JPH01318861A - Two-room cooler-heater - Google Patents

Two-room cooler-heater

Info

Publication number
JPH01318861A
JPH01318861A JP15100188A JP15100188A JPH01318861A JP H01318861 A JPH01318861 A JP H01318861A JP 15100188 A JP15100188 A JP 15100188A JP 15100188 A JP15100188 A JP 15100188A JP H01318861 A JPH01318861 A JP H01318861A
Authority
JP
Japan
Prior art keywords
room
load
compressor
expansion valve
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15100188A
Other languages
Japanese (ja)
Inventor
Masaaki Masuda
雅昭 増田
Masanori Kotani
小谷 正則
Katsuhiro Wakahara
若原 勝広
Shuichi Sakata
修一 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15100188A priority Critical patent/JPH01318861A/en
Priority to US07/367,141 priority patent/US4926653A/en
Publication of JPH01318861A publication Critical patent/JPH01318861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To make it possible to develop a cooling heating capability according to a load on each room unit through controlling the flow rate of a refrigerant fed to each room heat exchanger by determining the opening of a motor-driven expansion valve according to the ratio of the load on one room unit to that on the other room unit which ratio is obtained from the difference between set temperatures and actual room temperatures. CONSTITUTION:A compressor frequency-controlling part 14 in a microcomputer controlling part 13 is supplied with a set temperature TIa on a room unit A, an actually measured room temperature TRa, a set temperature TIb on a room unit B and an actually measured room temperature TRb, controls the output of a compressor 1, and outputs each of room loads TRa-TIa and TRb-TIb to an expansion valve opening-controlling part 15 by converting the loads into room load coefficients (a), (b). The controlling part 15 controls the openings of motor-driven expansion valves 6a, 6b according to the load ratio of one to the other of the room load coefficients (a), (b) while maintaining the balance of refrigeration between the average (TA+TB)/2 of outlet temperatures TA, TB of the valves 6a, 6b and the suction temperature TS of the compressor 1 will be constant, thereby cooling operations are conducted. In the case of heating operations, the flow directions of refrigerant vapors are reverse to the above, and the function of each part is the same as above except that control characteristics are different.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、インバータ圧縮機により駆動される冷凍サイ
クル中に電動膨張弁を有し、該電動膨張弁によって冷媒
流量制御が行われる冷暖房装置に係り、特に1台の室外
機に2台の室内機が接続されたものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air-conditioning and heating system that has an electric expansion valve in a refrigeration cycle driven by an inverter compressor, and in which refrigerant flow rate is controlled by the electric expansion valve. In particular, the present invention relates to one in which two indoor units are connected to one outdoor unit.

(従来の技術) 従来、2台の室内機を有する多室型冷暖房装置は、それ
ぞれの室内機に対応する膨張弁を有し、該膨張弁制御は
、それぞれ室内機の熱交換器と対応して得られる冷媒過
熱度に基づいて行われていた。第7図は、従来の二室冷
暖房装置の全体構成の概略を示す図である。同図におい
て、点線矢印は冷房運転時の冷媒の流れを、実線矢印は
暖房運転時の冷媒の流れを示す。つまり、冷房の場合、
圧縮機1で圧縮された冷媒蒸気は、四方弁2を介して室
外熱交換器3にて凝縮液化し、レシーバ−タンク4に貯
えられる。この後、冷媒液はそれぞれの室内機A、Bに
対応する電動膨張弁6a、6bにて減圧され、室内熱交
換器7,8において、低圧蒸気となり、再び四方弁2を
介して圧縮機Iに戻る。この時、電動膨張弁6a、6b
の開閉度の制?311g、h(第8図参照)は、各電動
膨張弁6a、5bの出口バイブに取付けられた温度セン
サ16a、L6bから得られる温度(TA)、(TB)
と圧縮機1の吸込パイプに取付けられた温度センサ9か
ら得られる温度(TS)との差(TS−TA)、(TS
−TB)が一定となるようにそれぞれ行われる。また、
暖房の場合には、冷媒の流れは冷房の場合の逆方向とな
り、圧縮された冷媒蒸気は室内側熱交換器7,8にて凝
縮した後レシーバ−タンク4を経て暖房用膨張弁5にて
減圧され、室外熱交換器3にて低圧蒸気となり再び圧縮
機1に戻る。この時、暖房用膨張弁5の開閉度の制御i
 (第8図参照)は、その出口バイブに取付けられた温
度センサ17から得られる温度(TC)と圧縮機1の吸
込パイプに取付けられた温度センサ9から得られる温度
(TS)との差(TS−TC)が一定となるように行わ
れる。
(Prior Art) Conventionally, a multi-room air conditioning system having two indoor units has an expansion valve corresponding to each indoor unit, and the expansion valve control corresponds to the heat exchanger of each indoor unit. This was done based on the degree of superheating of the refrigerant obtained. FIG. 7 is a diagram schematically showing the overall configuration of a conventional two-room air conditioning system. In the figure, dotted arrows indicate the flow of refrigerant during cooling operation, and solid arrows indicate the flow of refrigerant during heating operation. In other words, in the case of cooling,
Refrigerant vapor compressed by the compressor 1 is condensed and liquefied in an outdoor heat exchanger 3 via a four-way valve 2 and stored in a receiver tank 4. Thereafter, the refrigerant liquid is depressurized by the electric expansion valves 6a and 6b corresponding to the indoor units A and B, becomes low-pressure steam in the indoor heat exchangers 7 and 8, and is again passed through the four-way valve 2 to the compressor I. Return to At this time, the electric expansion valves 6a, 6b
Is there a restriction on the degree of opening and closing? 311g and h (see Fig. 8) are temperatures (TA) and (TB) obtained from temperature sensors 16a and L6b attached to the outlet vibes of each electric expansion valve 6a and 5b.
and the temperature (TS) obtained from the temperature sensor 9 attached to the suction pipe of the compressor 1 (TS - TA), (TS
-TB) are respectively performed so that they are constant. Also,
In the case of heating, the flow of the refrigerant is in the opposite direction to that in the case of cooling, and the compressed refrigerant vapor is condensed in the indoor heat exchangers 7 and 8, then passes through the receiver tank 4, and then flows in the expansion valve 5 for heating. It is depressurized and becomes low-pressure steam in the outdoor heat exchanger 3 and returns to the compressor 1 again. At this time, control i of the opening/closing degree of the heating expansion valve 5
(See Figure 8) is the difference between the temperature (TC) obtained from the temperature sensor 17 attached to the outlet vibrator and the temperature (TS) obtained from the temperature sensor 9 attached to the suction pipe of the compressor 1 ( TS-TC) is held constant.

このように、従来サイクルでは、暖房用膨張弁5及び電
動膨張弁6a、6bはその出口冷媒と圧縮機吸込冷媒と
の温度差が一定となるように開閉制御され、冷凍サイク
ルの安定のみに使用される。
In this way, in the conventional cycle, the heating expansion valve 5 and the electric expansion valves 6a and 6b are controlled to open and close so that the temperature difference between the outlet refrigerant and the compressor suction refrigerant is constant, and are used only to stabilize the refrigeration cycle. be done.

従って、各室内機A、Bの負荷がそれぞれ変動してもそ
の合計負荷が一定であれば各室内熱交換器7.8に流れ
る冷媒流量もほとんど変わらず、冷暖房能力もほぼ一定
である。なお、室内設定温度(TRa)、(TRb)と
室温(T I a)、 (T I b)との差から得ら
れる負荷量(TRa −T I a)、 (TRb−T
Ib)は、第8図に示すごとく圧縮機周波数f、すなわ
ち圧縮機1の出力を決定することのみに使用される。
Therefore, even if the loads of the indoor units A and B vary, if the total load is constant, the flow rate of refrigerant flowing into each indoor heat exchanger 7.8 will hardly change, and the heating and cooling capacity will also remain almost constant. In addition, the load amount (TRa - T I a), (TRb - T
Ib) is used only to determine the compressor frequency f, ie the output of the compressor 1, as shown in FIG.

(発明が解決しようとする課題) しかし、この従来の膨張弁制御方法では、圧縮機の出力
の決定と、冷凍サイクルの安定とが独立して行われてい
るため、二室同時運転の場合、各室内機の負荷の合計が
一定であれば、一方の室内機の負荷が小さく他方の室内
機の負荷が大きい場合でも各室内熱交換器への冷媒流量
はほとんど等しく分配されるため、能力もほぼ等しくな
る。
(Problems to be Solved by the Invention) However, in this conventional expansion valve control method, the determination of the output of the compressor and the stabilization of the refrigeration cycle are performed independently, so in the case of simultaneous operation of two chambers, If the total load of each indoor unit is constant, even if one indoor unit has a small load and the other indoor unit has a large load, the refrigerant flow rate to each indoor heat exchanger will be distributed almost equally, and the capacity will also increase. almost equal.

本発明は、かかる実情に鑑みてなされたもので、二室同
時運転の場合、各室内機の負荷は、圧縮機周波数を決定
するのに使用されるだけでなく膨張弁の開閉制御にも使
用され、各室内熱交換器への冷媒流量を制御して各室内
機の負荷に見合った冷暖房能力を発生する膨張弁制御が
可能な冷暖房装置を提供することを目的とする。
The present invention was made in view of the above circumstances, and in the case of simultaneous operation of two rooms, the load of each indoor unit is used not only to determine the compressor frequency but also to control the opening and closing of the expansion valve. It is an object of the present invention to provide a heating and cooling device capable of controlling an expansion valve to generate heating and cooling capacity commensurate with the load of each indoor unit by controlling the flow rate of refrigerant to each indoor heat exchanger.

(課題を解決するための手段) 本発明の二室冷暖房装置は、1台の室外機に2台の室内
機が各々電動膨張弁を介して接続され、圧縮機により圧
縮された冷媒を各室内熱交換器もしくは室外熱交換器で
凝縮させ、さらに上記冷媒を各電動膨張弁で膨張、減圧
させた後、上記室外熱交換器もしくは各室内熱交換器で
蒸発させて各室内の暖房もしくは冷房を行うようにした
冷暖房装置において、上記電動膨張弁の開閉度は、各室
内機に設置された室温設定器の設定温度と実際の室内温
度との差から得られる各室内機の負荷の比により決定さ
れるものである。
(Means for Solving the Problems) In the two-room air conditioning system of the present invention, two indoor units are connected to one outdoor unit through electric expansion valves, and refrigerant compressed by a compressor is delivered to each room. The refrigerant is condensed in a heat exchanger or an outdoor heat exchanger, further expanded and depressurized by each electric expansion valve, and then evaporated in the outdoor heat exchanger or each indoor heat exchanger to heat or cool each room. In the air conditioning system, the degree of opening and closing of the electric expansion valve is determined by the ratio of the load on each indoor unit obtained from the difference between the set temperature of the room temperature setting device installed in each indoor unit and the actual indoor temperature. It is something that will be done.

(作用) 第1図に点線矢印で示すように、2台の室内機A、Bを
同時に冷房運転する場合、圧縮機1で圧縮された冷媒蒸
気は、四方弁2を介して室外熱交換器3にて凝縮液化す
る。こうして得られた冷媒液は、2台のレシーバ−タン
ク4a、4bに貯えられる。この後、冷媒液は、それぞ
れの室内機A。
(Function) As shown by the dotted arrows in FIG. Condensate and liquefy in step 3. The refrigerant liquid thus obtained is stored in two receiver tanks 4a and 4b. After this, the refrigerant liquid is distributed to each indoor unit A.

Bに対応する電動膨張弁6a、6bにて減圧し、室内熱
交換器7.8において低圧蒸気となり、再び四方弁2を
介して圧縮機1に戻る。
It is depressurized by the electric expansion valves 6a and 6b corresponding to B, becomes low-pressure steam in the indoor heat exchanger 7.8, and returns to the compressor 1 via the four-way valve 2 again.

この際、第2図に示すように、マイコン制御部13の圧
縮機周波数制御部14には、室内機Aの設定温度(T 
I a )とその室内の実測室温(TRa)、室内機B
の設定温度(Tlb)とその室内の実測室温(TRb)
とが入力される。一方、膨張弁開閉制御部15には、電
動膨張弁6a、6bの出口バイブに取付けた温度センサ
16a、16bから得られる温度(TA)、(TB)と
圧縮機1の吸込パイプに取付けた温度センサ9から得ら
れる温度(TS)とが入力される。このうち、圧縮機周
波数制御部14では、室内機Aの室内負荷(TRa−T
la)と室内機Bの室内負荷(TRb−Tlb)とによ
って圧縮機1の出力を制御するとともに、各室内負荷(
TRa −T I a)、 (TRb−Tlb)を各室
内負荷係数a、bに変換して膨張弁開閉制御部15に出
力する。一方、膨張弁開閉制御部15では、各電動膨張
弁6a、6bの出口温度(TA)、(TB)の平均値(
TA+TB)/2と圧縮機1の吸込温度(TS)との差
から得られる過熱度が一定となるように冷凍バランスを
保ちつつ、各室内負荷係数a、bの負荷比に応じて各電
動膨張弁6a、6bの開閉度を制御し、これによって冷
房運転が行われる。次に、暖房運転の場合、第1図に実
線矢印で示すように、冷媒蒸気の流れは、冷房運転の場
合と逆方向になり、室内熱交換器7.8で凝縮液化し、
室外熱交換器3で低圧蒸気となる。その他各部の働きは
、上記冷房運転の場合と制御特性が異なる以外は同様で
ある。
At this time, as shown in FIG.
I a ), the actual measured room temperature in the room (TRa), and indoor unit B
The set temperature (Tlb) and the actual measured room temperature (TRb)
is input. On the other hand, the expansion valve opening/closing control unit 15 stores the temperatures (TA) and (TB) obtained from temperature sensors 16a and 16b attached to the outlet vibrators of the electric expansion valves 6a and 6b, and the temperature attached to the suction pipe of the compressor 1. The temperature (TS) obtained from the sensor 9 is input. Of these, the compressor frequency control section 14 controls the indoor load (TRa-T) of the indoor unit A.
The output of the compressor 1 is controlled by the indoor load (TRb-Tlb) of the indoor unit B and the indoor load (
TRa - T I a), (TRb - Tlb) are converted into respective indoor load coefficients a and b and output to the expansion valve opening/closing control section 15. On the other hand, in the expansion valve opening/closing control section 15, the average value (
While maintaining the refrigeration balance so that the degree of superheat obtained from the difference between TA+TB)/2 and the suction temperature (TS) of compressor 1 is constant, each electric expansion is performed according to the load ratio of each indoor load coefficient a and b. The degree of opening and closing of the valves 6a and 6b is controlled, thereby performing cooling operation. Next, in the case of heating operation, as shown by the solid arrow in Fig. 1, the flow of refrigerant vapor is in the opposite direction to that in cooling operation, and is condensed and liquefied in the indoor heat exchanger 7.8.
It becomes low pressure steam in the outdoor heat exchanger 3. The functions of the other parts are the same as in the case of the cooling operation described above except for the control characteristics.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、二基冷暖房装置の全体構成の概略を示す回路
図である。
FIG. 1 is a circuit diagram schematically showing the overall configuration of a two-unit air conditioning system.

同図において点線矢印で示すように、冷房運転の場合、
圧縮機lにより圧縮された冷媒蒸気は、四方弁2を介し
て室外熱交換器3にて凝縮液化し、レシーバ−タンク4
a、4bに導かれる。その後、冷媒は、それぞれ電動膨
張弁6a、6bにて減圧され、各室内機A、Bの室内熱
交換器7,8にて蒸発し、分岐管18にて合流した後、
再び四方弁2を介して圧縮機lに戻る。
As shown by the dotted arrow in the figure, in the case of cooling operation,
The refrigerant vapor compressed by the compressor 1 is condensed and liquefied in the outdoor heat exchanger 3 via the four-way valve 2, and then transferred to the receiver tank 4.
a, lead to 4b. Thereafter, the refrigerant is depressurized by the electric expansion valves 6a and 6b, evaporated in the indoor heat exchangers 7 and 8 of each indoor unit A and B, and then merged in the branch pipe 18.
It returns to the compressor l via the four-way valve 2 again.

この際、圧縮機1の周波数及び電動膨張弁6a。At this time, the frequency of the compressor 1 and the electric expansion valve 6a.

6bの開閉度は、次のようにして決定される。The opening/closing degree of 6b is determined as follows.

すなわち、第1図及び第2図に示すように、マイコン制
御部13の圧縮機周波数制御部14に、各室温設定器1
2a、12bでの設定温度(Tla)、(T I b)
と、各室内温度センサIla、11bから得られる実測
室温(TRa)、(TRb)とが入力され、膨張弁開閉
制御部15に、各膨張弁6a、6bの出口バイブに取付
けられた温度センサ16a、16bから得られる温度(
TA)、(TB)と、圧縮機1の吸込パイプに取付けら
れた温度センサ9から得られる温度(TS)とが入力さ
れる。
That is, as shown in FIGS. 1 and 2, each room temperature setting device 1 is connected to the compressor frequency control section 14 of the microcomputer control section 13.
Set temperature at 2a and 12b (Tla), (T I b)
and the actual measured room temperature (TRa), (TRb) obtained from each indoor temperature sensor Ila, 11b are input, and the temperature sensor 16a attached to the outlet vibrator of each expansion valve 6a, 6b is inputted to the expansion valve opening/closing control section 15. , 16b (
TA), (TB), and the temperature (TS) obtained from the temperature sensor 9 attached to the suction pipe of the compressor 1 are input.

このうち、圧縮機周波数M a11部14では、表1に
示されるような関係に基づいて、各室温設定器12a、
12bでの設定温度と各室内の実測室温との差(TRa
−Tl a)、(TRb−Tl b)を各室内の負荷と
してとらえ、その範囲を負荷係数a、bに置換える。そ
して、表2に示すように、各負荷係数の合計から圧縮機
lの周波数fを決定する。
Among these, in the compressor frequency M a11 section 14, based on the relationship shown in Table 1, each room temperature setting device 12a,
The difference between the set temperature at 12b and the actual room temperature in each room (TRa
-Tl a) and (TRb-Tl b) are taken as the loads in each room, and their ranges are replaced by load coefficients a and b. Then, as shown in Table 2, the frequency f of the compressor l is determined from the sum of each load coefficient.

(以下余白) 表  1 表  2 [ 一方、膨張弁開閉制御部15では、圧縮機周波数制御部
14で得られた各室内機A、Bの負荷係数a、bの信号
を受け、各電動膨張弁6a、6bの開閉度c、dの割合
を決定する。この各電動膨張弁6a、6bの開閉度c、
dの割合を決定するに当たっては、第3図に示すように
、各膨張弁6a、6bの出口温度(TA)、(TB)の
平均温度(TA+TB)/2と圧縮機1の吸込温度(T
S)との差から得られる過熱度を一定値に保つ冷媒流量
の理想特性図を予め求めておく。そして、この理想特性
図に基づいて上記負荷係数a、bと膨張弁開閉度c、d
との関係を求め、この関係に基づいて決定した第4図に
示す制御特性図によって決定する。なお、第4図は第3
図に示す理想特性図に基づいて作成した制御特性図であ
る。
(Margin below) Table 1 Table 2 [On the other hand, the expansion valve opening/closing control unit 15 receives the signals of the load coefficients a and b of each indoor unit A and B obtained by the compressor frequency control unit 14, and controls each electric expansion valve. Determine the ratio of opening/closing degrees c and d of 6a and 6b. The opening/closing degree c of each electric expansion valve 6a, 6b,
In determining the ratio of d, as shown in FIG.
An ideal characteristic diagram of the refrigerant flow rate that maintains the degree of superheating obtained from the difference with S) at a constant value is determined in advance. Then, based on this ideal characteristic diagram, the load coefficients a, b and the expansion valve opening/closing degrees c, d are
This is determined based on the control characteristic diagram shown in FIG. 4, which is determined based on this relationship. In addition, Figure 4 is the third
It is a control characteristic diagram created based on the ideal characteristic diagram shown in the figure.

次に、暖房運転の場合、第1図に実線矢印で示すように
、圧縮機1により圧縮された冷媒蒸気は、四方弁2を介
して分岐管1日で分岐した後、各室内機A、Bの室内熱
交換器7,8にて凝縮液化し、レシーバ−タンク4a、
4bに導かれる。その後、冷媒は、それぞれの電動膨張
弁6a、6bにて減圧され、室外熱交換器3にて蒸発し
、再び四方弁2を介して圧縮機1に戻る。
Next, in the case of heating operation, as shown by the solid line arrow in FIG. Condensed and liquefied in the indoor heat exchangers 7 and 8 of B, the receiver tank 4a,
Guided by 4b. Thereafter, the refrigerant is depressurized by the electric expansion valves 6a and 6b, evaporated in the outdoor heat exchanger 3, and returned to the compressor 1 via the four-way valve 2 again.

この際、圧縮機1の周波数及び電動膨張弁6a。At this time, the frequency of the compressor 1 and the electric expansion valve 6a.

6bの開閉度は冷房運転時と同様にして決定される。The opening/closing degree of 6b is determined in the same manner as during cooling operation.

ただし、冷媒の流れが逆方向であるため、冷媒流量の理
想特性図は第5図に示すような特性図になる。そのため
、制御特性図も第6図に示すような特性図になる。
However, since the flow of the refrigerant is in the opposite direction, the ideal characteristic diagram of the refrigerant flow rate is as shown in FIG. Therefore, the control characteristic diagram also becomes a characteristic diagram as shown in FIG.

次に、上記実施例と同一特性の二基冷暖房装置に基づい
て電動膨張弁6a、6bの開閉度c、  dを決定する
具体例を示す。
Next, a specific example will be shown in which the opening/closing degrees c and d of the electric expansion valves 6a and 6b are determined based on a two-unit air conditioning system having the same characteristics as those of the above embodiment.

〔第1具体例〕 冷房時において、室内機Aの負荷(TRa−TIa)が
7±0.5degであり、室内機Bの負荷(TRb−T
 I b)が3±0.5degである場合、それぞれの
負荷係数a、bは表1より室内機Aが9、室内機Bが5
となる。また、この時の圧縮機周波数fは、負荷係数a
、bの合計が14なので表2より80七と決定される。
[First specific example] During cooling, the load on indoor unit A (TRa-TIa) is 7±0.5 deg, and the load on indoor unit B (TRb-T
When Ib) is 3±0.5deg, the respective load coefficients a and b are 9 for indoor unit A and 5 for indoor unit B from Table 1.
becomes. Also, the compressor frequency f at this time is the load coefficient a
, b is 14, so from Table 2 it is determined to be 807.

そして、第4図から室内機Aの膨張弁開閉度Cの係数は
13、室内機Bの膨張弁開閉度dの係数は6と決定され
、冷媒流量の分配が行われる。
Then, from FIG. 4, the coefficient of the expansion valve opening/closing degree C of indoor unit A is determined to be 13, and the coefficient of the expansion valve opening/closing degree d of indoor unit B is determined to be 6, and the refrigerant flow rate is distributed.

〔第2具体例] 暖房時において、室内機Aの負荷(TRa−TIa)が
7±0.5degであり、室内機Bの負荷(TRb−T
lb)が3±0.5degである場合、それぞれの負荷
係数は表1より室内機Aが9、室内機Bが5となる。ま
た、この時の圧縮機周波数は、負荷係数の合計が14な
ので表2より5ol(zと決定される。そして、第6図
から室内機Aの膨張弁開閉度fの係数は12、室内機B
の膨張弁開閉度dの係数は5と決定され、冷媒流量の分
配が行われる。
[Second specific example] During heating, the load on indoor unit A (TRa-TIa) is 7±0.5deg, and the load on indoor unit B (TRb-T
lb) is 3±0.5deg, the respective load coefficients are 9 for indoor unit A and 5 for indoor unit B from Table 1. In addition, the compressor frequency at this time is determined as 5ol(z) from Table 2 since the total load coefficient is 14.And from Fig. 6, the coefficient of the expansion valve opening/closing degree f of indoor unit A is 12, B
The coefficient of the expansion valve opening/closing degree d is determined to be 5, and the refrigerant flow rate is distributed.

(発明の効果) 以上述べたように、本発明によれば、各室の室内機の負
荷に応じた電動膨張弁の開閉度を決定することにより、
二基同時運転において、より細かな能力可変が可能とな
り、各室の快適性が向上する。また、室内配管及び室外
配管の抵抗の変化などにより、各室内機の冷暖房能力が
アンバランスになっても、室内機の負荷に見合った冷媒
流量が得られるため、安定した冷暖房能力が確保される
(Effects of the Invention) As described above, according to the present invention, by determining the opening/closing degree of the electric expansion valve according to the load of the indoor unit in each room,
Simultaneous operation of two units allows for finer adjustment of capacity, improving comfort in each room. In addition, even if the heating and cooling capacity of each indoor unit becomes unbalanced due to changes in the resistance of indoor and outdoor piping, a refrigerant flow rate commensurate with the load of the indoor unit can be obtained, ensuring stable heating and cooling capacity. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は本発明の図面を示し、第1図は二
基冷暖房装置の全体構成の概略を示す図、第2図はマイ
コン制御部の概略ブロック図、第3図は冷房運転時の圧
縮機の周波数における各室内機への冷媒流量の理想値及
びそれに対応する各室の膨張弁開閉度の関係を示す曲線
図、第4図は冷房運転時の圧縮機の周波数における各室
内機の膨張弁開閉度及びそれに対応する負荷係数の関係
を示す曲線図、第5図は暖房運転時の圧縮機の周波数に
おける各室内機への冷媒流量の理想値及びそれに対応す
る各室の膨張弁開閉度の係数の関係を示す曲線図、第6
図は暖房運転時の圧縮機の周波数における各室内機の膨
張弁開閉度の係数及びそれに対応する負荷係数の関係を
示す曲線図である。 第7図は従来の二基冷暖房装置の全体構成の概略を示す
図、第8図は従来のマイコン制御部の概略ブロック図で
ある。 1・・・圧縮機 3・・・室外熱交換器 4a、4b・・・レシーバ−タンク 5・・・暖房用膨張弁 6・・・電動膨張弁 7.8・・・室内熱交換器 9・・・圧縮機吸込バイブ表面温度センサ11a、ll
b・・・室内温度センサ 12a、12b・・・室内温度設定器 13・・・マイコン制御部 14・・・圧縮機周波数制御部 15・・・膨張弁開閉制御部 16a、16b・・・膨張弁出ロバイブ表面温度センサ
第2図 !l¥ 0 電 ++1llll L瘍体ゴトぜ℃ヱ ♀  ♀  (OuD   臂  
N  0第7図 第8図
Figures 1 to 6 show drawings of the present invention, Figure 1 is a diagram showing the outline of the overall configuration of the two-unit air conditioning system, Figure 2 is a schematic block diagram of the microcomputer control section, and Figure 3 is the cooling operation. Figure 4 is a curve diagram showing the relationship between the ideal value of the refrigerant flow rate to each indoor unit at the frequency of the compressor and the corresponding opening/closing degree of the expansion valve in each room at the frequency of the compressor during cooling operation. A curve diagram showing the relationship between the opening/closing degree of the expansion valve of the machine and the corresponding load coefficient. Figure 5 shows the ideal value of the refrigerant flow rate to each indoor unit and the corresponding expansion of each room at the frequency of the compressor during heating operation. Curve diagram showing the relationship between coefficients of valve opening/closing degree, No. 6
The figure is a curve diagram showing the relationship between the expansion valve opening/closing coefficient of each indoor unit and the corresponding load coefficient at the frequency of the compressor during heating operation. FIG. 7 is a diagram schematically showing the overall configuration of a conventional two-unit air-conditioning system, and FIG. 8 is a schematic block diagram of a conventional microcomputer control section. 1...Compressor 3...Outdoor heat exchanger 4a, 4b...Receiver tank 5...Heating expansion valve 6...Electric expansion valve 7.8...Indoor heat exchanger 9. ...Compressor suction vibe surface temperature sensor 11a, ll
b... Indoor temperature sensor 12a, 12b... Indoor temperature setter 13... Microcomputer control section 14... Compressor frequency control section 15... Expansion valve opening/closing control section 16a, 16b... Expansion valve Diagram 2 of the external vibe surface temperature sensor! l¥ 0 Den++1lllll L tumor body stiff ℃ヱ ♀ ♀ (OuD armpit
N 0 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1)1台の室外機に2台の室内機が各々電動膨張弁を介
して接続され、圧縮機により圧縮された冷媒を各室内熱
交換器もしくは室外熱交換器で凝縮させ、さらに上記冷
媒を各電動膨張弁で膨張、減圧させた後、上記室外熱交
換器もしくは各室内熱交換器で蒸発させて各室内の暖房
もしくは冷房を行うようにした冷暖房装置において、上
記電動膨張弁の開閉度は、各室内機に設置された室温設
定器の設定温度と実際の室内温度との差から得られる各
室内機の負荷の比により決定されることを特徴とする二
室冷暖房装置。
1) Two indoor units are connected to one outdoor unit through electric expansion valves, and the refrigerant compressed by the compressor is condensed in each indoor heat exchanger or outdoor heat exchanger, and the refrigerant is further In an air-conditioning system that heats or cools each room by expanding and reducing pressure with each electric expansion valve and then evaporating it with the outdoor heat exchanger or each indoor heat exchanger, the opening/closing degree of the electric expansion valve is A two-room air conditioning/heating system characterized in that the load ratio of each indoor unit is determined based on the difference between the set temperature of a room temperature setting device installed in each indoor unit and the actual indoor temperature.
JP15100188A 1988-06-17 1988-06-17 Two-room cooler-heater Pending JPH01318861A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15100188A JPH01318861A (en) 1988-06-17 1988-06-17 Two-room cooler-heater
US07/367,141 US4926653A (en) 1988-06-17 1989-06-16 Multi-room type air-conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15100188A JPH01318861A (en) 1988-06-17 1988-06-17 Two-room cooler-heater

Publications (1)

Publication Number Publication Date
JPH01318861A true JPH01318861A (en) 1989-12-25

Family

ID=15509119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15100188A Pending JPH01318861A (en) 1988-06-17 1988-06-17 Two-room cooler-heater

Country Status (1)

Country Link
JP (1) JPH01318861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241002A (en) * 1999-02-19 2000-09-08 Daikin Ind Ltd Multiple air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124937A (en) * 1984-07-16 1986-02-03 Mitsubishi Electric Corp Control of multiple room air-conditioning system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124937A (en) * 1984-07-16 1986-02-03 Mitsubishi Electric Corp Control of multiple room air-conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241002A (en) * 1999-02-19 2000-09-08 Daikin Ind Ltd Multiple air conditioner

Similar Documents

Publication Publication Date Title
KR960010638B1 (en) Air-conditioning apparatus capable of performing a dehumidifying operation
US7062930B2 (en) System and method for using hot gas re-heat for humidity control
JPWO2017216861A1 (en) Air conditioner
WO2019193712A1 (en) Air conditioning device
US4926653A (en) Multi-room type air-conditioning equipment
JPH01318861A (en) Two-room cooler-heater
JP2000018766A (en) Air conditioner
WO2016207947A1 (en) Air-conditioning apparatus
JPH08189717A (en) Heat pump type air-conditioner
JPH031055A (en) Cooling and heating apparatus
JPH02272250A (en) Two room cooling and heating device
JPH04214153A (en) Refrigerating cycle device
JPH02161262A (en) Multi-room air conditioning apparatus
JP7370505B1 (en) air conditioner
JPH0579894B2 (en)
JPH07117312B2 (en) Multi-room air conditioner
JPH03170753A (en) Air conditioner
JPH055417Y2 (en)
JPH0480569A (en) Air-conditioning machine
JPH01127866A (en) Cold and hot simultaneous type multi-chamber air conditioner
JPH04313651A (en) Multi-chamber type cooling and heating device
JPH07280366A (en) Controlling method for refrigerating cycle
JPS5850211Y2 (en) Air conditioner
JPH085184A (en) Multi-room type air conditioner
JPH05215432A (en) Engine-driven air conditioner