JPH01317689A - Production of clad material - Google Patents

Production of clad material

Info

Publication number
JPH01317689A
JPH01317689A JP15004988A JP15004988A JPH01317689A JP H01317689 A JPH01317689 A JP H01317689A JP 15004988 A JP15004988 A JP 15004988A JP 15004988 A JP15004988 A JP 15004988A JP H01317689 A JPH01317689 A JP H01317689A
Authority
JP
Japan
Prior art keywords
heating
heated
temperature
aluminum
clad material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15004988A
Other languages
Japanese (ja)
Inventor
Yuji Ishizaka
石坂 雄二
Yukio Sakimoto
咲本 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP15004988A priority Critical patent/JPH01317689A/en
Publication of JPH01317689A publication Critical patent/JPH01317689A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To produce the good clad material by selectively heating at least one of different metallic plate materials by induction heating before or after superposing, then subjecting the materials to pressurized joining. CONSTITUTION:The plate materials consisting of the different metals having a difference in hardness at ordinary temp., for example, an austenitic stainless steel 1 and aluminum 2 are superposed and are pressurized by press rolls 6 to form the clad material 8. Before the stainless steel 1 which is one of the metallic plate is superposed, the steel is heated in a TRC heating section 10 of the induction heating means and thereafter, the metallic plates are press- joined by the press rolls 6. The induction heating may be executed after the superposition or the heating of both of the plural metallic plates is equally satisfactory. The good clad material is produced in this way.

Description

【発明の詳細な説明】 紅 産業上の利用分舒 本発明は、金属板材の性質に応じて選択的に加熱を施し
た後、加圧接合するクラッド材の圧延製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION Industrial Application The present invention relates to a method for rolling a cladding material in which metal plates are selectively heated according to their properties and then pressure bonded.

B9発明の概要 本発明は、常温での硬度に差のある異種の金属板材より
クラッド材を製造するに際し、これらを全体的、総体的
に加熱するのではなく、その性質に応じ、あるいはその
性質を利用して選択的に誘導加熱後に加圧接合するので
、所望の条件のクラッド材を製造することができろ。
B9 Summary of the Invention The present invention, when manufacturing cladding materials from different types of metal sheet materials that differ in hardness at room temperature, does not heat them as a whole, but rather heats them according to their properties or their properties. Since pressure bonding is performed selectively after induction heating using , it is possible to manufacture cladding materials with desired conditions.

C1従来の技術 従来より金属材料において単体では得ることが困難な特
性、例えば高い強度と共に優れた耐食性を併有する材料
を得るため、異なる種類の金属板材を加圧接合や圧延に
よって一体化したクラッド材が提供されている。
C1 Conventional technology A cladding material in which different types of metal plates are integrated by pressure bonding or rolling in order to obtain a material that has properties that are difficult to obtain with metal materials alone, such as high strength and excellent corrosion resistance. is provided.

このクラッド材をロールによる冷間加圧接合等の方法で
製造する場合、硬度が高(変形抵抗の大きい金属板材が
含まれていると接合のために大きな加圧力を加えること
が必要となり、大規模な圧延機を要したり、または接合
できる金属板材の幅や厚さに制限が生じる。
When manufacturing this clad material by a method such as cold pressure bonding using rolls, it is difficult to manufacture the clad material because of its high hardness (if it contains metal plates with high deformation resistance, it is necessary to apply a large pressure force for bonding, A large-scale rolling mill is required, or there are restrictions on the width and thickness of the metal plates that can be joined.

そこて金属板材を加温して温間加圧接合す永方法が行な
われている。そして加熱のために第11図に示す装置が
用いられていた。即ち、性質の異なる金属板材101,
102,103は重ね合せられて燃焼炉あるいは電気炉
からなる加熱炉104を通過して、加熱され、その後ロ
ールからなる加圧機構によって加圧され、一体止したク
ラッド材106となっていた。加熱炉104としては、
輻射又は熱ガスの対流による加熱手段あるいは両者を併
用した手段が用いられていた。加熱炉104は、金属板
材101,102,103の全てが均−m度になる充分
な炉長を備えていた。
Therefore, a conventional method has been used in which metal plates are heated and bonded under warm pressure. A device shown in FIG. 11 was used for heating. That is, metal plate materials 101 with different properties,
102 and 103 were overlapped, passed through a heating furnace 104 consisting of a combustion furnace or an electric furnace, heated, and then pressurized by a pressure mechanism consisting of rolls to form a cladding material 106 that was fixed together. As the heating furnace 104,
Heating means using radiation, convection of hot gas, or a combination of both have been used. The heating furnace 104 had a sufficient furnace length so that all of the metal plates 101, 102, and 103 were uniformly heated.

D、 発明が解決しようとする課題 しかしながら、従来の方法では、複数の金属板材101
,102,103を均一な温度に全体的に加熱するので
、性質(例えば硬度)の異なる金属板材を使用すると接
合が困難ないしは不適切となることがあった。例えば、
アルミニウムと鉄鋼など硬度即ち変形抵抗の著しく異な
る金属板材を重ね合せて接合する場合、変形抵抗は温度
の上昇に併って低下するが、いずれの金属板材も同じ温
度に加熱されるので、鉄鋼はほとんど変形しないのに対
しアルミニウムが大きく変形していた。このように変形
量が大きく異なると良好なりラッド材といえず、また、
アルミニウムの変形を抑えようとして、加圧力を低下さ
せると接合が困難となる。
D. Problems to be Solved by the Invention However, in the conventional method, a plurality of metal plates 101
, 102, and 103 are heated to a uniform temperature as a whole, if metal plates having different properties (for example, hardness) are used, joining may be difficult or inappropriate. for example,
When joining metal plates such as aluminum and steel, which have significantly different hardness or deformation resistance, the deformation resistance decreases as the temperature increases, but since both metal plates are heated to the same temperature, steel Aluminum was significantly deformed, whereas aluminum was hardly deformed. If the amount of deformation differs greatly in this way, it cannot be said to be a good rad material, and
If the pressing force is lowered in an attempt to suppress the deformation of aluminum, joining becomes difficult.

一方、上記加熱炉104は輻射又は熱ガスとの対流によ
って加熱するので、両板の金属板材101,103は効
率よく昇温するが、中央の金属板材102は熱伝導によ
るので昇温の効率が低かった。また、全ての金属板材1
01.102,103が同一温度にまで加熱されるまで
充分な時間をかけて加熱するので加熱炉104の炉長を
長く必要とし、その占有面積を多く必要としていた。
On the other hand, since the heating furnace 104 heats by radiation or convection with hot gas, the temperature of both metal plates 101 and 103 is raised efficiently, but the temperature of the central metal plate 102 is raised by heat conduction, so the temperature is not raised efficiently. It was low. In addition, all metal plate materials 1
01, 102, and 103 are heated to the same temperature over a sufficient period of time, the length of the heating furnace 104 is required to be long, and a large area is required.

そこで、これらの問題を解決する加熱方法として誘導加
熱が提案されている。ここで誘導加熱は、交番磁界を金
属板材に加えて、過電流損で発熱させる方法であるが、
磁束の方向により横断磁束加熱(Transverse
 Flux Heating:以下TRC加熱という)
又は縦断磁束加熱(Londitudinal Flu
x Heating:以下LNC加熱という)に分けら
れている。
Therefore, induction heating has been proposed as a heating method to solve these problems. Induction heating is a method in which an alternating magnetic field is applied to a metal plate to generate heat due to overcurrent loss.
Transverse magnetic flux heating depending on the direction of magnetic flux.
Flux Heating (hereinafter referred to as TRC heating)
Or longitudinal magnetic flux heating (Londitural Flu
x Heating (hereinafter referred to as LNC heating).

しかし、これらTRC加熱、LNC加熱では加熱の対象
の種類によっては、効率が極端に悪く、また局部的加熱
が生じていた。例えば非磁性材の低電気抵抗部材(10
μΩ・−未満)や磁性材を中周波数(1500〜500
〇七)のTRC加熱すると、エツジ部にオーバーと−ト
が発生し易い。また、非磁性材の高電気抵抗部材(10
μΩ・am以上)を低周波数(300〜1000七)の
TRC加熱すると、効率が30%以下と悪くなる。更に
、非磁性材をLNG加熱すると、高周波(Mセ)で加熱
しなければならず、効率も30%以下と悪かった。
However, these TRC heating and LNC heating have extremely poor efficiency depending on the type of object to be heated, and local heating may occur. For example, a low electrical resistance member (10
less than μΩ・-) and magnetic materials at medium frequencies (1500 to 500
〇7) TRC heating tends to cause overheating at the edges. In addition, a high electrical resistance member made of non-magnetic material (10
When TRC heating is carried out at a low frequency (300 to 10007), the efficiency decreases to 30% or less. Furthermore, when a non-magnetic material is heated with LNG, it must be heated with high frequency (Mce), and the efficiency is poor at 30% or less.

本発明は、上記実情に鑑みてなされたもので、複数の金
属板材をその性質に応じて選択的に加熱することができ
、加熱に際しては金属板材の特性に適合した誘導加熱方
法により金属板材を選択的に加熱した後に加圧接合する
クラッド材の製造方法を提供することを目的とするもの
である。
The present invention has been made in view of the above circumstances, and is capable of selectively heating a plurality of metal plates according to their properties, and when heating, the metal plates are heated using an induction heating method that is suitable for the characteristics of the metal plates. The object of the present invention is to provide a method for manufacturing a cladding material that is selectively heated and then pressure bonded.

E、 上記課題を解決するための手段及びその作用 本発明では、常温での硬度に差のある複数の金属板材を
重ね合せた後、これらを加圧して一体化したクラッド材
とする方法において、重ね合せる前又は後に少なくとも
1つの金属板材、例えば他よりも硬度の大きいものを選
択的に誘導加熱することによって常温での変形抵抗が大
である金属板材の変形抵抗を下げて、複数の異なる金属
板材の変形抵抗の差違を減らした状態で加圧ロール間に
搬送して加圧接合を行なうものである。ここで、誘導加
熱としてTRC加熱又はLNC加熱を用いることによし
性質の異なる複数の加熱対象の材質に対して適当な加熱
方法を選択できると共にまた重ね合せた後にも選択的に
加熱することができる。
E. Means for solving the above-mentioned problems and their operation In the present invention, in a method of laminating a plurality of metal plate materials having different hardness at room temperature and then pressurizing them to form an integrated cladding material, By selectively inductively heating at least one metal plate material, for example one with a higher hardness than the others, before or after stacking, the deformation resistance of the metal plate material that has high deformation resistance at room temperature is lowered, and multiple different metals can be combined. In this method, the plates are conveyed between pressure rolls in a state in which the difference in deformation resistance between the plates is reduced, and pressure bonding is performed. Here, by using TRC heating or LNC heating as induction heating, it is possible to select an appropriate heating method for a plurality of materials to be heated that have different properties, and it is also possible to selectively heat the materials after they are stacked. .

F、*施例 以下、本発明の実施例について図面を参照して詳細に説
明する。
F. *Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図に本発明の第1の実施例を示す。第1図は2種類
の金属板材よりクラッド材を製造する装置である。即ち
、板状をなすオーステナイト系ステンレスfilとアル
ミニウム(または鋼) 2が繰出ロール3,4から各々
繰り出されて、ガイドロール5により、案内されて重ね
合せられ、その後、加圧ロール6を有する圧延機7にて
加圧されて接合し一体化したクラッド材8となり巻取ロ
ール9に巻き取られてゆく。ここで、オーステナイト系
ステンレス#lllは常温での硬度がビッカース硬度(
Hv)160程度で変形抵抗が著しく大きいのに対し、
アルミニウム(または銅)   ゛は常温でも硬度がビ
ッカース硬度(Hv)40程度で変形抵抗が小さい。こ
のため、そのまま加圧すると、アルミニウム(または銅
)の変形が大きくなり過ぎることとなる。そこで、本’
Amfl’4では、オーステナイト系ステンレス鋼1を
重ね合せる前において、加熱して変形抵抗を下げるため
TFLC加熱部加熱及10イドローラ11を設けている
。このTRC加熱加工部10中周波数(1500〜50
00Hz)のTRC加熱によりオーステナイト系ステン
レス鋼1を昇温させる。加熱温度は、圧延時に250℃
以下で充分な効果が得られた。この後、圧延機7によっ
てアルミニウム(又は鋼)2と加圧されるが、変形抵抗
が低下しているため良好に接合することとなる。更に、
本実施例で誘導加熱としてTRC加熱を行ったのは次の
理由による。即ち、本発明者が先に出願した特願昭62
−227980号又は特願昭62−227981号に示
したように、誘導加熱方法および加熱のための電力の周
波数とその対象との間には適合性があってこれを適切に
選ばないと有効に加熱することができないからである。
FIG. 1 shows a first embodiment of the present invention. FIG. 1 shows an apparatus for manufacturing cladding material from two types of metal plate materials. That is, plate-shaped austenitic stainless steel fil and aluminum (or steel) 2 are each paid out from payout rolls 3 and 4, guided by guide rolls 5 and overlapped, and then rolled with a pressure roll 6. The clad material 8 is pressurized and joined by a machine 7 to become an integrated cladding material 8, which is then wound onto a winding roll 9. Here, the hardness of austenitic stainless steel #1ll at room temperature is Vickers hardness (
Hv) 160, the deformation resistance is extremely large,
Aluminum (or copper) has a hardness of about 40 Vickers hardness (Hv) even at room temperature, and has low deformation resistance. Therefore, if pressure is applied as is, the deformation of aluminum (or copper) will become too large. So, the book'
In Amfl'4, a TFLC heating section and a 10-id roller 11 are provided in order to heat the austenitic stainless steel 1 and lower the deformation resistance before stacking the austenitic stainless steel 1 on top of each other. This TRC heating processing part 10 medium frequency (1500~50
The austenitic stainless steel 1 is heated by TRC heating at a frequency of 0.00 Hz). The heating temperature is 250℃ during rolling.
A sufficient effect was obtained with the following. Thereafter, it is pressed with the aluminum (or steel) 2 by the rolling mill 7, but since the deformation resistance is reduced, the bonding is good. Furthermore,
The reason why TRC heating was performed as induction heating in this example is as follows. That is, the patent application filed earlier by the inventor in 1982
As shown in No. 227980 or Japanese Patent Application No. 62-227981, there is compatibility between the induction heating method, the frequency of electric power for heating, and the object, and it will not be effective unless it is selected appropriately. This is because it cannot be heated.

その関係を表−1に示すように、非磁性体高抵抗率部材
であるオーステナイト系ステンレスflI41に対して
は、中周波数のTRC加熱が適している。そこで、上述
したようにTRC加熱加工部10けたのである。
As shown in Table 1, medium-frequency TRC heating is suitable for austenitic stainless steel flI41, which is a non-magnetic high resistivity member. Therefore, as mentioned above, the TRC heating processing area was increased by 10 digits.

第1表 次に、第2図を参照して第2の実施例を説明する。本実
施例は2種3枚の金属板材によるクラッド材を製造する
ものである。即ち、板状をなすアルミニウム(又は銅)
12とその上下において炭素鋼13,14が繰出0−ル
15,16,17から繰り出され、ガイドロール18に
案内されて3重に重ね合された後、加圧ロール19によ
り加圧されて接合し、一体のクラッド材20となって巻
取ロール21に巻き取られる。ここで炭素fi13.1
4は常温での硬度がビッカース硬度(Hv)160程度
と著しく大きい。そこで、重ね合せられる前の炭素fR
13,14を加熱するLNGN熱加熱2.23が設けら
れている。これらのLNGN熱加熱2.23には炭素鋼
板13゜14の厚みに応じた周波数の電力を供給して炭
素鋼13.14を加熱する。加熱温度としては、加圧時
に250℃以下で充分な効果が得られた。その後、加熱
されて変形抵抗の小さくなった炭素鋼13,14は加圧
ローラ19によって加圧され、アルミニウム12と良好
に接合することとなる。本実施例で誘導加熱としてLN
G加熱を用いたのは、上記表−1に示すように、磁性材
である炭素fi13.14に対してはLNC加熱の適合
性が良いからである。
Table 1 Next, a second embodiment will be described with reference to FIG. In this example, a cladding material made of two types and three metal plates is manufactured. In other words, plate-shaped aluminum (or copper)
12 and above and below it, carbon steels 13 and 14 are fed out from feeding wheels 15, 16 and 17, guided by guide rolls 18 and stacked in three layers, and then pressed by pressure rolls 19 to join them. Then, it becomes an integrated cladding material 20 and is wound around a winding roll 21. Here carbon fi13.1
No. 4 has a significantly high hardness at room temperature of about 160 Vickers hardness (Hv). Therefore, the carbon fR before being superimposed
LNGN thermal heating 2.23 for heating 13 and 14 is provided. These LNGN thermal heaters 2.23 are supplied with power at a frequency corresponding to the thickness of the carbon steel plates 13.14 to heat the carbon steel 13.14. As for the heating temperature, a sufficient effect was obtained at 250° C. or lower during pressurization. Thereafter, the heated carbon steels 13 and 14 whose deformation resistance has been reduced are pressed by a pressure roller 19, and are bonded well to the aluminum 12. In this example, LN is used as induction heating.
The reason why G heating was used is that, as shown in Table 1 above, LNC heating has good compatibility with carbon fi13.14, which is a magnetic material.

次に、第3図を参照して第3の実施例を示す。この実施
例は、第2の実施例の変形例であり、炭素鋼13.14
及びアルミニウム(又は@)12を重ね合せた後に、L
NGN熱加熱4により加熱するようにしたのである。
Next, a third embodiment will be described with reference to FIG. This example is a modification of the second example, and is made of carbon steel 13.14
After overlapping and aluminum (or @) 12, L
Heating was done by NGN thermal heating 4.

即ち、アルミニウム(又は銅)12は非磁性体であるか
ら上記表−1に示すようにLNG加熱と適合性が悪(、
加熱されない。このため、アルミニウム(又は銅)12
はLNC加熱部24を通過しても加熱されず、LNGN
熱加熱4によって加熱されるのは、炭素tR13゜14
t′!けである。このように本実施例では、重ね合せた
後に誘導加熱するので、重ね合せる前に誘導加熱する第
2の実施例に比べ加熱部を一台にできる利点がある。尚
、熱伝導を避けるため各金属板材間には隙間を設けろほ
うが良い0また、アルミニウム(又は銅)12は上下の
炭素鋼13.14からの輻射熱によっていくらかは昇温
する。
In other words, since aluminum (or copper) 12 is a non-magnetic material, it has poor compatibility with LNG heating as shown in Table 1 above.
Not heated. For this reason, aluminum (or copper) 12
is not heated even if it passes through the LNC heating section 24, and the LNGN
Carbon tR13°14 is heated by thermal heating 4.
t'! That's it. In this way, in this embodiment, induction heating is performed after stacking, so there is an advantage that only one heating unit can be used, compared to the second embodiment, in which induction heating is performed before stacking. In addition, it is better to provide a gap between each metal plate to avoid heat conduction.Also, the temperature of the aluminum (or copper) 12 rises to some extent due to the radiant heat from the upper and lower carbon steels 13 and 14.

次に、第4図を参照して第4実施例について説明する。Next, a fourth embodiment will be described with reference to FIG.

本実施例は、3種類の金属板材よりクラッド材を製造す
る方法である。即ち、本実施例で使用する非磁性のニッ
ケル合金25゜アルミニウム26.炭素w427の常温
での硬度に関しては、炭素鋼27〉ニッケル合金25)
アルミニウム26の関係がある。このように常温での硬
度が大きく異なり変形抵抗に差違がある場合、金属板材
の材質に従って加熱する1度を変えて圧延時の変形抵抗
をできるだけ揃えるようにするのが望ましい。そこで非
磁性の高抵抗材としてのニッケル合金25を加熱する1
500〜5000セのTltC加熱部28、および磁性
材としての炭素鋼27を加熱するLNG加熱加熱部会9
け、ニッケル合金25を加熱する温度を例えば200℃
、炭素鋼27を加熱する温度を例えば250℃とした。
This example is a method of manufacturing a cladding material from three types of metal plate materials. That is, the non-magnetic nickel alloy 25° aluminum 26. used in this example. Regarding the hardness of carbon w427 at room temperature, carbon steel 27> nickel alloy 25)
It has to do with aluminum 26. If the hardness at room temperature is large and the deformation resistance is different, it is desirable to change the degree of heating depending on the material of the metal plate so that the deformation resistance during rolling is as uniform as possible. Therefore, a nickel alloy 25 as a non-magnetic high resistance material is heated.
LNG heating heating section 9 that heats the TltC heating section 28 of 500 to 5000 centimeters and the carbon steel 27 as a magnetic material
The temperature at which the nickel alloy 25 is heated is, for example, 200°C.
The temperature at which the carbon steel 27 is heated is, for example, 250°C.

アルミニウム26は炭素鋼27と重なり合ってLNG加
熱加熱部会9過するが、加熱されないのでほぼ常温のま
まである。このように異なる温度に加熱されたニッケル
合金25、アルミニウム26.炭素tf427は加圧ロ
ーラ19による加圧される際、変形抵抗が揃うので良好
に接合されろこととなる。尚、その他の構成は、第2図
に示す第2実施例と同機となっている。
The aluminum 26 overlaps the carbon steel 27 and passes through the LNG heating section 9, but is not heated and therefore remains at approximately room temperature. Nickel alloy 25 and aluminum 26 heated to different temperatures in this way. When the carbon TF427 is pressed by the pressure roller 19, its deformation resistance is uniform, so that it can be bonded well. Note that the other configurations are the same as the second embodiment shown in FIG.

ところで、加熱部から圧延機までの間に搬送される金属
板材は放熱により温度が低下する。特に板材の板幅方向
両端部では放熱量が大きく、温度低下が特に顕著となる
。例えば、加熱部の出口での板幅方向の温度分布が第7
図(alに示すようにほぼ均一であるように加熱された
場合、圧延機入口での温度分布は同図(b)に示すよう
に両端部で低下しtこものとなって好しくない。また、
第6図(alに示すように加熱部出口で板幅方向の温度
分布が両端部で既に低い場合には、圧延機入口では同図
(blに示すように一層低くなってしまい更に不適当な
ものとなる。
By the way, the temperature of the metal plate material conveyed between the heating section and the rolling mill decreases due to heat radiation. In particular, the amount of heat dissipated is large at both ends in the width direction of the plate material, and the temperature drop is particularly significant. For example, the temperature distribution in the board width direction at the exit of the heating section is
When the rolling mill is heated almost uniformly as shown in Figure (al), the temperature distribution at the inlet of the rolling mill decreases at both ends as shown in Figure (b), which is undesirable. Also,
If the temperature distribution in the strip width direction at the exit of the heating section is already low at both ends as shown in Figure 6 (al), the temperature distribution at the entrance of the rolling mill becomes even lower as shown in Figure 6 (bl), making it even more inappropriate. Become something.

そこで、搬送途中における端部での温度低下が他より大
きい分だけを見込んで、第5図(alに示すように加熱
部出口における板幅方向両端部を他の部分よりも50〜
100℃程度高くなるように加熱しておけば、圧延機入
口での温度分布は同図(blに示すようにほぼ均一とな
って良好な圧延接合結果が得られることになる。
Therefore, taking into account the temperature drop at the ends that is larger than the other parts during conveyance, as shown in Fig.
If it is heated to about 100° C. higher, the temperature distribution at the inlet of the rolling mill becomes almost uniform as shown in the same figure (bl), and good rolling joint results can be obtained.

第5図(alに示すように板材の両端部を他の部分より
も高く加熱する方法としては、薄板は誘導加熱によりも
ともと板の両端部がオーバーヒートLiやすい傾向にあ
るので、次の方法が適当である。
As shown in Figure 5 (al), the following method is suitable for heating both ends of a plate to a higher temperature than other parts, since thin plates tend to overheat easily at both ends of the plate due to induction heating. It is.

(1)  周波数を低く抑えて両端部のオーバーヒート
を緩和して両端部の温度が他より適度に高い程度とする
(1) Keep the frequency low to alleviate overheating at both ends so that the temperature at both ends is moderately higher than the others.

(2)第8図(a) (blに加熱部を示すように、磁
束の漏洩を防ぐためにコイル導体48を囲んで鉄心49
が設けられているが、板材50の両端部に対向する部分
の鉄心を取り除いて両端部でのオーバーヒートを緩和す
るようにしても良い。
(2) Fig. 8(a) (As shown in bl, the heating part is heated, the iron core 49 is placed around the coil conductor 48 to prevent leakage of magnetic flux.
However, the iron cores in the portions facing both ends of the plate material 50 may be removed to alleviate overheating at both ends.

(3)横断磁束型フィルに関しては、特願62−855
82号のように板幅方向に延在する複数のコイル導体間
の間隔を広げるか縮めろことにより板幅方向の温度分布
を調整する。
(3) Regarding the transverse magnetic flux type filter, please refer to Japanese Patent Application No. 62-855.
As in No. 82, the temperature distribution in the width direction of the plate is adjusted by widening or reducing the spacing between the plurality of coil conductors extending in the width direction of the plate.

(4)第9図(a)に示すように板材51とコイル52
.53との間隔を両端部はど広くするか、あるいは同図
(blに示すようにその反対に狭くして板幅方向の温度
分布7i−調整する。
(4) As shown in FIG. 9(a), the plate material 51 and the coil 52
.. The temperature distribution 7i in the plate width direction is adjusted by widening the distance from the plate 53 at both ends, or by narrowing it as shown in the figure (bl).

(5)第1θ図に示すように加熱部の直後に、板@54
の両端部のみを加熱する加熱コイル55.56をエツジ
に沿って配置する。
(5) Immediately after the heating section, as shown in Figure 1θ, the plate @54
Heating coils 55, 56 are placed along the edges, heating only the ends of the edge.

上記(1)〜(5)の方法のいずれかの方法を組合せて
使用して第5図(a)に示す加熱分布とするようにして
も良い。
The heating distribution shown in FIG. 5(a) may be obtained by using a combination of any of the methods (1) to (5) above.

G、 発明の効果 以上、実施例に基づいて具体的に説明したように本発明
は性質の異なる金属板材よりクラッド材を製造するに際
し、これらを全体的。
G. Effects of the Invention As described above in detail based on the examples, the present invention is effective in producing a cladding material from metal plate materials having different properties.

総体的に加熱するのでなく、その性質に応じて選択的に
加熱し、夫々の金属板材に適した加圧接合時の温度を設
定し、夫々の温度に選択的に加熱して性質の異る金属板
材の変形抵抗の差異を解消または縮小して良好な加圧接
合を行なうことができる。従ってまた常温での硬度や変
形抵抗に大きな差異のある金属板材を組合せて良好なり
ラッド材を製造することが容易となる。また、金属板材
を加熱するに際して、その板幅方向の両端部の温度を他
の部分より高い温度に加熱し、加圧開始時の板幅方向の
温度分布をほぼ均一な状態として加圧接合を行うことに
より良好なりラッド材を得ることができる。
Instead of heating the entire material, we selectively heat it according to its properties, set the temperature during pressure bonding that is suitable for each metal plate, and selectively heat each metal plate to a different temperature. Good pressure bonding can be achieved by eliminating or reducing the difference in deformation resistance between metal plates. Therefore, it becomes easy to manufacture a good rad material by combining metal plate materials that have large differences in hardness and deformation resistance at room temperature. In addition, when heating metal plates, the temperature at both ends of the plate in the width direction is heated to a higher temperature than the other parts, and the temperature distribution in the plate width direction at the start of pressure is made almost uniform to achieve pressure bonding. By doing so, a good rad material can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図はそれぞれ本発明の第
1.第2.第3.第4の実施例を示す概略構造図、第5
図(al (bl j第6図(a) (b) 、第7図
(al (b)はいずれも板幅方向の温度分布を示すグ
ラフ、第8図(a) (b)はそれぞれ鉄心を一部取り
除いた加熱部の斜視図、正面図、第9図(a) (bl
はそれぞれコイルの間隔が変化する加熱部の説明図、第
10図は板材両端部の追加加熱装置の斜視図、第11図
は従来の加熱方法の説明図である。 図 面 中、 lはオーステナイト系ステンレス鋼、 2.12.26はアルミニウム(又は銅)、3.4,1
5,1[i、17は繰出ロール、5.18はガイドロー
ル、 6.19は加圧ロール、 7は圧延機、 8.20はクラッド材、 9.21は巻取ロール、 10.28はTRC加熱部、 13.14は炭素鋼、 22.23,24.29はLNG加熱部、25はニッケ
ル合金である。 特  許  出  願  人 株式会社  明   電   舎 代     理     人
FIGS. 1, 2, 3, and 4 respectively represent the first embodiment of the present invention. Second. Third. Schematic structural diagram showing the fourth embodiment, fifth
Figure 6 (a) (b) and Figure 7 (al (b) are both graphs showing the temperature distribution in the plate width direction, and Figure 8 (a) and (b) are graphs showing the temperature distribution in the iron core, respectively. A perspective view, a front view, and a front view of the heating section with a portion removed, Fig. 9(a) (bl
FIG. 10 is a perspective view of an additional heating device for both ends of a plate, and FIG. 11 is an explanatory diagram of a conventional heating method. In the drawing, l is austenitic stainless steel, 2.12.26 is aluminum (or copper), 3.4,1
5, 1[i, 17 is a feed roll, 5.18 is a guide roll, 6.19 is a pressure roll, 7 is a rolling machine, 8.20 is a clad material, 9.21 is a take-up roll, 10.28 is a TRC heating section, 13.14 is carbon steel, 22.23, 24.29 is LNG heating section, 25 is nickel alloy. Patent applicant Meidensha Co., Ltd. Agent

Claims (2)

【特許請求の範囲】[Claims] (1)常温での硬度に差のある複数の異種の金属板材を
重ね合せた後、これらを加圧して一体化したクラッド材
とする方法において、重ね合せられる前又は後の前記金
属板材の少なくとも一つを誘導加熱によって選択的に加
熱した後、加圧接合することを特徴とするクラッド材の
製造方法。
(1) In a method in which a plurality of different types of metal plates having different hardnesses at room temperature are stacked together and then pressurized to form an integrated cladding material, at least one of the metal plates before or after being stacked is A method for manufacturing a cladding material, which comprises selectively heating one piece by induction heating and then joining it under pressure.
(2)前記金属板材の板幅方向両端部を他の部分よりも
高い温度に誘導加熱し、加圧開始時において前記金属板
材の板幅方向両端部の温度が他の部分以上であることを
特撮とする特許請求の範囲第1項記載のクラッド材の製
造方法。
(2) Inductively heat both ends of the metal plate in the width direction to a higher temperature than other parts, and make sure that the temperature of both ends of the metal plate in the width direction is higher than the other parts at the start of pressurization. The method for manufacturing a cladding material according to claim 1, which is defined as special effects.
JP15004988A 1988-03-09 1988-06-20 Production of clad material Pending JPH01317689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15004988A JPH01317689A (en) 1988-03-09 1988-06-20 Production of clad material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5369888 1988-03-09
JP63-53698 1988-03-09
JP15004988A JPH01317689A (en) 1988-03-09 1988-06-20 Production of clad material

Publications (1)

Publication Number Publication Date
JPH01317689A true JPH01317689A (en) 1989-12-22

Family

ID=26394413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15004988A Pending JPH01317689A (en) 1988-03-09 1988-06-20 Production of clad material

Country Status (1)

Country Link
JP (1) JPH01317689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167983A (en) * 1990-10-31 1992-06-16 Nippon Stainless Steel Co Ltd Manufacture of complex material of copper/stainless steel
JPH0716765A (en) * 1993-07-01 1995-01-20 Sumitomo Metal Ind Ltd Production of stainless steel aluminum clad material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167983A (en) * 1990-10-31 1992-06-16 Nippon Stainless Steel Co Ltd Manufacture of complex material of copper/stainless steel
JPH0716765A (en) * 1993-07-01 1995-01-20 Sumitomo Metal Ind Ltd Production of stainless steel aluminum clad material

Similar Documents

Publication Publication Date Title
EP0691163B1 (en) Method of and apparatus for joining metal pieces
EP0392009A1 (en) Method of hot rolling high-silicon steel plate
JPH01317689A (en) Production of clad material
US2782497A (en) Method of making clad steel
JP2001006864A (en) Induction heating device
JP2981159B2 (en) Strip plate induction heating device
JP2002043042A (en) Single-turn induction heating coil
JPS62234679A (en) Butt welding method for plate and equipment therefor
JP2000117461A (en) Manufacture of clad plate consisting of aluminum and stainless steel
JP2905377B2 (en) Method of joining billets in hot rolling
JP6528712B2 (en) Iron core for induction heating coil, induction heating coil, and heating apparatus
JP3581973B2 (en) Induction heating device
JPH01159313A (en) Induction heating method of different metal
US20090084774A1 (en) Method for joining dissimilar materials
JP2905400B2 (en) Method and apparatus for joining billets in hot rolling
JPH05161985A (en) Manufacture of clad electric steel sheet
JPH03177518A (en) Induction heating apparatus for preventing buckling at edge part of grain oriented silicon steel plate
JP6812999B2 (en) Induction heating device for metal strips, manufacturing method for metal strips, and manufacturing method for alloyed hot-dip galvanized steel sheets
JP2905398B2 (en) How to join billets
JP2905399B2 (en) Method of joining billets in hot rolling
JP3054293B2 (en) Method of joining billets in continuous hot rolling
JPH0569161A (en) Production of composite metallic plate
JPS63174791A (en) Method for heating raw material in manufacturing clad material
JPH06304609A (en) Device for joining metal plate
JPH0569024A (en) Plate heating equipment