JPH01319734A - Transmission type optical writing liquid crystal light valve - Google Patents

Transmission type optical writing liquid crystal light valve

Info

Publication number
JPH01319734A
JPH01319734A JP15291288A JP15291288A JPH01319734A JP H01319734 A JPH01319734 A JP H01319734A JP 15291288 A JP15291288 A JP 15291288A JP 15291288 A JP15291288 A JP 15291288A JP H01319734 A JPH01319734 A JP H01319734A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
layer
optical writing
light valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15291288A
Other languages
Japanese (ja)
Inventor
Shuhei Yamamoto
修平 山本
Naoki Kato
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP15291288A priority Critical patent/JPH01319734A/en
Publication of JPH01319734A publication Critical patent/JPH01319734A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1354Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied having a particular photoconducting structure or material

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To prevent the generation of the unequal quantity of light and image distortion by using a photoconductive layer formed by using metal phthalocyanine as a charge generating agent. CONSTITUTION:A transparent electrode 3a, the photoconductive layer 4a and a liquid crystal oriented film 5 are formed on the inner side of a transparent substrate 2a on the side where image writing by an optical writing means 1 such as laser light or LED or CRT is executed. A counter transparent electrode 3b and a liquid crystal oriented film 5b exist on the inner side of the substrate 2b which is reflected and projected by projection light 9. A pair of the transparent substrates are superposed with an outer peripheral seal 6 contg. spacer materials such as glass fibers and a ferroelectric liquid crystal is sealed in the spacing thereof. The metal phthalocyanine such as epsilon-copper phthalocyanine, titanium oxide phthalocyanine or aluminum chloride phthalocyanine is used for the charge generating layer of the layer 4. The high photoconductive characteristic to 650-900mm writing light is exhibited. In addition, the light transmittance in the visible region of <=650nm is high and, therefore, the generation of the unequal quantity of light and the image distortion is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高精細な画像表示装置、プリンタ等に用いら
れる光書込型液晶ライトバルブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical writing type liquid crystal light valve used in high-definition image display devices, printers, and the like.

〔発明の概要〕[Summary of the invention]

本発明は、液晶層に閾値特性と双安定メモリ性を有する
強誘電性液晶を用い、液晶ライトバルブの閾値電圧より
も十分に大きい直流バイアス電圧を印加する事により液
晶分子のダイレクタを全面均一に配列保持させる第1の
工程を経た後、第1の工程とは逆極性で且つ、暗時には
閾値電圧以下であり光照射時には閾値電圧以上となる電
圧を印加しながらレーザビームやLED等の光走査によ
る画像書込みを行う第2の工程を採用する事により、1
回の高速な光走査によって画像情報を書込み且つ保持で
きる極めて高速、高精細な光書込型液晶ライトバルブに
おいて、レーザやLED等の書込み光に対して高い感度
を有し、且っ600nm以下の可視領域の光透過率が高
い有機金属フタロシアニンを電荷発生剤とする:光導電
層を用いる事により、光量ムラや画像ひずみのない低コ
ストで構成できる透過型画像投射装置を実現可能とする
ものである。
The present invention uses a ferroelectric liquid crystal that has threshold characteristics and bistable memory properties in the liquid crystal layer, and applies a DC bias voltage that is sufficiently larger than the threshold voltage of the liquid crystal light valve to make the directors of liquid crystal molecules uniform over the entire surface. After passing through the first step of maintaining the alignment, light scanning is performed using a laser beam, LED, etc. while applying a voltage that has the opposite polarity to the first step and is below the threshold voltage when it is dark and above the threshold voltage when irradiated with light. By adopting the second process of writing the image by
An extremely high-speed, high-definition optical writing type liquid crystal light valve that can write and retain image information using multiple high-speed optical scans has high sensitivity to writing light from lasers, LEDs, etc., and has a wavelength of 600 nm or less. Using organometallic phthalocyanine, which has high light transmittance in the visible region, as a charge generating agent: By using a photoconductive layer, it is possible to realize a transmission-type image projection device that can be constructed at low cost without uneven light intensity or image distortion. be.

〔従来の技術〕[Conventional technology]

光を書込み光源とした液晶ライトバルブでは、アドレッ
シング方法、使用する液晶の表示モードとも様々な方式
が考案されている。アドレッシング方法としては、液晶
と光導電膜を組み合わせた光書込型、レーザ光を用いた
熱書込型等があり、液晶の表示モードとしては、SmA
相転移、Ne−ah相転移、DSM、TN、STN等が
ある。
For liquid crystal light valves that use light as a writing light source, various addressing methods and display modes of the liquid crystal used have been devised. Addressing methods include an optical writing type that combines liquid crystal and a photoconductive film, and a thermal writing type that uses laser light.As for the display mode of liquid crystal, SmA
There are phase transition, Ne-ah phase transition, DSM, TN, STN, etc.

レーザ熱書込型の場合は、1画素を書込む為に数マイク
ロ秒以上必要であり、大画面を高密度で書込もうとする
と何分間もかかってしまう為、用途が限定されてしまう
。光書込型の場合は、レーザ熱書込型に比べて1桁から
2桁程度感度が高い為高速書込みを行う事が可能であり
、動画表示等への応用が期待されているが、従来の光書
込型液晶ライトバルブでは、殆んどの場合光導電層の可
視光透過率が極めて小さい為、液晶ライトバルブ上に書
込まれた画像情報を読み出す際は、予め光導電膜上に光
反射層を設けておき、書込み側と反対側から投射光を照
射して、反射層で反射された画([報をスクリーン等に
投射表示する反射型液晶ライトバルブであった。
In the case of the laser thermal writing type, it takes several microseconds or more to write one pixel, and it takes many minutes to write on a large screen at high density, so its applications are limited. In the case of optical writing type, the sensitivity is one to two orders of magnitude higher than that of laser thermal writing type, so it is possible to perform high-speed writing, and it is expected to be applied to video display, etc., but conventional In most optical writing type liquid crystal light valves, the visible light transmittance of the photoconductive layer is extremely low, so when reading image information written on the liquid crystal light valve, light is applied to the photoconductive film in advance. A reflective liquid crystal light valve was provided with a reflective layer, and projected light was irradiated from the opposite side to the writing side, and the image (information) reflected by the reflective layer was projected onto a screen or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

反射型光書込型液晶ライトバルブ上に書込まれた画像情
報を投射光によって読み出す場合、一般的には、第3図
に示す様に、ビームスプリッタ21を用いて正反射で投
影結像する方法と、第4図に示す様な斜め投影結像法が
用いられる事が多い。
When reading image information written on a reflective optical writing type liquid crystal light valve using projected light, generally, as shown in FIG. 3, a beam splitter 21 is used to project and image by specular reflection. method, and an oblique projection imaging method as shown in FIG. 4 is often used.

しかしながら、正反射投影結像法を用いる場合は、広い
画角をとる為にかなり大型のビームスプリッタを使う必
要があり高価なものとなってしまう、又、誘電体で作製
されたビームスズリツタでは投射光は結像面で1/4以
下迄減衰してしまい光量のロスが大きい、メタルで作製
されたビームスプリッタを用いれば、比較的広い画角を
得る事も可能であるが、結像面での投射光量は1/10
以下と極端に小さくなり、必然的に、大パワーの光源を
必要とする事になる。
However, when specular projection imaging is used, it is necessary to use a fairly large beam splitter to obtain a wide angle of view, which is expensive, and a beam splitter made of dielectric material The projected light is attenuated to less than 1/4 at the image forming surface, resulting in a large loss of light quantity.If you use a beam splitter made of metal, it is possible to obtain a relatively wide angle of view, but the image forming surface The amount of light projected is 1/10
It becomes extremely small, and inevitably requires a light source with high power.

又、第4図に示す様な斜め投影結像法を用いた場合は、
結像面での光量分布のむらを押える為に、大口径で焦点
距離の長いフィールドレンズ15を用いる必要があり、
照明系の光路長を大きくとらなければならず、画角も拡
大してしまう為、大パワーの光源が必要であり、投影光
学系全体の体積が極めて大きくなってしまうという欠点
を有していた。
Furthermore, when using the oblique projection imaging method as shown in Figure 4,
In order to suppress unevenness in the light intensity distribution on the imaging plane, it is necessary to use a field lens 15 with a large aperture and a long focal length.
Since the optical path length of the illumination system must be large and the angle of view is also expanded, a high-power light source is required, and the overall volume of the projection optical system becomes extremely large. .

又、液晶層と光導電層の間に形成する誘電体ミラーは、
M g F 2等の低屈折率物質とZnS等の高屈折率
物質を交互に高精度の膜厚制御を行いながら20層以上
積層しなければならず、極めて困難でコストの高い方法
であった。
In addition, the dielectric mirror formed between the liquid crystal layer and the photoconductive layer is
This was an extremely difficult and costly method, requiring alternating layers of low refractive index materials such as MgF2 and high refractive index materials such as ZnS while controlling the film thickness with high precision. .

従って、液晶ライトバルブ上に書込まれた画像を投射表
示する場合は、画質投射光学系の構造、製造コスト等の
観点から第2図に示す様な透過方式が望ましい、この透
過方式を採用する為には中間画像形成媒体である液晶ラ
イトバルブは、650nm以下の可視領域で光透過率が
高く、650nm〜900nmの書込み光に対して良好
な光導電性を示す光導電層を持つ事が必須条件となる。
Therefore, when projecting and displaying an image written on a liquid crystal light valve, a transmission method as shown in Figure 2 is preferable from the viewpoint of the structure of the image quality projection optical system, manufacturing cost, etc., and this transmission method should be adopted. Therefore, it is essential that the liquid crystal light valve, which is an intermediate image forming medium, has a photoconductive layer that has high light transmittance in the visible region below 650 nm and exhibits good photoconductivity for writing light in the range of 650 nm to 900 nm. It is a condition.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、光透過率と印加電圧の間に閾値特性と、双安
定メモリ性を有する強誘電性液晶を用いた光書込型液晶
ライトバルブに於いて、ε−銅フタロシアニンや、酸化
チタンフタロシアニン、塩化アルミニウムフタロシアニ
ン等の金属フタロシアニンを電荷発生剤として形成した
光導電層を用いる事を特徴とする。
The present invention utilizes ε-copper phthalocyanine, titanium oxide phthalocyanine, , is characterized by using a photoconductive layer formed with a metal phthalocyanine such as aluminum chloride phthalocyanine as a charge generating agent.

〔作用〕[Effect]

本発明による光導電層は、赤から近赤外に発光波長を有
する半導体レーザや、LED等の光照射に対して高い光
導電性を示し、650nm以下の可視領域の光は、10
〜40%と比較的高い分光透過率を示す為に、−度液晶
ライトバルブ全面を高い直流電界を印加して液晶分子の
Cダイレクタを一方向に配列保持させる事によって消去
した後、レーザやLED等の書込光の照射の無い暗時に
は閾値電圧以下、光照射時には閾値電圧以上となる逆極
性の直流電圧を印加しながら書込み光による光走査を行
うと、光照射を受けた光導電層の領域にフォトキャリア
が発生し、発生したキャリアは直流電圧により電界方向
にドリフトし、その結果光導電膜の抵抗が下がり、光照
射を受けた領域の強誘電性液晶には閾値電圧以上の逆極
性の直流電界が印加され自発分極の反転に伴う液晶分子
の反転が起こり、もう一方の安定状態にメモリされる事
になる。この様にして形成された画像は、画像が全面消
去された時に揃えられた液晶分子のCダイレクタの方向
(又はそれと直角方向)に偏光軸を合わせた直線偏光子
及びそれとほぼ直交する検光子を液晶ライトバルブの前
後に配置し、投射光を照射する事により、投影レンズを
介してスクリーン上に投影結像させる事が出来る。
The photoconductive layer according to the present invention exhibits high photoconductivity when irradiated with light from a semiconductor laser having an emission wavelength in the red to near-infrared range, an LED, etc.
In order to exhibit a relatively high spectral transmittance of ~40%, a high DC electric field is applied to the entire surface of the liquid crystal light valve to maintain the alignment of the C directors of the liquid crystal molecules in one direction. When light scanning is performed using the writing light while applying a DC voltage of opposite polarity, which is below the threshold voltage in the dark without irradiation with the writing light, and above the threshold voltage when irradiated with light, the photoconductive layer exposed to the light is Photocarriers are generated in the area, and the generated carriers drift in the direction of the electric field due to the DC voltage.As a result, the resistance of the photoconductive film decreases, and the ferroelectric liquid crystal in the area irradiated with light has a reverse polarity higher than the threshold voltage. When a DC electric field is applied, the liquid crystal molecules are reversed due to the reversal of the spontaneous polarization, and the liquid crystal molecules are memorized in the other stable state. The image formed in this way is produced using a linear polarizer whose polarization axis is aligned with the direction of the C director (or a direction perpendicular to it) of the liquid crystal molecules aligned when the image is completely erased, and an analyzer whose polarization axis is approximately perpendicular thereto. By placing them before and after a liquid crystal light valve and irradiating them with projection light, it is possible to project an image onto a screen via a projection lens.

〔実施例〕〔Example〕

第1図は、本発明による液晶ライトバルブの構造を示す
断面図である。ライトバルブの構造に於いて従来例と異
なるのは、光導電層と液晶層の間に光反射膜が無い事に
ある。以下図面を用いて本発明の説明を行う。
FIG. 1 is a sectional view showing the structure of a liquid crystal light valve according to the present invention. The structure of the light valve differs from conventional examples in that there is no light reflecting film between the photoconductive layer and the liquid crystal layer. The present invention will be explained below using the drawings.

レーザ光やLED、CRT等の光書込み手段1による画
像書込みが行なわれる側の透明基板2aの内側には、透
明電極3a、光導電層4、液晶配向膜5が形成されてお
り、投射光9によって反射投影される側の透明基板2b
の内側には対向透明電f!3b、液晶配向膜5bが形成
されている。これら一対の透明基板は、グラスファイバ
等のスペーサ剤を含む外周シール6によって重ね合わさ
れ、その間隙には強誘電性液晶7が封入されている。
A transparent electrode 3a, a photoconductive layer 4, and a liquid crystal alignment film 5 are formed on the inside of the transparent substrate 2a on the side on which image writing is performed by an optical writing means 1 such as a laser beam, an LED, or a CRT. The transparent substrate 2b on the side reflected and projected by
There is an opposing transparent electrode on the inside of f! 3b, a liquid crystal alignment film 5b is formed. These pair of transparent substrates are overlapped by a peripheral seal 6 containing a spacer material such as glass fiber, and a ferroelectric liquid crystal 7 is sealed in the gap between them.

この様にして形成された液晶ライトバルブの2つの透明
電極3a、3bの間に適当なバイアス電圧を与えておき
、レーザビームやLED等の光書込み手段を用いて投射
表示したい画像情報を光で書込む、光照射を受けた光導
電層4はキャリアを発生して低抵抗状態となり、印加さ
れていたバイアス電圧は抵抗分割された形で液晶層に印
加され液晶分子を励起する。光照射を受けない領域は高
抵抗を保持したままであり、従って液晶分子には殆んど
電圧が印加されず、液晶分子は励起されない。
A suitable bias voltage is applied between the two transparent electrodes 3a and 3b of the liquid crystal light valve formed in this way, and image information to be projected and displayed is projected and displayed using an optical writing means such as a laser beam or LED. The photoconductive layer 4 subjected to writing and light irradiation generates carriers and enters a low resistance state, and the applied bias voltage is applied to the liquid crystal layer in a resistance-divided form to excite liquid crystal molecules. The region that is not irradiated with light maintains a high resistance, so that almost no voltage is applied to the liquid crystal molecules, and the liquid crystal molecules are not excited.

閾値特性及び双安定メモリ性を有する強誘電性液晶を用
いた光書込型液晶ライトバルブに於いては中間状態をと
り得す、常に1か0になるが、−度書込まれた画像は、
外部から閾値電圧以上の電圧印加、或は強い圧力、液晶
の相変化が起こる程の高い温度等が加わらぬかぎり、半
永久的に保持される事になる。
In optically written liquid crystal light valves using ferroelectric liquid crystals that have threshold characteristics and bistable memory properties, an intermediate state can be taken, which is always 1 or 0, but an image written by -degrees is ,
It will be maintained semi-permanently unless a voltage higher than the threshold voltage is applied from the outside, strong pressure, or a temperature high enough to cause a phase change of the liquid crystal.

この様にして書き込まれた画像情報は、第2図に示す様
に、投射光源10から出射された光束を、コンデンサレ
ンズ11によって平行光束化し、赤外カットフィルタ1
2、色フィルタ13を介してコンデンサレンズ14で集
光した後、フィールドレンズ15、偏光子16を通して
ライトバルブ17に投射し、検光子18、投影レンズ1
9を経てスクリーン20上に投射表示させる事が出来る
The image information written in this way is obtained by converting the light beam emitted from the projection light source 10 into a parallel light beam by the condenser lens 11 and passing it through the infrared cut filter 11, as shown in FIG.
2. After passing through the color filter 13 and condensing the light with the condenser lens 14, the light is projected onto the light valve 17 through the field lens 15 and the polarizer 16, and then onto the analyzer 18 and the projection lens 1.
9, the image can be projected and displayed on the screen 20.

以下本発明に係わる具体的な実施例を説明する。Hereinafter, specific embodiments of the present invention will be described.

透明基板2a、2bとしてコーニング社製7059ガラ
スを用意し、表面にITO透明t [i 3 a、3b
を形成した。レーザ光による書込み側のITO電極3a
上には、光導電膜4を形成した。光導電層4は、電荷発
生層と電荷移動層を有する機能分離型有機光導電体を用
いた。先ずITO透明電極3a上に、東洋インキ社製ε
−Cuフタロシアニン0.5重量部と飽和ポリエステル
樹脂(東洋紡バイロン200)0.4重量部をラトラヒ
ドロフランとともに、ボールミルで6時間混練したのち
、アプリケータ(東洋精機社製)で乾燥後膜厚1μmの
厚さで塗工し、電荷発生層を作製した。
Corning 7059 glass is prepared as the transparent substrates 2a and 2b, and ITO transparent t [i 3 a, 3b
was formed. ITO electrode 3a on the writing side by laser light
A photoconductive film 4 was formed thereon. For the photoconductive layer 4, a functionally separated organic photoconductor having a charge generation layer and a charge transfer layer was used. First, on the ITO transparent electrode 3a, ε manufactured by Toyo Ink Co., Ltd.
-0.5 parts by weight of Cu phthalocyanine and 0.4 parts by weight of saturated polyester resin (Toyobo Vylon 200) were kneaded together with latrahydrofuran in a ball mill for 6 hours, and then dried with an applicator (manufactured by Toyo Seiki Co., Ltd.) to a film thickness of 1 μm. A charge generation layer was prepared by coating the sample to a thickness of .

次いで、亜南香料社製のP−ジメチルアミノベンズアル
デヒド−1,1′ジフエニルヒドラゾン0゜15gをポ
リカーボネイト(余人パンライト)0゜3gに加え、ジ
クロルメタン3 ml、1.2ジクロル工タン1mlの
混合溶媒に混合した後、20分間超音波分散を行い、ア
プリケータを用いて、電荷発生層上に、乾燥後膜厚5μ
mの厚さで塗工し、電荷移動層を作成した。更に、この
ガラス基板の法線方向に対して80°の角度で一酸化圭
素を、膜厚計で2000Aの厚さに蒸着し液晶配向層を
形成した。
Next, 0.15 g of P-dimethylaminobenzaldehyde-1,1' diphenylhydrazone manufactured by Anan Perfumery Co., Ltd. was added to 0.3 g of polycarbonate (Yojin Panlite), and 3 ml of dichloromethane and 1 ml of 1.2 dichloromethane were mixed. After mixing with the solvent, perform ultrasonic dispersion for 20 minutes, and use an applicator to coat the charge generation layer with a film thickness of 5 μm after drying.
A charge transfer layer was prepared by coating the sample to a thickness of m. Further, phosphorous monoxide was deposited at an angle of 80° to the normal direction of the glass substrate to a thickness of 2000 Å as measured by a film thickness meter to form a liquid crystal alignment layer.

もう一方の透明基板2bのxTo電極3b上にも同様に
一酸化圭素の液晶配向膜を形成し、これら2枚の基板を
液晶配向層を対向する裸に配置させ、1,5μmのシリ
カ球スペーサを介して強誘電性液晶7を挾持させた0本
実施例に於いて用いた強誘電性液晶組成物は、エステル
系SmC液晶混合物に、光学活性物質を添加して強誘電
性液晶組成物としたものであり、4− [(4′−オク
チル)フェニル]安息香酸(3″−フルオロ、4″−オ
クチルオキシ)フィニルエステルと、4−[(4′−オ
クチルオキシ]フェニル]安息香酸(3″フルオロ、4
″−オクチルオキシ)フェニルエステルを1=1に混合
し、これに光学活性物質として、5−オクチルオキシナ
フタレンカルボン酸、1′−シアノエチルエステルを2
5重量%加えたものを用いた。
A liquid crystal alignment film of phosphoric monoxide was similarly formed on the xTo electrode 3b of the other transparent substrate 2b, and these two substrates were placed bare with the liquid crystal alignment layers facing each other. The ferroelectric liquid crystal composition used in this example was prepared by adding an optically active substance to an ester-based SmC liquid crystal mixture. 4-[(4′-octyl)phenyl]benzoic acid (3″-fluoro, 4″-octyloxy)finyl ester and 4-[(4′-octyloxy]phenyl]benzoic acid ( 3″ fluoro, 4
``-octyloxy) phenyl ester was mixed in a ratio of 1=1, and 5-octyloxynaphthalenecarboxylic acid and 1'-cyanoethyl ester were added as optically active substances to this mixture.
5% by weight was used.

又、投影側のガラス基板(2b)には、MgF2の蒸着
により無反射コーティング層8を形成した。
Furthermore, an anti-reflection coating layer 8 was formed on the projection side glass substrate (2b) by vapor deposition of MgF2.

前記のようにして作成した光書込型液晶ライトバルブは
、光導電層が、700〜850nmの光に感度を有する
ので、閾値電圧より十分大きい直流バイアス電圧を印加
して一方向の安定状態に揃える第1の工程を経た後、7
80nmを中心波長とする半導体レーザを用いて画像書
込みを行った後、同じ側から500 w a tのハロ
ゲンランプを照射し、偏光子、検光子を通してスクリー
ン上に投影したところ、高コントラストな投影画像を得
る事が出来た。
Since the photoconductive layer of the optically written liquid crystal light valve prepared as described above is sensitive to light in the wavelength range of 700 to 850 nm, a DC bias voltage sufficiently higher than the threshold voltage is applied to bring it into a stable state in one direction. After going through the first process of aligning, 7
After writing an image using a semiconductor laser with a center wavelength of 80 nm, we irradiated it with a 500 watt halogen lamp from the same side and projected it onto a screen through a polarizer and analyzer, resulting in a high-contrast projected image. I was able to obtain

ここで作製した光書込型液晶ライトバルブの分光透過率
を第5図に示す6曲線22は光源として用いたハロゲン
の発光スペクトル、曲線23は偏光子、検光子を含まな
い液晶ライトバルブの分光透過率を示し、曲線24は、
偏光子、検光子を設置した時のOFF状態の分光透過率
、曲線25はクロスニコルとなった時、即ちONe態の
分光透過率を示している。このスペクトル図からも容易
に類推されるように、光源10が赤外カットフィルタ1
2のみを有し、色フィルタ13を持たない場合は、黄緑
色の背景にほぼ黒に近い濃紺の透過投影画像がスクリー
ン上に結像され、極めて視認性の高い、高コントラスト
な投影画像を表示する事ができた。
Figure 5 shows the spectral transmittance of the optical writing type liquid crystal light valve fabricated here.Curve 22 is the emission spectrum of the halogen used as a light source, and curve 23 is the spectrum of the liquid crystal light valve without a polarizer or analyzer. The curve 24 represents the transmittance.
Curve 25, which is the spectral transmittance in the OFF state when the polarizer and analyzer are installed, shows the spectral transmittance when the polarizer and analyzer are in the crossed nicol state, that is, in the ONe state. As can be easily inferred from this spectrum diagram, the light source 10 is the infrared cut filter 1
2 without the color filter 13, a nearly black dark blue transmission projection image is formed on the screen on a yellow-green background, displaying a highly visible, high-contrast projected image. I was able to do it.

次に、前記ITO透明電a3a上に、東洋インキ社製、
酸化チタンフタロシアニン0.6重量部と飽和ポリエス
テル樹脂(東洋紡バイロン200)0.4重量部を、テ
トラヒドロフランと共に、ジェットミルで3時間混練し
た後、アプリケータ(東洋精機社製)で、乾燥膜厚2μ
mの厚さで塗工し、電荷発生層を作製した。その後、日
本化薬製のオキサゾール系電荷移動剤CT−006,0
,2gを、ポリカーボネイト(量大パンライト)0.3
gに加え、ジクロルメタン6 mlに混合し、15分間
超音波分散を行い、アプリケータを用いて電荷発生層上
に、乾燥膜厚4μmの厚さで塗工し、電荷移動層を作成
した。更にこのガラス基板上に、前記と同様の方法で、
−酸化圭素の斜方蒸着により液晶配向膜を形成し、もう
1枚のガラス基板とでセルを形成した後、前記と同様の
強誘電液晶組成物を注入封止して、光書込型液晶ライト
バルブを作成した。
Next, on the ITO transparent electrode a3a,
0.6 parts by weight of titanium oxide phthalocyanine and 0.4 parts by weight of a saturated polyester resin (Toyobo Vylon 200) were kneaded together with tetrahydrofuran in a jet mill for 3 hours, and then mixed with an applicator (manufactured by Toyo Seiki Co., Ltd.) to a dry film thickness of 2 μm.
A charge generation layer was prepared by coating to a thickness of m. After that, Nippon Kayaku's oxazole charge transfer agent CT-006,0
, 2g, polycarbonate (large amount Panlite) 0.3
g and 6 ml of dichloromethane, subjected to ultrasonic dispersion for 15 minutes, and coated onto the charge generation layer using an applicator to a dry film thickness of 4 μm to form a charge transfer layer. Furthermore, on this glass substrate, in the same manner as above,
- After forming a liquid crystal alignment film by oblique evaporation of phosphorous oxide and forming a cell with another glass substrate, the same ferroelectric liquid crystal composition as above was injected and sealed, and an optical writing type was formed. I created a liquid crystal light bulb.

この様にして作成された液晶ライトバルブの分光透過率
は、ε−Cuフタロシアニンを用いて作製した液晶ライ
トバルブとほぼ同様の特性を示した。又、TiOフタロ
シアニンは、820〜830nmの波長に対して最大感
度の光導電性を示すため、発光波長830nmの半導体
レーザを用いて画像を書込み、透過投影結像した所、極
めて高コントラストの投影画像を確認する事ができた。
The spectral transmittance of the liquid crystal light valve produced in this manner showed almost the same characteristics as the liquid crystal light valve produced using ε-Cu phthalocyanine. Furthermore, since TiO phthalocyanine exhibits photoconductivity with maximum sensitivity at wavelengths of 820 to 830 nm, when an image is written using a semiconductor laser with an emission wavelength of 830 nm and transmission projection imaging is performed, a projected image with extremely high contrast is obtained. I was able to confirm that.

本発明に用いる液晶配向膜としては、SiO斜方蒸着膜
の他に、垂直配向処理剤である塩基性クロム鋳体と、水
平配向処理剤であるポリイミドの混合溶液を塗布焼成し
た後、ラビング処理を施して、20°〜40°の高プレ
ティルト角を与える配向膜であっても何らさしされりは
ない、又、封入する液晶として、ピリミジン系のカイラ
ルスメクチック混合液晶組成物や、エステル系カイラル
スメクチック液晶組成物とピリミジン系カイラルスメク
チック液晶組成物による液晶混合組成物を用いても、全
く同様の効果が得られている。
In addition to the SiO oblique evaporation film, the liquid crystal alignment film used in the present invention is coated with a mixed solution of basic chromium casting, which is a vertical alignment treatment agent, and polyimide, which is a horizontal alignment treatment agent, and then subjected to rubbing treatment. There is no problem even if the alignment film is applied to give a high pretilt angle of 20° to 40°.Also, as the liquid crystal to be encapsulated, a pyrimidine-based chiral smectic mixed liquid crystal composition or an ester-based chiral Exactly the same effect has been obtained using a liquid crystal mixture composition consisting of a smectic liquid crystal composition and a pyrimidine-based chiral smectic liquid crystal composition.

次に、本発明に係る光書込型液晶ライトバルブの応用の
いくつかを例をあげて説明する。
Next, some applications of the optical writing type liquid crystal light valve according to the present invention will be explained by giving examples.

第6図は、本発明に係る光書込型液晶ライトバルブを応
用したデジタルカラーレーザプリンタの概念図である0
図中、17a、17b、17cが本発明に係る光書込型
液晶ライトバルブであり、それぞれレーザスキャナ26
により、R,G、Bに対応する像が書き込まれた後、投
影光学系によりそれぞれの色に対応するフィルタを用い
て波長を限定した光でメディア上27に、それぞれの色
の像を形成する。前記メディア27は、第7図に示すよ
うに夫々420nm、480nm、540nmに最大感
度を有する光硬化性のマイクロカプセル30.31.3
2に、ロイコ染料を封入したものを分散塗布したもので
、発色剤を塗布したレシーバ−シート28に圧接する事
により、レシーバ−シート上にカラー画像を形成するも
のである。
FIG. 6 is a conceptual diagram of a digital color laser printer to which the optical writing type liquid crystal light valve according to the present invention is applied.
In the figure, 17a, 17b, and 17c are optical writing type liquid crystal light valves according to the present invention, and each is a laser scanner 26.
After images corresponding to R, G, and B are written by the projection optical system, images of each color are formed on the media 27 with light whose wavelength is limited using filters corresponding to each color. . The media 27 are photocurable microcapsules 30, 31, and 3 having maximum sensitivity at 420 nm, 480 nm, and 540 nm, respectively, as shown in FIG.
2. A leuco dye encapsulated therein is dispersed and coated, and a color image is formed on the receiver sheet by pressing it against the receiver sheet 28 coated with a coloring agent.

前記の様なシステムに、本発明に係る光書込型液晶ライ
トバルブを応用する事により、高品位の画像を短時間で
出力できる優れたデジタルカラープリンタを実現する事
が出来た。
By applying the optical writing type liquid crystal light valve according to the present invention to the above-mentioned system, it was possible to realize an excellent digital color printer that can output high-quality images in a short time.

又、前記デジタルカラーレーザプリンタのメディア27
の位置にスクリーンを設け、3色を同時に投影する事に
より、高品質で高速応答可能なマルチカラープロジェク
タを実現する事ができた。
Moreover, the media 27 of the digital color laser printer
By installing a screen at the location of the screen and projecting three colors simultaneously, we were able to create a multicolor projector with high quality and high speed response.

その他、本発明に係る透過型光書込液晶ライトバルブは
、様々な画像表示装置、画像処理装置、光情報処理装置
等への応用が可能である。
In addition, the transmission type optical writing liquid crystal light valve according to the present invention can be applied to various image display devices, image processing devices, optical information processing devices, and the like.

〔発明の効果〕〔Effect of the invention〕

以上述べてきた様に、本発明による透過型光書込型液晶
ライトバルブでは、高精度な多層膜による誘電体ミラー
を形成する必要がなく、極めて簡単で、光量ロスが少く
、画像ひずみのない低コストで構成可能な透過型画像投
射装置を実現する事が可能である
As described above, the transmissive optical writing type liquid crystal light valve according to the present invention does not require the formation of a dielectric mirror using a high-precision multilayer film, is extremely simple, has little light loss, and has no image distortion. It is possible to realize a transmission-type image projection device that can be configured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る透過型光書込液晶ライトバルブの
断面図、第2図は本発明の透過型光書込液晶ライトバル
ブを用いた投影光学装置の概念図、第3図は従来の反射
型液晶ライトバルブを用いた正反射型投影光学装置の概
念図、第4図は従来の反射型液晶ライトバルブを用いた
斜め投影光学装置の概念図、第5図は本発明に係わる透
過型光書込液晶ライトバルブの分光透過率を表す特性図
、第6図は本発明に係る透過型光書込型液晶ライトバル
ブを応用したデジタルレーザカラープリンタの概念図、
第7図は本発明に係る透過型光書込液晶ライトバルブを
応用したデジタルレーザカラープリンタに用いたメディ
アの概念図である。 1・・・・・・・書込み光 2a、2b・・・透明基板 3a、3b・・・透明電極 4・・・・・・・光導電層 5a、5b・・・液晶配向層 6・・・・・・・接着剤スペーサ 7・・・・・・・強誘電性液晶層 8・・・・・・・反射防止膜 9a、9b・・・偏光子、検光子 10・・・・・・・光源 11・・・・・・・コンデンサレンズ 12・・・・・・・赤外カットフィルタ13・・・・・
・・色フィルタ 14・・・・・・・コンデンサレンズ 15・・・・・・・フィールドレンズ 16・・・・・・・偏光子 17・・・・・・・透過型光書込液晶ライトバルブ 18・・・・・・・検光子 19・・・・・・・投影レンズ 20・・・・・・・スクリーン 21・・・・・・・ビームスプリッタ 22・・・・・・・ハロゲンランプの発光スペクトル分
布 23・・・・・・・光書込型液晶ライトバルブの分光透
過率 24・・・・・・・偏光子と検光子を設置した時の光書
込型液晶ライトバ ルブのOFF時の分光透過 重分布 25・・・・・・・偏光子と検光子を設置した時の光書
込型液晶ライトバ ルブのON時の分光透過率 分布 26・・・・・・・レーザスキャナユニット27・・・
・・・・マイクロカプセルシート28・・・・・・・レ
シーバシート 以  上 出願人 セイコー電子工業株式会社 代理人 弁理士  林   敬 之 助、t−亮syl
+で佳る透j型光富込直晶フイトハルアの断面図第 1
 図 半足明lr′)透過型書込′;r!晶うイトハ゛ルアに
用へよ担影尤呼装置の砒念図第 2 図 第 3 図 第 4 図 テ゛ジタルトーサ゛カラープリンタの磯含図躬 6 図
FIG. 1 is a cross-sectional view of a transmissive optical writing liquid crystal light valve according to the present invention, FIG. 2 is a conceptual diagram of a projection optical device using the transmissive optical writing liquid crystal light valve of the present invention, and FIG. 3 is a conventional one. FIG. 4 is a conceptual diagram of a regular reflection type projection optical device using a conventional reflective liquid crystal light valve, and FIG. 5 is a conceptual diagram of a specular projection optical device using a conventional reflective liquid crystal light valve. FIG. 6 is a conceptual diagram of a digital laser color printer to which the transmission type optical writing type liquid crystal light valve according to the present invention is applied;
FIG. 7 is a conceptual diagram of media used in a digital laser color printer to which the transmissive optical writing liquid crystal light valve according to the present invention is applied. 1...Writing light 2a, 2b...Transparent substrate 3a, 3b...Transparent electrode 4...Photoconductive layer 5a, 5b...Liquid crystal alignment layer 6... ...Adhesive spacer 7 ... Ferroelectric liquid crystal layer 8 ... Antireflection films 9a, 9b ... Polarizer, analyzer 10 ... Light source 11... Condenser lens 12... Infrared cut filter 13...
...Color filter 14...Condenser lens 15...Field lens 16...Polarizer 17...Transmission type optical writing liquid crystal light valve 18... Analyzer 19... Projection lens 20... Screen 21... Beam splitter 22... Halogen lamp Emission spectral distribution 23...Spectral transmittance of the optically written liquid crystal light valve 24...When the optically written liquid crystal light valve is OFF when the polarizer and analyzer are installed Spectral transmission weight distribution 25... Spectral transmittance distribution when the optical writing type liquid crystal light valve is turned on when the polarizer and analyzer are installed 26... Laser scanner unit 27 ...
...Microcapsule sheet 28 ...Receiver sheet and above Applicant: Seiko Electronic Industries Co., Ltd. Agent Patent attorney: Keinosuke Hayashi, T-Ryo syl
Cross-sectional diagram of transparent J-type light-enriched direct-crystal FITHARUA with positive rating No. 1
Figure half clear lr') Transparent writing';r! Figure 2: An illustration of the image recording and calling device used for crystallization equipment.

Claims (2)

【特許請求の範囲】[Claims] (1)レーザビーム、LED等の光照射による書込み手
段と、光導電層、液晶配向層、電圧印加手段及び、光透
過率と印加電圧の間に閾値特性と双安定メモリ性を有す
る強誘電性液晶層を具備し、該液晶層に、閾値電圧より
十分大きい直流バイアス電圧を印加して液晶分子を配列
保持させる第1の工程と、第1の工程とは逆極性で且つ
、暗時には閾値電圧以下であり、光照射時には閾値電圧
以上となる直流バイアス電圧を印加しながら、光書込み
手段によって画像を形成する第2の工程によつて駆動さ
れる光書込型液晶ライトバルブに於いて、該光導電層は
、650nm〜900nmの書込み光に対して高い光導
電特性を示し、且つ650nm以下の可視領域の光透過
率が高い光導電層である事を特徴とする透過型光書込液
晶ライトバルブ。
(1) A writing means using light irradiation such as a laser beam or LED, a photoconductive layer, a liquid crystal alignment layer, a voltage application means, and a ferroelectric material having a threshold characteristic and bistable memory property between the light transmittance and the applied voltage. A first step in which a liquid crystal layer is provided, and a DC bias voltage sufficiently larger than a threshold voltage is applied to the liquid crystal layer to maintain alignment of liquid crystal molecules; In an optically written liquid crystal light valve that is driven by the second step of forming an image by an optical writing means while applying a DC bias voltage equal to or higher than a threshold voltage during light irradiation, A transmissive optical writing liquid crystal light characterized in that the photoconductive layer is a photoconductive layer that exhibits high photoconductive properties for writing light of 650 nm to 900 nm and has high light transmittance in the visible region of 650 nm or less. valve.
(2)前記光導電層は、有機金属フタロシアニンを電荷
発生剤とする有機光導電層である事を特徴とする特許請
求の範囲第1項記載の透過型光書込液晶ライトバルブ。
(2) The transmissive optical writing liquid crystal light valve according to claim 1, wherein the photoconductive layer is an organic photoconductive layer containing organometallic phthalocyanine as a charge generating agent.
JP15291288A 1988-06-21 1988-06-21 Transmission type optical writing liquid crystal light valve Pending JPH01319734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15291288A JPH01319734A (en) 1988-06-21 1988-06-21 Transmission type optical writing liquid crystal light valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15291288A JPH01319734A (en) 1988-06-21 1988-06-21 Transmission type optical writing liquid crystal light valve

Publications (1)

Publication Number Publication Date
JPH01319734A true JPH01319734A (en) 1989-12-26

Family

ID=15550860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15291288A Pending JPH01319734A (en) 1988-06-21 1988-06-21 Transmission type optical writing liquid crystal light valve

Country Status (1)

Country Link
JP (1) JPH01319734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139423A (en) * 1990-09-29 1992-05-13 Victor Co Of Japan Ltd Display device
JPH0651302A (en) * 1992-07-27 1994-02-25 Victor Co Of Japan Ltd Display device
JP2005164578A (en) * 2003-10-28 2005-06-23 Kodak Polychrome Graphics Llc Color channel reconstruction method for display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128521A (en) * 1983-01-14 1984-07-24 Ricoh Co Ltd Light-writable liquid crystal light valve
JPS59216126A (en) * 1983-05-24 1984-12-06 Canon Inc Optical recording element and its recording method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128521A (en) * 1983-01-14 1984-07-24 Ricoh Co Ltd Light-writable liquid crystal light valve
JPS59216126A (en) * 1983-05-24 1984-12-06 Canon Inc Optical recording element and its recording method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139423A (en) * 1990-09-29 1992-05-13 Victor Co Of Japan Ltd Display device
JPH0651302A (en) * 1992-07-27 1994-02-25 Victor Co Of Japan Ltd Display device
JP2005164578A (en) * 2003-10-28 2005-06-23 Kodak Polychrome Graphics Llc Color channel reconstruction method for display device

Similar Documents

Publication Publication Date Title
US5357370A (en) Polarizer and light valve image projector having the polarizer
US5386306A (en) Active matrix liquid crystal display element and projection type active matrix liquid crystal display device
WO1990000756A1 (en) Reflection-type liquid crystal electro-optical device and projection-type display device using the same
WO1987000301A1 (en) Liquid crystal display device
JPH03274022A (en) Optical modulation element and display device
US20070076135A1 (en) Light modulation element and image display device
EP0569922A1 (en) Liquid crystal panel and liquid crystal projection TV receiver set
JPH06342169A (en) Optical switching element
JPH01319734A (en) Transmission type optical writing liquid crystal light valve
US5153759A (en) Optically addressed light valve system
JPH01315723A (en) Optical writing type liquid crystal light valve
JP3041402B2 (en) Optical writing liquid crystal light valve
JP2816576B2 (en) Optical writing type liquid crystal light valve
JPH0317618A (en) Optical write driving method for optical write type liquid crystal light valve
JPS59218423A (en) Optical printer
JP2630450B2 (en) Optical writing liquid crystal light valve and image output device using the same
JP2540359B2 (en) Liquid crystal optical element
EP0395113A2 (en) Laser writing type liquid crystal light valve
JP3276249B2 (en) Slant complex permittivity type spatial light modulator
JPH08106095A (en) Electrical-or optical-writing type liquid crystal spatial light modulator
JPH03107824A (en) Optical writing type liquid crystal light valve
JP2952610B2 (en) Optical writing liquid crystal light valve
JPH08234195A (en) Spatial optical modulation element
JPS6360423A (en) Ferroelectric liquid crystal element
Wang et al. All-optical polarization-independent diffraction in dye-doped cholesteric liquid crystal