-called artificial organs, it has become practical to directly process blood using membranes, perform operations such as dialysis and fractionation, and it has become socially indispensable. Treatment methods and medical devices that utilize these technologies are expected to become even more important in a wide range of fields in the future. One such problem is ascites. In recent years, a considerable number of patients are suffering from ascites due to liver cirrhosis, internal cancer, nephrosis, etc., and the number is even on the rise. Conventionally, drainage of fluid through ascites puncture has often been applied to such patients, but this provides temporary relief, but it tends to re-accumulate, and nutrients such as proteins in the ascites are also lost at the same time. This was a problem because the patient's symptoms often worsened due to the loss of blood. Recently, a treatment method that removes cells and bacteria from autologous ascites using a membrane, concentrates useful protein components, and then re-injects them intravenously has been gaining high clinical acclaim. Development has become desirable. Blood is composed of blood cell components and plasma, and preserved blood transfusions and the like are performed using so-called whole blood, which is a mixture of these components. However, with recent advances in medicine, techniques are being developed to separate these components and transfuse only the components necessary for each case, or to store each component individually. For example, in the artificial liver mentioned above,
In some respects, a technique for treating plasma separated from whole blood with an adsorbent or the like is desirable. In response to these demands, there is a desire to develop a membrane that can efficiently separate plasma from whole blood without damaging blood cell components. In addition, various methods have been considered for fractionating proteins such as albumin and γ globulin from separated plasma.Furthermore, regarding artificial kidneys, as well as membranes for dialysis systems, which are currently mainstream,
It is well known that an ultrafiltration membrane with excellent biocompatibility and high overefficiency for hypermorphic artificial kidneys is desired. As described above, as the usefulness of therapeutic systems that use membranes to separate specific protein components, enzyme cell components, etc. in living organisms is becoming widely recognized, there is a need for various types of superior fractionation membranes. At the same time, there is a need for a simple and effective method for producing this type of separation membrane that can easily achieve desired fractionation properties. The present invention was achieved as a result of various studies on simple and effective methods that can freely change the fractionation properties of proteins without impairing the properties of microstructured membranes. That is, the present invention is a permeable membrane characterized in that silicone particles are bonded and attached to one or both sides of a membrane having a fine structure with an average pore diameter of 0.01 to 2 μ without clogging the fine pores. . As is clear from the examples described below, the permeable membrane of the present invention can freely change the fractionation properties of proteins, etc. by changing the amount of attached silicone particles, and the water permeability is also practically acceptable. It can be kept within a range where there is no such thing. Furthermore, since the permeable membrane of the present invention has silicone on the membrane surface, it has excellent antibody liquid coagulation properties (anti-blood coagulation properties, etc.).
Also, there are few eluates. In the present invention, silicone particles attached to the surface (one side or both sides) of a film having a microstructure means that the silicone particles are bonded to each other, forming a single layer or a layered structure, and forming a layer on the film surface and the film surface. Refers to the state in which it is attached to the surface of micropores. Further, it is preferable that the silicone particles are bonded to each other and adhered uniformly over the entire surface with a uniform thickness, but there may be some non-uniformity. The average thickness of the adhesive layer of particulate silicone is approximately 0.01-20μ. Further, although the silicone particles mainly adhere to the surface of the membrane, some may penetrate into the fine pores inside the membrane and adhere thereto. As described above, since the silicone particles are mainly attached to the membrane surface, the water permeability of the membrane is not significantly lowered than that of a membrane having a microstructure to which no silicone particles are attached. Furthermore, since silicone is attached in the form of particles, by changing the size of the particles or by changing the amount of attached particles, the fractionation properties, especially the fractionation properties of proteins, can be freely changed. The size of silicone particles is 0.01
-1μ, preferably 0.02-0.5μ. The amount of silicone deposited is 0.01 to 8% by weight, preferably 0.01 to 2% by weight, based on the membrane substrate. At less than 0.01% by weight, almost no silicone adhesion effect is observed, and at more than 8% by weight, the water permeability of the membrane is significantly reduced. Next, as a method for attaching silicone particles to the surface of a membrane having a fine structure, the membrane having a fine structure is immersed in a suspension of silicone particles, and then the solvent in the suspension attached to the membrane surface is prevented from evaporating. There is a method of draining the liquid in a suitable atmosphere and then drying it. Here, the silicone particle suspension is a crosslinked two-part solution of silicone particles or a one-part solution of silicone particles, preferably a one-part solution of silicone particles that is crosslinked at room temperature. Also, here as silicone

【式】結合をも つポリシロキサンが代表的なものとしてあげられ
る。シリコーン粒子の懸濁液中の濃度は0.1〜8
重量%である。ここで懸濁液中の溶剤としては通
常のシリコーンの溶剤、たとえばキシレン、トル
エン、ヘキサンなどを使用することができる。シ
リコーン粒子の懸濁液に膜(平膜、チユーブ膜、
中空繊維膜、あるいはこれらの膜をモジユール化
したもの)を浸漬する場合は、常温、常圧下で充
分行なうことができる。また液切りする場合は膜
表面に付着した懸濁液中の溶剤が蒸発しないよう
な雰囲気下、たとえばシリコーン粒子の懸濁液の
入つた容器中に膜を浸漬し、次いで容器内を懸濁
液の溶剤蒸気の実質的に飽和の状態下にて液切り
することが好ましい。このような液切りを行なえ
ば、膜に付着した懸濁液中の溶剤を蒸発させるこ
となく液切りすることができるので、液切り中に
膜相互が付着することがない。したがつてこのよ
うな液切り法は多数の中空糸を同時に処理する場
合に有効である。乾燥する場合は常温、常圧下の
自然放置により充分行なうことができる。 微細構造を有する膜をシリコーン懸濁液に浸漬
する場合、膜の微細構造内に水を存在させておく
と、シリコーンの硬化を促進させて、膜の表面に
シリコーン粒子の結合層を形成させやすくするの
で、好ましい。 本発明においてシリコーンを付着させる対象と
なる膜は平均孔径0.01〜2μの微細構造を有するも
のであり、0.01μ以下のものではシリコーンの付
着量を変えても分画性を自由に制御することはむ
づかしくなるし、また透水性も低下する。また
2μ以上のものでは有用な膜基材を得ることがむ
づかしく、さらにシリコーン粒子を膜表面のみに
付着させることがむづかしくなり、所望の分画性
も達成しにくい。シリコーンを膜の表面に付着さ
せやすい点および分画性を自由に変えられる点か
ら平均孔径0.02〜0.5μのものが好ましい。なおこ
こにいう平均孔径とはコロイダルシリカ、エマル
ジヨン、ラテツクスなどの粒子径が既知の各種基
準物質を分離膜で過した際、その90%が排除さ
れる基準物質の粒子径をいう。また孔径は均一で
あることが好ましい。 また対象となる膜基材としてはたとえばPVA
系重合体、セルロース、セルロースアセテート、
ポリスルホン、ポリアクリロニトリル、ポリメチ
ルメタクリレート、塩化ビニルがあげられる。と
りわけPVA系重合体を基材とした膜がシリコー
ンとの接着性が優れ、さらにPVA系重合体膜中
に存在する水がシリコーンの硬化を促進し、膜の
表面でシリコーン粒子の結合層を形成させること
になるので、好ましい。 次に本発明で効果のあるPVA系分離膜につい
て詳しく説明する。 本発明で用いるPVA系重合体とは平均分子量
500〜3500、ケン化度85〜100モル%のPVAおよ
びエチレン、ビニルピロリドン、塩化ビニル等と
酢酸ビニルなどのビニルエステルとの共重合体ケ
ン化物、またはPVAにアルデヒドなどの化学反
応物質を反応させたものなどである。 本発明ではこれらのPVA系重合体のうち、分
子間アセタール化したPVA、あるいは分子間お
よび分子内アセタール化したPVAが好ましく使
われる。ここで分子間アセタール化PVAとして
はグルタルアルデヒドなどのジアルデヒドにより
分子間架橋結合させて得られる65%硝酸に対する
溶解時間が30分以上の分子間アセタール化度を有
するPVAが好ましく、また分子間および分子内
アセタール化PVAとしては上記したジアルデヒ
ドにより分子間架橋させて得られる65%硝酸に対
する溶解時間が30分以上の分子間アセタール化度
と、ホルムアルデヒドなどのモノアルデヒドによ
るアセタール化度50モル%以下、好ましくは40モ
ル%以下のものが好ましい。分子内アセタール化
度が50モル%以上のPVAはシリコーンの溶剤溶
液に容易に溶解または膨潤するため、ジアルデヒ
ドなどにより分子間架橋を行なつていても、含浸
液中で膨潤軟化し、形態を保つことがむづかしく
なる。また65%硝酸に対する溶解時間が30分以下
の分子間アセタール化を有するPVAは強伸度、
耐熱性ともに余り良くないので良好な膜を得るこ
とはむづかしくなる。これらのPVA系重合体基
材のうち、耐熱性、耐圧性、強度において優れて
いる、グルタルアルデヒドなどのジアルデヒドに
より分子間架橋させて得られる65%硝酸に対する
溶解時間が30分以上のアセタール化度とホルムア
ルデヒドなどのモノアルデヒドによるアセタール
化度50モル%以下のPVAが最適である。 またここでPVA系膜は均一な微細構造を有す
るものが好ましい。均一な微細構造とは、詳しく
は50〜5000Åの厚さの膜壁からなる平均径0.01〜
2μの微細孔が横断面において実質的に均一に配
列されてなる構造である。ここでいう実質的に均
一とは、膜の厚さ全体にわたりほぼ同一の孔径の
微細孔があるもの、あるいは0.01〜2μの範囲で膜
の一面から中央に段階的または連続的に径の大き
さに変化があるものが含まれる。該構造を有する
PVA系膜は20〜2000/hr・m2・atmという大
きな透水性を示す。 本発明において用いる膜の形状としては平膜、
チユーブ状膜、中空糸膜などがあげられるが、中
空糸膜にシリコーンを付着することに著効が認め
られる。中空糸膜としては外径500〜3000μ、内
径200〜2000μ程度のものがよい。 本発明の透過性膜はとくに体液処理用膜、たと
えば血液処理用膜、血漿処理用膜、腹水、胸水、
頭水などの腔水用膜に有用なものである。したが
つて微細構造膜の孔径およびシリコーン付着量を
適宜変えることによつて血液から血球と血漿を分
離する膜、血漿中の蛋白成分を分離する膜、腹水
中から菌やガン細胞と蛋白質を分離する過膜、
その腹水液から蛋白質と水を分離する濃縮膜、
透析型人工腎臓用膜、過型人工腎臓用膜、その
他アルブミンなどの蛋白質を自由に分画すること
が必要な各種用途の限外過膜、メンブライフイ
ルターとして有効に使用することができる。 以下に実施例により本発明をさらに説明する。 実施例 1〜4 平均重合度2400、ケン化度98.5%のPVA、平
均分子量1000のポリエチレングリコール
(PEG)、硼酸および、小量の界面活性剤を水に
98〜100℃で加熱溶解して均一な紡糸原液を調整
した。98℃で1夜静置脱泡後、環状ノズルを用
い、中空部にアルカリ水溶液を注入しながらアル
カリ性芒硝水溶液中に押出し、中空糸を得た。ロ
ーラー延伸、中和、芒硝置換、PH調整工程を径て
枠に捲取つた後、グルタルアルデヒド(以下
「GA」と略す。)3g/、硫酸30g/、芒硝
180g/のGA化浴中60℃で1時間反応を行な
い、さらに引続いてホルムアルデヒド(以下
「FA」と略す。)100g/、硫酸200g/、芒
硝200g/のFA化浴中、60℃で2時間反応を行
ない、水洗し、さらに乾燥して、平均孔径0.1μ、
外径800μ、内径400μのGA−FA化中空糸を得た。
この中空糸のFA化度は38モル%であり、65%硝
酸への20℃での溶解時間tは2時間(重量増加よ
り計算したGA化度は12%)であつた。 シリコーンの懸濁型の一液型溶液(信越シリコ
ーンKE45TS46重量%トルエン溶液)をトルエン
で希釈して第1表に示すとおり種々の濃度の液と
し、これをポリエチレン容器に入れ、この中に先
に得られた中空糸膜末を浸漬し、容器を閉じた。
次いで容器の下部から液を取り出し、液切りした
(10分間)。液切り中、ポリエチレン容器中はトル
エン蒸気はほぼ飽和状態であつた。したがつて液
切り中、中空糸膜表面に付着したトルエンはほと
んど蒸発することなく液切られ、そのために中空
糸膜同志の付着はなかつた。液切りしたあと、常
温、常圧下で12時間自然乾燥した。得られた中空
糸膜の内、外面にはシリコーン粒子が相互に結合
して形成された層を有していた。シリコーンを膜
基材に対し1重量%付着させた中空糸膜の内表面
側の破断面を走査型電子顕微鏡により撮影した写
真(倍率12000)を第1図に示す。第1図から明
らかなように膜表面にシリコーン粒子が相互に結
合して形成された層のあることがわかる。なお対
照例としてシリコーンを付着していない中空糸膜
の内表面側の破断面を走査型電子顕微鏡により撮
影した写真(倍率12000)を第2図に示す。 得られた膜をラウリル硫酸ソーダ1%液(40
℃)に浸漬し親水化したのち、水洗し、450Åコ
ロイダルシリカ1%液、およびアルブミン0.1%
液を流して透水性および分画性を測定した。その
結果を第1表に示す。 実施例 5〜8 平均孔径0.1μの代りに平均孔径0.04μの中空糸
膜を用いた以外は実施例1と同じ方法でシリコー
ンを付着し、得られたシリコーンの付着した中空
糸膜の透水性および分画性を測定した。その結果
を第1表に示す。
[Formula] Polysiloxane having a bond is a typical example. The concentration of silicone particles in the suspension is 0.1-8
Weight%. As the solvent in the suspension, common silicone solvents such as xylene, toluene, hexane, etc. can be used here. A film (flat film, tube film,
When immersing a hollow fiber membrane (or a module made of these membranes), it can be sufficiently carried out at room temperature and under normal pressure. In addition, when draining the liquid, the membrane is immersed in a container containing a suspension of silicone particles under an atmosphere that does not evaporate the solvent in the suspension adhering to the membrane surface, and then the inside of the container is drained of the suspension. It is preferable to drain the liquid under substantially saturated conditions of solvent vapor. If such liquid draining is performed, the liquid can be drained without evaporating the solvent in the suspension adhering to the membrane, so that the membranes will not adhere to each other during liquid draining. Therefore, such a liquid draining method is effective when treating a large number of hollow fibers at the same time. In the case of drying, it can be sufficiently carried out by leaving it naturally at room temperature and under normal pressure. When a membrane with a microstructure is immersed in a silicone suspension, the presence of water within the membrane's microstructure accelerates the curing of the silicone and facilitates the formation of a bonding layer of silicone particles on the surface of the membrane. Therefore, it is preferable. In the present invention, the membrane to which silicone is attached has a fine structure with an average pore size of 0.01 to 2μ, and if it is less than 0.01μ, it is difficult to freely control the fractionation even if the amount of silicone attached is changed. It becomes difficult and water permeability also decreases. Also
If it is more than 2μ, it is difficult to obtain a useful membrane base material, and furthermore, it is difficult to attach silicone particles only to the membrane surface, and it is also difficult to achieve the desired fractionation property. The average pore size is preferably 0.02 to 0.5 μm from the viewpoint of easy attachment of silicone to the surface of the membrane and the ability to freely change the fractionation property. The average pore size as used herein refers to the particle size of the reference material from which 90% is removed when various reference materials with known particle sizes, such as colloidal silica, emulsion, and latex, are passed through a separation membrane. Further, it is preferable that the pore diameter is uniform. In addition, examples of target membrane substrates include PVA
based polymer, cellulose, cellulose acetate,
Examples include polysulfone, polyacrylonitrile, polymethyl methacrylate, and vinyl chloride. In particular, films based on PVA polymers have excellent adhesion to silicone, and the water present in PVA polymer films accelerates the curing of silicone, forming a bonding layer of silicone particles on the surface of the film. This is preferable because it allows Next, the PVA-based separation membrane that is effective in the present invention will be explained in detail. The PVA polymer used in the present invention has an average molecular weight
500 to 3500, PVA with a saponification degree of 85 to 100 mol%, and saponified copolymers of ethylene, vinyl pyrrolidone, vinyl chloride, etc. and vinyl esters such as vinyl acetate, or by reacting PVA with a chemically reactive substance such as aldehyde. This includes things such as In the present invention, among these PVA-based polymers, intermolecularly acetalized PVA, or intermolecularly and intramolecularly acetalized PVA is preferably used. Here, the intermolecular acetalized PVA is preferably a PVA having a degree of intermolecular acetalization such that the dissolution time in 65% nitric acid is 30 minutes or more, which is obtained by intermolecular cross-linking with a dialdehyde such as glutaraldehyde. Intramolecularly acetalized PVA has a degree of intermolecular acetalization obtained by intermolecular cross-linking with the dialdehyde described above, with a dissolution time of 30 minutes or more in 65% nitric acid, and a degree of acetalization of 50 mol% or less with a monoaldehyde such as formaldehyde. , preferably 40 mol% or less. PVA with an intramolecular acetalization degree of 50 mol% or more easily dissolves or swells in a silicone solvent solution, so even if intermolecular crosslinking is performed with dialdehyde, etc., it will swell and soften in the impregnating solution, causing its shape to change. It becomes difficult to maintain. In addition, PVA with intermolecular acetalization with a dissolution time of 30 minutes or less in 65% nitric acid has strong elongation,
Since the heat resistance is not very good, it is difficult to obtain a good film. Among these PVA-based polymer base materials, it has excellent heat resistance, pressure resistance, and strength.It is acetalized by intermolecular crosslinking with dialdehyde such as glutaraldehyde and has a dissolution time of 30 minutes or more in 65% nitric acid. PVA with a degree of acetalization by monoaldehyde such as formaldehyde of 50 mol% or less is optimal. Moreover, it is preferable that the PVA-based film has a uniform microstructure. In detail, a uniform microstructure consists of a film wall with a thickness of 50 to 5000 Å and an average diameter of 0.01 to 5000 Å.
It has a structure in which 2μ micropores are arranged substantially uniformly in the cross section. Substantially uniform here means that the membrane has micropores with almost the same diameter throughout its thickness, or that the diameter is gradually or continuously in the range of 0.01 to 2μ from one side of the membrane to the center. Includes changes in has the structure
PVA-based membranes exhibit high water permeability of 20 to 2000/hr・m 2・atm. The shape of the membrane used in the present invention is a flat membrane,
Examples include tube-like membranes and hollow fiber membranes, but it has been found that attaching silicone to hollow fiber membranes is particularly effective. The hollow fiber membrane preferably has an outer diameter of about 500 to 3000 μm and an inner diameter of about 200 to 2000 μm. The permeable membrane of the present invention is particularly suitable for body fluid treatment, such as blood treatment membranes, plasma treatment membranes, ascites, pleural effusions,
It is useful as a membrane for cavity water such as cephalic fluid. Therefore, by appropriately changing the pore size of the microstructured membrane and the amount of silicone attached, we have created a membrane that separates blood cells and plasma from blood, a membrane that separates protein components in plasma, and a membrane that separates bacteria, cancer cells, and proteins from ascites. hypermembrane,
A concentrating membrane that separates protein and water from the ascites fluid;
It can be effectively used as a membrane for dialysis-type artificial kidneys, a membrane for hyper-type artificial kidneys, and other ultrafiltration membranes and membrane filters for various uses that require free fractionation of proteins such as albumin. The present invention will be further explained below with reference to Examples. Examples 1 to 4 PVA with an average degree of polymerization of 2400 and saponification degree of 98.5%, polyethylene glycol (PEG) with an average molecular weight of 1000, boric acid, and a small amount of surfactant are added to water.
A uniform spinning stock solution was prepared by heating and dissolving at 98 to 100°C. After standing at 98° C. overnight for defoaming, the mixture was extruded into an alkaline aqueous sodium sulfate solution using an annular nozzle while injecting an alkaline aqueous solution into the hollow part to obtain hollow fibers. After passing through the roller stretching, neutralization, mirabilite substitution, and PH adjustment steps and rolling it onto a frame, glutaraldehyde (hereinafter abbreviated as "GA") 3g/, sulfuric acid 30g/, mirabilite
The reaction was carried out for 1 hour at 60°C in a GA bath containing 180 g/g of formaldehyde (hereinafter abbreviated as "FA"), and then the reaction was carried out at 60°C for 2 hours in a FA bath containing 100 g/formaldehyde (hereinafter abbreviated as "FA"), 200 g/sulfuric acid/200 g/German's salt. After a time reaction, washing with water, and further drying, the average pore size was 0.1μ.
A GA-FA hollow fiber with an outer diameter of 800μ and an inner diameter of 400μ was obtained.
The FA degree of this hollow fiber was 38 mol%, and the dissolution time t in 65% nitric acid at 20°C was 2 hours (the GA degree calculated from the weight increase was 12%). A one-component silicone suspension solution (Shin-Etsu Silicone KE45TS46 wt% toluene solution) is diluted with toluene to obtain solutions with various concentrations as shown in Table 1. This is placed in a polyethylene container, and the The obtained hollow fiber membrane powder was immersed, and the container was closed.
The liquid was then taken out from the bottom of the container and drained (for 10 minutes). During draining, toluene vapor was almost saturated in the polyethylene container. Therefore, during draining, the toluene adhering to the surface of the hollow fiber membrane was removed without evaporating, and therefore the hollow fiber membranes did not adhere to each other. After draining the liquid, it was naturally dried at room temperature and pressure for 12 hours. The obtained hollow fiber membrane had layers formed by mutually bonding silicone particles on the inner and outer surfaces. FIG. 1 shows a photograph (magnification: 12,000) taken with a scanning electron microscope of a fractured surface on the inner surface side of a hollow fiber membrane with 1% by weight of silicone attached to the membrane base material. As is clear from FIG. 1, there is a layer formed by mutual bonding of silicone particles on the surface of the film. As a control example, FIG. 2 shows a photograph (magnification: 12,000) taken using a scanning electron microscope of the fractured surface of the inner surface of a hollow fiber membrane to which no silicone was attached. The obtained membrane was diluted with 1% solution of sodium lauryl sulfate (40%
℃) to make it hydrophilic, then washed with water, 450Å colloidal silica 1% solution, and albumin 0.1%.
The water permeability and fractionability were measured by flowing the liquid. The results are shown in Table 1. Examples 5 to 8 Silicone was attached in the same manner as in Example 1 except that a hollow fiber membrane with an average pore diameter of 0.04μ was used instead of an average pore diameter of 0.1μ, and the water permeability of the obtained hollow fiber membrane with silicone attached and fractionability were measured. The results are shown in Table 1.

【表】 実施例 9〜10 実施例5において用いたPVA系微細多孔中空
糸(平均孔径0.04μ)束の中空糸の内外面に実施
例1と同様の方法によりシリコーンを0.2重量%
および1.0重量%付着させた。この中空糸束から
モジユール(中空糸800本)を作成した。このモ
ジユールの中空糸内に犬の血液を流し、蛋白質
(アルブミン、グロブリン、血球など)の
Rejection、透水率を測定した。その結果を第2
表に示す。
[Table] Examples 9 to 10 0.2% by weight of silicone was applied to the inner and outer surfaces of the PVA microporous hollow fiber bundle (average pore diameter 0.04μ) used in Example 5 using the same method as in Example 1.
and 1.0% by weight. A module (800 hollow fibers) was created from this hollow fiber bundle. Dog blood is passed through the hollow fibers of this module, and proteins (albumin, globulin, blood cells, etc.)
Rejection and water permeability were measured. The second result is
Shown in the table.

【表】 実施例 11〜12 第3表に示すとおり種々の微細構造膜の内外面
にシリコーンを付着させてアルブミン水溶液、コ
ロイダルシリカ水溶液を処理し、それぞれの
Rejectionおよび透水性を測定した。その結果を
第3表に示す。
[Table] Examples 11 to 12 As shown in Table 3, silicone was attached to the inner and outer surfaces of various microstructure membranes, and albumin aqueous solutions and colloidal silica aqueous solutions were treated.
Rejection and water permeability were measured. The results are shown in Table 3.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の中空糸膜の内側表面の破断面
を示す倍率12000の走査型電子顕微鏡写真であり、
第2図はシリコーンの付着のない中空糸膜の内側
表面の破断面を示す倍率12000の走査型電子顕微
鏡写真である。
FIG. 1 is a scanning electron micrograph at a magnification of 12,000 showing the fractured surface of the inner surface of the hollow fiber membrane of the present invention.
FIG. 2 is a scanning electron micrograph at a magnification of 12,000 showing the fractured surface of the inner surface of the hollow fiber membrane without silicone adhesion.

Claims (1)

【特許請求の範囲】 1 平均孔径0.01〜2μの微細構造を有する膜の片
面または両面にシリコーン粒子が微細孔を閉塞せ
ずに相互に結合して付着していることを特徴とす
る透過性膜。 2 シリコーン粒子の付着量が膜基材に対し、
0.01〜8重量%である特許請求の範囲第1項記載
の透過性膜。 3 シリコーン粒子の付着量が膜基材に対し、
0.1〜2重量%である特許請求の範囲第1項記載
の透過性膜。 4 膜基材が分子内および分子間アセタール化ポ
リビニルアルコールである特許請求の範囲第1項
〜第3項いずれか1項記載の透過性膜。 5 分子内および分子間アセタール化ポリビニル
アルコールがモノアルデヒドによる50モル%以下
のアセタール化度とジアルデヒドにより分子間架
橋さてせ得られる65%硝酸に対する溶解時間が30
分以上の分子間アセタール化度とを有する特許請
求の範囲第4項記載の透過性膜。 6 平均直径0.02〜0.5μの微細構造を有する膜で
ある特許請求の範囲第1項〜第5項のいずれか1
項記載の透過性膜。 7 膜の形状が外径500〜3000μ、内径200〜
2000μの中空糸である特許請求の範囲第1項〜第
6項のいずれか1項記載の透過性膜。
[Claims] 1. A permeable membrane characterized in that silicone particles are attached to one or both sides of a membrane having a fine structure with an average pore diameter of 0.01 to 2μ without clogging the fine pores and bonding with each other. . 2 The amount of silicone particles attached to the membrane base material is
The permeable membrane according to claim 1, wherein the content is 0.01 to 8% by weight. 3 The amount of silicone particles attached to the membrane base material is
The permeable membrane according to claim 1, wherein the content is 0.1 to 2% by weight. 4. The permeable membrane according to any one of claims 1 to 3, wherein the membrane base material is intramolecularly and intermolecularly acetalized polyvinyl alcohol. 5 Intramolecular and intermolecular acetalization Polyvinyl alcohol has a degree of acetalization of 50 mol% or less with monoaldehyde and intermolecular crosslinking with dialdehyde, resulting in a dissolution time of 30% in 65% nitric acid.
5. The permeable membrane according to claim 4, which has a degree of intermolecular acetalization of at least 1 minute. 6. Any one of claims 1 to 5, which is a film having a fine structure with an average diameter of 0.02 to 0.5μ.
Permeable membrane as described in section. 7 The membrane shape has an outer diameter of 500~3000μ and an inner diameter of 200~
The permeable membrane according to any one of claims 1 to 6, which is a 2000μ hollow fiber.
JP56111302A 1981-07-15 1981-07-15 Permeable membrane Granted JPS5814906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56111302A JPS5814906A (en) 1981-07-15 1981-07-15 Permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56111302A JPS5814906A (en) 1981-07-15 1981-07-15 Permeable membrane

Publications (2)

Publication Number Publication Date
JPS5814906A JPS5814906A (en) 1983-01-28
JPH0135681B2 true JPH0135681B2 (en) 1989-07-26

Family

ID=14557770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56111302A Granted JPS5814906A (en) 1981-07-15 1981-07-15 Permeable membrane

Country Status (1)

Country Link
JP (1) JPS5814906A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115569A (en) * 1984-11-09 1986-06-03 テルモ株式会社 Artificial kidney and its production
JPS6264371A (en) * 1985-09-13 1987-03-23 テルモ株式会社 Membrane type artificial lung
JPS63229061A (en) * 1987-03-18 1988-09-22 テルモ株式会社 Membrane type artificial lung and its production
JP6711815B2 (en) 2015-03-10 2020-06-17 テルモ株式会社 Oxygenator and method for manufacturing oxygenator
EP3393537B1 (en) * 2015-12-22 2024-05-22 Access Vascular, Inc. High strength biomedical materials
US11577008B2 (en) 2017-06-21 2023-02-14 Access Vascular, Inc. High strength porous materials incorporating water soluble polymers
CA3183979A1 (en) 2020-06-30 2022-01-06 Michael Bassett Articles comprising markings and related methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877111A (en) * 1972-01-31 1973-10-17
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane
JPS57130505A (en) * 1981-02-03 1982-08-13 Toray Ind Inc Selective permeable membrane
JPS586288A (en) * 1981-06-29 1983-01-13 デ グッサ・アクチェンゲゼルシヤフト Treatment of waste water with hydrogen peroxide
JPS588517A (en) * 1981-07-08 1983-01-18 Sumitomo Electric Ind Ltd Preparation of composite film with selective permeability for gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877111A (en) * 1972-01-31 1973-10-17
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane
JPS57130505A (en) * 1981-02-03 1982-08-13 Toray Ind Inc Selective permeable membrane
JPS586288A (en) * 1981-06-29 1983-01-13 デ グッサ・アクチェンゲゼルシヤフト Treatment of waste water with hydrogen peroxide
JPS588517A (en) * 1981-07-08 1983-01-18 Sumitomo Electric Ind Ltd Preparation of composite film with selective permeability for gas

Also Published As

Publication number Publication date
JPS5814906A (en) 1983-01-28

Similar Documents

Publication Publication Date Title
US5028332A (en) Hydrophilic material and method of manufacturing
US5202025A (en) Porous membrane and method for preparing the same
JP3001617B2 (en) Membrane with hydrophilic surface
JP4404468B2 (en) Blood filter and manufacturing method thereof
JP4046146B1 (en) Hollow fiber membrane oxygenator and treatment method
JPS62262705A (en) Hydrophilic porous membrane, its production and serum separator using said membrane
KR100284911B1 (en) Hydrophilic materials and semipermeable membranes using the same
JPH0647262A (en) Method for highly efficient removal of low-density lipoprotein from whole blood
WO1991008778A1 (en) Membranes for absorbent packets
JPS61161103A (en) Hydrophilic porous membrane and its preparation
US5039420A (en) Hydrophilic semipermeable membranes based on copolymers of acrylonitrile and hydroxyalkyl esters of (meth) acrylic acid
US5240615A (en) Composite membrane composed of microporous polyvinylidene difluoride membrane laminated to porous support and process for its preparation
US4134837A (en) Ethylene-vinyl alcohol copolymer membranes having improved permeability characteristics and a method for producing the same
JPH0135681B2 (en)
JP2003504190A (en) Polyvinylidene difluoride films and methods for making such films
JP2003268152A (en) Hydrophilic microporous film
JPS6328406A (en) Network porous hollow yarn membrane
US4678581A (en) Polymethyl methacrylate hollow fiber type ultrafiltration membrane and process for preparation of the same
JPS63130103A (en) Polyacrylonitrile-base semipermeable membrane and manufacturing thereof
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
US5169575A (en) Method for producing a flat porous product
CN1145593A (en) High-flux polyacrylonitrile dialysis diaphragm
EP0534014A1 (en) Non-adhesive biocompatible surface
Sakai et al. Low-temperature plasma separation by cross-flow filtration with microporous glass membranes
CN116943442B (en) Preparation method of ultrafiltration membrane with controllable thickness of humidity sensing small pore layer and ultrafiltration equipment