JPH0131960Y2 - - Google Patents

Info

Publication number
JPH0131960Y2
JPH0131960Y2 JP1981091561U JP9156181U JPH0131960Y2 JP H0131960 Y2 JPH0131960 Y2 JP H0131960Y2 JP 1981091561 U JP1981091561 U JP 1981091561U JP 9156181 U JP9156181 U JP 9156181U JP H0131960 Y2 JPH0131960 Y2 JP H0131960Y2
Authority
JP
Japan
Prior art keywords
electrode
flow path
reference electrode
cell type
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981091561U
Other languages
Japanese (ja)
Other versions
JPS57201963U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981091561U priority Critical patent/JPH0131960Y2/ja
Publication of JPS57201963U publication Critical patent/JPS57201963U/ja
Application granted granted Critical
Publication of JPH0131960Y2 publication Critical patent/JPH0131960Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 この考案は試料溶液中に含まれる物質例えば
H+,Na+,K+,Ca++などの電解質を電気化学的
に測定するイオン電極法で用いられる比較電極で
あつて特にフローセル型のものの構造に関する。
[Detailed explanation of the device] This device uses substances contained in the sample solution, such as
This invention relates to the structure of a flow cell type reference electrode used in the ion electrode method for electrochemically measuring electrolytes such as H + , Na + , K + , Ca ++ , etc.

イオン電極法における測定にはいわゆるバツチ
方式とフローセル方式とがあるが、フローセル方
式は試料が少量(通常数+μ〜数百μ)です
むと共に試料が空気に触れないからそれに影響さ
れることがない利点があり、近年バツチ方式より
もむしろ多く用いられる傾向にある。
There are two methods for measurement using the ion electrode method: the batch method and the flow cell method.The flow cell method requires only a small amount of sample (usually a few + microns to several hundred microns), and the sample does not come into contact with air, so it is not affected by air. Due to its advantages, it has recently become more popular than the batch method.

このフローセル方式の測定で従来用いられてい
る比較電極は、第1図もしくは第2図に示すよう
に構成されたものがほとんどである。
Most comparison electrodes conventionally used in this flow cell type measurement are constructed as shown in FIG. 1 or 2.

第1図に示すaは、カロメル電極のような元々
バツチ方式用の比較電極bをそのままセルブロツ
クcに取り付け、液絡部dを試料流路e内に設置
したものである。lは比較電極溶液である。
In Fig. 1, a shows a comparative electrode b, which was originally intended for a batch method, such as a calomel electrode, attached to a cell block c, and a liquid junction part d placed in a sample flow path e. 1 is a reference electrode solution.

第2図に示すfは、銀線のような金属線に塩化
銀のような金属塩をメツキした電極gを、セルブ
ロツクhに穿設された比較電極溶液流路i内に突
出させてセルブロツクhに取り付けたものであ
る。jは試料流路、kは廃液流路である。
f shown in FIG. 2 is a cell block h in which an electrode g, which is a metal wire such as a silver wire plated with a metal salt such as silver chloride, is protruded into a reference electrode solution flow path i formed in a cell block h. It was attached to. j is a sample flow path, and k is a waste liquid flow path.

しかし前者の比較電極aは、構成が複雑であ
り、液絡部dおよびその近傍が試料により汚染さ
れて良好な電気的導通が得られなくなる欠点があ
る。また後者の比較電極fは、電極gの作製にメ
ツキという繁雑な工程を必要とし、電位が不安定
で比較電極溶液の流速の影響を受ける欠点があ
る。
However, the former comparison electrode a has a complicated structure and has the drawback that the liquid junction d and its vicinity are contaminated by the sample, making it impossible to obtain good electrical continuity. Further, the latter comparison electrode f requires a complicated process of plating to prepare the electrode g, and has the disadvantage that the potential is unstable and is affected by the flow rate of the comparison electrode solution.

この考案は上記従来のフローセル型の比較電極
の欠点を解消することを目的としてなされたもの
である。
This invention was made with the aim of eliminating the drawbacks of the conventional flow cell type comparison electrodes mentioned above.

以下、第3図を参照してこの考案を詳説する。 This invention will be explained in detail below with reference to FIG.

1はこの考案のフローセル型比較電極の一実施
例である。合成樹脂、ガラスなど適当な素材で作
られたセルブロツク2に、試料流路3と比較電極
溶液流路4と廃液流路5とが穿設されるとともに
比較電極溶液流路4と境部7で導通する比較電極
室6が形設されている。その比較電極室6には塩
化銀の粉末8がつめられ、またその塩化銀粉末8
中にリード線10が取り付けられた銀線9が埋設
されている。11はフタである。
1 is an embodiment of the flow cell type comparison electrode of this invention. A sample flow path 3, a reference electrode solution flow path 4, and a waste liquid flow path 5 are bored in a cell block 2 made of a suitable material such as synthetic resin or glass. A comparison electrode chamber 6 which is electrically conductive is formed. The reference electrode chamber 6 is filled with silver chloride powder 8;
A silver wire 9 with a lead wire 10 attached thereto is buried therein. 11 is a lid.

境部7は、塩化銀粉末8がこぼれ落ちずしかも
比較電極溶液がその流路4から比較電極室6へ浸
透していくようにピンホール構造になつている。
The boundary part 7 has a pinhole structure so that the silver chloride powder 8 does not fall out and the reference electrode solution permeates from the flow path 4 into the reference electrode chamber 6.

測定にあたつては、試料を矢印(α)の方向で
試料流路3に流すとともに矢印(β)の方向で
KCl溶液を比較電極溶液流路4に流す。試料と
KCl溶液とは合流して廃液流路5から矢印(γ)
方向に流出する。
During measurement, the sample is flowed into the sample flow path 3 in the direction of the arrow (α), and the sample is flowed in the direction of the arrow (β).
Flow the KCl solution into the reference electrode solution channel 4. sample and
It merges with the KCl solution and starts from the waste liquid flow path 5 with an arrow (γ).
flow in the direction.

上記フローセル型比較電極1の変形として、塩
化銀粉末8に代えて他の金属塩粉末例えば塩化第
1水銀(カロメル)などを用いてもよく、また銀
線9に代えて他の金属電極例えば水銀池などを用
いてもよい。さらに境部7をピンホール構造とせ
ず、ガラスウール、ポーラスガラス、セラミツク
などで構成してもよい。また、比較電極溶液とし
て高濃度の電解質の溶液例えばNaCl溶液、
NH4Cl溶液などを用いてもよい。
As a modification of the flow cell type reference electrode 1, the silver chloride powder 8 may be replaced with another metal salt powder such as mercurous chloride (calomel), and the silver wire 9 may be replaced with another metal electrode such as mercury. A pond or the like may also be used. Further, the boundary portion 7 may be made of glass wool, porous glass, ceramic, etc. instead of having a pinhole structure. In addition, a highly concentrated electrolyte solution such as a NaCl solution can be used as a reference electrode solution.
An NH 4 Cl solution or the like may also be used.

以上のように、この考案のフローセル型比較電
極は、試料流路と比較電極溶液流路と廃液流路と
を穿設したセルブロツク内に比較電極溶液流路と
境部で導通する比較電極室を形設し、その比較電
極室内に金属塩の粉末を充填すると共にその金属
塩粉末中に金属電極を埋設して構成されているの
で、その構造が簡単であり、繁雑な工程を必要と
せず、組立てが容易である。しかも試料との直接
の接触が無いから汚染によるトラブルを生じな
い。さらに電位が極めて安定しているという優れ
た特長がある。
As described above, the flow cell type reference electrode of this invention has a reference electrode chamber that is electrically connected to the reference electrode solution flow path at the boundary within a cell block that has a sample flow path, a reference electrode solution flow path, and a waste liquid flow path. The comparison electrode chamber is filled with metal salt powder, and the metal electrode is embedded in the metal salt powder, so the structure is simple and does not require complicated processes. Easy to assemble. Moreover, since there is no direct contact with the sample, there are no problems due to contamination. Another advantage is that the potential is extremely stable.

電位の安定性についてのデータを第4図に示
す。
Data regarding potential stability are shown in FIG.

これは前記実施例の比較電極1につき飽和カロ
メル電極を基準として用いて測定したデータであ
る。図より明らかなように極めて安定な電位を発
生している。
This is data measured using the saturated calomel electrode as a reference for the comparative electrode 1 of the above example. As is clear from the figure, an extremely stable potential is generated.

これに対し、第5図に示すデータは、第2図に
示すタイプの従来の比較電極の発生する電位を上
記と同様にして測定したものである。イに示すよ
うに比較電極溶液停止時でも不安定であり、ロに
示すように比較電極溶液の流速の影響を受ける難
点がある。
On the other hand, the data shown in FIG. 5 is obtained by measuring the potential generated by a conventional comparison electrode of the type shown in FIG. 2 in the same manner as above. As shown in (a), it is unstable even when the reference electrode solution is stopped, and as shown in (b), it is affected by the flow rate of the reference electrode solution.

なお、これらの測定において、温度条件は25℃
±0.5℃、比較電極溶液は飽和KCl溶液、その流
動時流速は5ml/分である。
In addition, in these measurements, the temperature condition was 25℃.
±0.5°C, the reference electrode solution was a saturated KCl solution, and the flow rate was 5 ml/min.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来のフローセ
ル型の比較電極の断面図、第3図はこの考案のフ
ローセル型比較電極の一実施例の断面図、第4図
は第3図に示す比較電極の電位のグラフ、第5図
は第2図に示すタイプの比較電極の電位のグラフ
である。 1……フローセル型比較電極、2……セルブロ
ツク、3……試料流路、4……比較電極溶液流
路、5……廃液流路、6……比較電極室、7……
境部、8……塩化銀の粉末、9……銀線。
Figures 1 and 2 are sectional views of conventional flow cell type comparison electrodes, Figure 3 is a sectional view of an embodiment of the flow cell type comparison electrode of this invention, and Figure 4 is the comparison electrode shown in Figure 3. FIG. 5 is a graph of the potential of a comparison electrode of the type shown in FIG. DESCRIPTION OF SYMBOLS 1... Flow cell type comparison electrode, 2... Cell block, 3... Sample flow path, 4... Reference electrode solution flow path, 5... Waste liquid flow path, 6... Reference electrode chamber, 7...
Sakaibe, 8...Silver chloride powder, 9...Silver wire.

Claims (1)

【実用新案登録請求の範囲】 1 試料流路と比較電極溶液流路と廃液流路とを
穿設したセルブロツク内に比較電極溶液流路と
境部で導通する比較電極室を形設し、その比較
電極室内に金属塩の粉末を充填すると共にその
金属塩粉末中に金属電極を埋設してなるフロー
セル型比較電極。 2 金属塩が塩化銀であり、金属電極が銀線であ
る請求の範囲第1項記載のフローセル型比較電
極。 3 金属塩が塩化第1水銀であり、金属電極が水
銀池である請求の範囲第1項記載のフローセル
型比較電極。 4 境部がピンホール構造である請求の範囲第1
〜3項の一に記載のフローセル型比較電極。
[Scope of Claim for Utility Model Registration] 1. A reference electrode chamber is formed in a cell block in which a sample flow path, a reference electrode solution flow path, and a waste liquid flow path are formed, and which is connected to the reference electrode solution flow path at the boundary. A flow cell type comparison electrode in which a comparison electrode chamber is filled with metal salt powder and a metal electrode is embedded in the metal salt powder. 2. The flow cell type comparison electrode according to claim 1, wherein the metal salt is silver chloride and the metal electrode is a silver wire. 3. The flow cell type reference electrode according to claim 1, wherein the metal salt is mercurous chloride and the metal electrode is a mercury pond. 4 Claim 1 in which the border has a pinhole structure
The flow cell type comparison electrode according to item 1 of item 3.
JP1981091561U 1981-06-19 1981-06-19 Expired JPH0131960Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981091561U JPH0131960Y2 (en) 1981-06-19 1981-06-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981091561U JPH0131960Y2 (en) 1981-06-19 1981-06-19

Publications (2)

Publication Number Publication Date
JPS57201963U JPS57201963U (en) 1982-12-22
JPH0131960Y2 true JPH0131960Y2 (en) 1989-10-02

Family

ID=29886644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981091561U Expired JPH0131960Y2 (en) 1981-06-19 1981-06-19

Country Status (1)

Country Link
JP (1) JPH0131960Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547397A (en) * 1977-06-17 1979-01-20 Shimadzu Corp Ion concentration measuring apparatus
JPS548488B2 (en) * 1975-04-25 1979-04-16

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537891Y2 (en) * 1976-05-25 1980-09-04
JPS5754049Y2 (en) * 1977-06-20 1982-11-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548488B2 (en) * 1975-04-25 1979-04-16
JPS547397A (en) * 1977-06-17 1979-01-20 Shimadzu Corp Ion concentration measuring apparatus

Also Published As

Publication number Publication date
JPS57201963U (en) 1982-12-22

Similar Documents

Publication Publication Date Title
US3926764A (en) Electrode for potentiometric measurements
JPS62500197A (en) ion selective electrode
US3676319A (en) Electrode, half cell and electrode component for the measurement of electromotive force
US4235688A (en) Salt bridge reference electrode
Anderson et al. Graphite-epoxy mercury thin film working electrode for anodic stripping voltammetry
US4366038A (en) Method of casting in place an ion-sensitive membrane and ion-sensitive electrode using said membrane
GB1468711A (en) Gas electrode
JPH0131960Y2 (en)
US2190835A (en) Arrangement for carrying out electrometrical measurements
Rehm et al. An all solid-state reference electrode based on a potassium chloride doped vinyl ester resin
JPS63138253A (en) Solid electrode for measuring sodium ion concentration in solution and sensor containing said electrode
del Pozo et al. Adsorptive stripping voltammetry on mercury-coated carbon fibre ultramicroelectrodes
EP0155727B1 (en) Electrochemical reference electrode
JPH09178690A (en) Ion sensor and method for measuring ion concentration
GB1426321A (en) Membrane electrodes
JPS6243557A (en) Solid electrode for electrochemical sensor
EP0152636A1 (en) Electrode assembly for measuring the concentration of an electro-chemical active species
JPS6356497B2 (en)
JPH075407Y2 (en) Silver chloride electrode
JPH0311733Y2 (en)
JPH0330851Y2 (en)
SU544899A1 (en) Ion-selective electrode with lanthanum fluoride membrane
GB1412001A (en) Electrode for potentiometric measurements
JPS57161542A (en) Ion selective electrode
JP3011964B2 (en) Electrochemical sensor device