JPH01317173A - Refractory material for calcining ceramic - Google Patents

Refractory material for calcining ceramic

Info

Publication number
JPH01317173A
JPH01317173A JP63147397A JP14739788A JPH01317173A JP H01317173 A JPH01317173 A JP H01317173A JP 63147397 A JP63147397 A JP 63147397A JP 14739788 A JP14739788 A JP 14739788A JP H01317173 A JPH01317173 A JP H01317173A
Authority
JP
Japan
Prior art keywords
layer
sintered
alumina
weight
partially stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63147397A
Other languages
Japanese (ja)
Other versions
JPH05359B2 (en
Inventor
Shinichi Suzuki
信一 鈴木
Masaaki Yamamoto
雅章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP63147397A priority Critical patent/JPH01317173A/en
Publication of JPH01317173A publication Critical patent/JPH01317173A/en
Publication of JPH05359B2 publication Critical patent/JPH05359B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To suppress reactivity with ceramic, reduce the weight and improve thermal efficiency by providing a constitution in which the first and second layers consisting of partially stabilized zirconia on the surface of a calcined substrate consisting of alumina fibers, readily sinterable fine alumina powder, fine silica powder and MgO. CONSTITUTION:Alumina fibers in an amount of 400g is mixed with about 600g readily sinterable fine alumina powder, fine silica powder in an amount of 8g expressed in terms of solid and MgO, etc., in an amount of 0.3-1.5 pts.wt. based on 100 pts.wt. total amount thereof and the resultant mixture is dried and calcined to prepare a calcined substrate. Partially stabilized zirconia having several to 20mum particle diameter is then applied to the surface thereof, sintered and integrated to prepare the first layer having about 70-150mum thickness. Partially stabilized zirconia having tens of mum to 200mum particle diameter is subsequently applied to the surface of the first layer and sintered to torn the second layer having 100-250mum thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタン酸バリウムのような反応性に富むセラ
ミックを焼成する際、焼成炉内で原料成形体を乗せるに
用いる耐火材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a refractory material used for placing a raw material molded body in a firing furnace when firing highly reactive ceramics such as barium titanate.

〔従来の技術〕[Conventional technology]

一般に陶磁器を窯で焼成するには、アルミナ質、ムライ
ト質、炭化ケイ素質、ジルコニア質の耐火物の板や容器
に原料成形体を乗せ、あるいは入れて、原料成形体が溶
着したり、灰が付着したりしないようにして焼成してい
る。チタン酸バリウムのような反応性に富むセラミック
スの焼成Gこは、ジルコニア質以外の板や容器を用いる
と反応するので、ジルコニア質の粒子を焼結した板や容
器が用いられている。
Generally, to fire ceramics in a kiln, the raw material molded body is placed on or placed in a refractory plate or container made of alumina, mullite, silicon carbide, or zirconia, and the raw material molded body is welded or ash is formed. It is fired in a way that prevents it from sticking. When firing highly reactive ceramics such as barium titanate, the reaction will occur if plates or containers other than zirconia are used, so plates and containers made of sintered zirconia particles are used.

しかし、この耐火物は嵩密度3.0 g/cc以上で重
いため熱容量が大すく、炉の昇温、降温に時間がかかる
だけでなく、取扱いにくい問題がある。
However, this refractory is heavy with a bulk density of 3.0 g/cc or more and has a large heat capacity, which not only takes time to raise and lower the temperature of the furnace, but also makes it difficult to handle.

この問題を解決するために、アルミナ、シリカ−アルミ
ナ、シリカ繊維などの耐火繊維とシリカ、ムライト等の
耐火物粉末とからなる焼結成形体の表面にジルコニアを
コーティングして焼結し、表面にジルコニアの薄膜を形
成した嵩密度0.8〜1.2g7′ccの軽量耐火物を
用いることが考えられる。
To solve this problem, the surface of a sintered compact made of refractory fibers such as alumina, silica-alumina, and silica fibers and refractory powders such as silica and mullite was coated with zirconia and sintered. It is conceivable to use a lightweight refractory material having a bulk density of 0.8 to 1.2 g7'cc formed with a thin film.

しかし、この耐火物もチタン酸バリウムを乗せて焼成す
ると、反応が残り、チタン酸バリウムとの反応を完全に
無くすることは出来なかった。チタン酸バリウム等の製
品が台や容器と接触する部分で焼成の際に反応し、不純
物が混入したり、成分が変化することは品質や性能に悪
影響を与えるので極力避けなければならない。
However, when this refractory was fired with barium titanate on it, some reaction remained and it was not possible to completely eliminate the reaction with barium titanate. Products such as barium titanate react during firing in areas where they come into contact with the stand or container, resulting in the introduction of impurities or changes in composition, which have a negative impact on quality and performance and must be avoided as much as possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような反応性を有するセラミックを焼成
するときに、被焼成物と接触する部分で反応が起こらな
いセラミック焼成用耐火材を提供しようとするものであ
る。
The present invention aims to provide a refractory material for firing ceramics that does not cause a reaction in the portion that comes into contact with the object to be fired when firing a ceramic having such reactivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による課題を解決するための手段は、アルミナ繊
維と、易焼結性アルミナ微粉末と、シリカ微粉末と、こ
れらのアルミナ繊維と易焼結性アルミナ微粉末との合計
100重量部に対して0.3〜1.5重量部のMgOと
からなる焼結基体と、該焼結基体の表面に一体に焼結さ
れた、数〜20μmの粒径の部分安定化ジルコニアから
なる70〜150μmの厚さの第1層と、該第1層の上
に一体に焼結された数十〜200μmの粒径の部分安定
化ジルコニアからなる100〜250μmの厚さの第2
層とを有するセラミック焼成用耐火材である。
The means for solving the problems according to the present invention is to use alumina fibers, easily sinterable alumina fine powder, silica fine powder, and a total of 100 parts by weight of these alumina fibers and easily sinterable alumina fine powder. A sintered base consisting of 0.3 to 1.5 parts by weight of MgO and 70 to 150 μm consisting of partially stabilized zirconia with a particle size of several to 20 μm integrally sintered on the surface of the sintered base. a first layer with a thickness of 100 to 250 μm, and a second layer with a thickness of 100 to 250 μm made of partially stabilized zirconia with a grain size of several tens to 200 μm integrally sintered on the first layer.
It is a refractory material for ceramic firing having a layer.

この発明で、アルミナ繊維はこの耐火材を軽量化するた
めに用いるもので、被焼成物を焼成するための1400
〜1600C&こ耐えるものである。この繊維を抄紙法
で成形したものは、この繊維だけでは被焼成物を支持す
るための圧縮強度が不足するので、易焼結性アルミナ微
粉末を加えて嵩密度を0.8〜1.2g/cc程度とし
、被焼成物を支持しつる強度を有せしめる。このためG
こ両者の合計を100重量部とすると、アルミナ繊維1
5〜75重量部に対して易焼結性アルミナ微粉末25〜
85重量部の割合とするのが良い。
In this invention, alumina fiber is used to reduce the weight of this refractory material, and is used to reduce the weight of this refractory material.
It can withstand up to 1600C. When molding this fiber using the papermaking method, this fiber alone lacks the compressive strength to support the object to be fired, so easily sinterable alumina fine powder is added to increase the bulk density to 0.8 to 1.2 g. /cc to provide support and hanging strength for the object to be fired. For this reason, G
If the total of both is 100 parts by weight, then 1 part of alumina fiber
25 to 75 parts by weight of easily sinterable alumina fine powder
The proportion is preferably 85 parts by weight.

シリカ微粉末は、アルミナ繊維と易焼結性アルミナ微粉
末との結合剤として用いるもので、一般(こ無機結合剤
として用いられているシリカゾルが用いられる。このシ
リカ微粉末の使用量は、アルミナ繊維と易焼結性アルミ
ナ微粉末との合計100重量部Gこ対して2〜20重量
部が良い。
Silica fine powder is used as a binder between alumina fibers and easily sinterable alumina fine powder, and silica sol, which is commonly used as an inorganic binder, is used. The total amount of the fibers and easily sinterable alumina fine powder is 100 parts by weight, but preferably 2 to 20 parts by weight.

アルミナ繊維自体は焼結性がなく、易焼結性アルミナ微
粉末は、圧縮されていない状態のため、焼結性が少ない
ので、シリカ微粉末の使用量は、2重量部未満では焼成
温度を高くしても結合性が不足して使用に対する強度不
十分となり、20重量部を超えると耐火温度が低下する
だけでなく、アルミナ繊維と反応してムライトを生成し
アルミナ繊維の結晶を粗大化し使用中に脆化するので好
ましくない。
Alumina fiber itself does not have sinterability, and easily sinterable alumina fine powder has little sinterability because it is not compressed. Therefore, if the amount of silica fine powder used is less than 2 parts by weight, the firing temperature will be lowered. Even if it is increased, the bonding properties will be insufficient and the strength will be insufficient for use, and if it exceeds 20 parts by weight, not only will the fire resistance temperature decrease, but it will also react with the alumina fibers to form mullite, making the crystals of the alumina fibers coarser before use. It is not preferable because it becomes brittle inside.

MgOとしては、固形分中への分散を良くする為に微粉
として入手しやすい試薬級のものを用いるのが良い。
As MgO, it is preferable to use reagent-grade MgO that is easily available as a fine powder in order to improve dispersion in the solid content.

部分安定化ジルコニアは、Y ON Cabs MgO
−。
Partially stabilized zirconia is Y ON Cabs MgO
−.

Ce02などの安定化剤Qこより部分安定化された市販
のものを用いる。部分安定化ジルコニアは、焼成後の耐
スポーリング性において安定化ジルコニアより優れる。
A commercially available stabilizer Q such as Ce02 which is partially stabilized is used. Partially stabilized zirconia is superior to stabilized zirconia in terms of spalling resistance after firing.

成形は、アルミナ繊維、易焼結性アルミナ微粉末、シリ
カゾル、MgO微粉末と、少量の有機結合剤とを水中に
固形分が0.5重量%程度の濃度となるように混合して
湿式抄紙法で成形する。これを110C程度で乾燥して
約1500 Uで焼結し、焼結体を砥石で所望形状に切
削加工し、ペースト状にしたZrO粉を微粒を数回、粗
粒を数回塗布して110C程度で乾燥した後、約140
0 trで焼成して製品とするものである。
Forming is carried out by wet paper making by mixing alumina fibers, easily sinterable alumina fine powder, silica sol, MgO fine powder, and a small amount of organic binder in water to a solid content of about 0.5% by weight. Shape by method. This was dried at about 110C, sintered at about 1500U, the sintered body was cut into the desired shape with a grindstone, and paste-like ZrO powder was applied several times with fine grains and several times with coarse grains. After drying at about 140
The product is produced by firing at 0 tr.

〔作用〕[Effect]

本発明で焼結基体にMgOを添加すると、チタン酸バリ
ウムと表面のジルフニア薄層とが反応するのを無くする
ことが出来る。その添加量がアルミナ繊維と易焼結性ア
ルミナ微粉末との合計100重量部に対して0.3重量
部未満では、チタン酸バリウムとの反応があり、1.5
重量部を超えるとアルミナ繊維の結晶が粗大化し、焼結
基体の強度、焼結基体の融点が低下し収縮が大となり、
スポーリング抵抗性が低下し、焼結基体が使用に対して
耐久性を有しないようになるので、添加量の範囲を0.
3〜1゜5重量部とする。
In the present invention, when MgO is added to the sintered substrate, it is possible to prevent the barium titanate from reacting with the zilphnia thin layer on the surface. If the amount added is less than 0.3 parts by weight with respect to the total of 100 parts by weight of alumina fiber and easily sinterable alumina fine powder, it will react with barium titanate and 1.5 parts by weight will occur.
If the amount exceeds 1 part by weight, the crystals of the alumina fibers will become coarse, the strength of the sintered base and the melting point of the sintered base will decrease, and shrinkage will increase.
Since the spalling resistance decreases and the sintered substrate becomes undurable for use, the addition amount range is set to 0.
The amount should be 3 to 1.5 parts by weight.

その反応を抑制する確たる理由は不明であるが、反応抑
制のメカニズムを推定すると下記の如くなる。
Although the exact reason for suppressing the reaction is unknown, the mechanism of reaction suppression is estimated as follows.

即ち、高温において酸化物蒸発が起こることはよく知ら
れており、高温になるとベースであるアルミナ−シリカ
質からAt O、SiOが部分的に蒸発し、チタン酸バ
リウムの蒸気と反応すると考えられるが、ベースにMg
Oを添加することにより、A7!Oの蒸発をトラップし
部分的にスピネル(MgO・AtO)を形成させi 0
  の蒸発を抑制しているのではないかと推定される。
That is, it is well known that oxide evaporation occurs at high temperatures, and it is thought that at high temperatures, AtO and SiO partially evaporate from the base alumina-silica and react with barium titanate vapor. , Mg base
By adding O, A7! Trap the evaporation of O and partially form spinel (MgO・AtO) i 0
It is presumed that the evaporation of water is suppressed.

本発明において、数〜20μmの粒径の部分安定化ジル
コニアからなる70〜150μmの厚さの第1層と、該
第1層の上に施された数十〜200μmの粒径の部分安
定化ジルコニアからなる100〜250μmの厚さの第
2層とを焼結基体の表面に一体に焼結するのは、第1層
は焼結基体の表面への有害物質の昇華を微粒のジルコニ
アの焼結された薄層で抑制するためであり、この層の厚
さは塗布して焼結するため場所により異なるが薄いとこ
ろでも70μmは必要であり、150μmを超えると微
細なりラックを生し有害物質の外部への昇華を防ぐこと
が出来なくなる。又、このジルコニアの粒径を数〜20
μmとするのは、粒径がこれよりも小さいと高価となる
だけでなく、焼結層に微細なりラックが生じ易くなり、
粒径がこれより太さいと粒子間に生ずる間隙が大きくな
って内部から外部への有害物質の昇華を抑えることが出
来なくなるからである。第2層は粒径が第1層より大さ
い粒子の焼結層からなるので、焼結された表面の凹凸が
大きくなり被焼結体と凸部で接触するようになるので、
被焼結体表面の大部分と第2層の表面との間に微細な空
隙を形成し、被焼結体表面への有害昇華物質を到達しに
くくすることで被焼結体と有害昇華物質との反応を抑制
できる。
In the present invention, a first layer with a thickness of 70 to 150 μm made of partially stabilized zirconia with a particle size of several to 20 μm, and a partially stabilized layer with a particle size of several tens to 200 μm applied on the first layer. The reason why the second layer of zirconia with a thickness of 100 to 250 μm is integrally sintered on the surface of the sintered substrate is that the first layer is made of sintered fine particles of zirconia to prevent the sublimation of harmful substances to the surface of the sintered substrate. The thickness of this layer varies depending on the location because it is coated and sintered, but 70 μm is necessary even in a thin place, and if it exceeds 150 μm, fine racks will be formed and harmful substances sublimation to the outside cannot be prevented. In addition, the particle size of this zirconia is several to 20
The reason why it is set to μm is that if the particle size is smaller than this, not only will it be expensive, but the sintered layer will become finer and more likely to cause racks.
This is because if the particle size is larger than this, the gaps formed between the particles become large, making it impossible to suppress the sublimation of harmful substances from the inside to the outside. Since the second layer is composed of a sintered layer of particles whose particle size is larger than that of the first layer, the unevenness of the sintered surface becomes large and comes into contact with the sintered body at the convex parts.
Fine voids are formed between most of the surface of the object to be sintered and the surface of the second layer, making it difficult for harmful sublimated substances to reach the surface of the object to be sintered. The reaction with can be suppressed.

第1層はこの粗粒からなる第2層の焼結基体への密着性
を高める。粗粒だけでは密着性に乏しく容易に剥落する
。第2層を100〜250μmとするのは、塗布して焼
結するため厚さは場所により異なるが、100μmより
薄い部分では第1層への密着性が不十分となるだけでな
く凹凸の形成が不十分となり、250μmより大きくな
っても、第2層の焼結性が低下するだけでなく反応抑制
の効果はもはや変わらなくなる。第2層の粒径は数十μ
mより小さいと凹凸の形成が不十分となり、200μm
よりも大さくなると塗布の際第1層を傷つけたり、第1
層への付着性が悪くなるのでこの程度とする。
The first layer improves the adhesion of the second layer made of coarse particles to the sintered substrate. Coarse particles alone have poor adhesion and easily peel off. The reason why the second layer is 100 to 250 μm is because it is coated and sintered, so the thickness varies depending on the location, but parts thinner than 100 μm not only have insufficient adhesion to the first layer but also form unevenness. If the thickness becomes insufficient and becomes larger than 250 μm, not only will the sinterability of the second layer decrease, but the reaction suppression effect will no longer change. The particle size of the second layer is several tens of microns
If it is smaller than 200 μm, the formation of unevenness will be insufficient.
If the size is larger than that, it may damage the first layer during coating or damage the first layer.
Since adhesion to the layer becomes poor, this level is set.

〔実施例〕〔Example〕

アルミナファイバー400 gと、平均粒径0.4μm
の易焼結性アルミナ微粉末600gと、シリカゾルを固
形分として8gと、試薬級のMgO粉末を第1表に示す
量と、澱粉50 gの割合で、水中に固形分の濃度が0
.5重M%となるように混合した。これをスクリーン上
に湿式成形して110Cで30時間乾燥した後、150
0Cで3時間焼成した。これを砥石で成形加工し、嵩比
重1.08 g/ccで、縦15C11fi、横100
111%、厚さ5龍の焼結基体を得た。
400 g of alumina fiber and average particle size of 0.4 μm
With the ratio of 600 g of easily sinterable alumina fine powder, 8 g of silica sol as a solid content, the amount of reagent grade MgO powder shown in Table 1, and 50 g of starch, the concentration of solid content in water was 0.
.. They were mixed to a concentration of 5% by weight. After wet-molding this on a screen and drying it at 110C for 30 hours,
It was baked at 0C for 3 hours. This is shaped using a grindstone, and has a bulk specific gravity of 1.08 g/cc, a length of 15C11fi, and a width of 100mm.
A sintered substrate with a thickness of 111% and a thickness of 5 mm was obtained.

その表面に粒径3〜20μmのYOで部分安定化したジ
ルコニアの50重量%水溶液を数回塗布して110Cで
4時間乾燥し、1400Cで1時間焼成して第1層だけ
の製品を得た。
A 50 wt% aqueous solution of zirconia partially stabilized with YO with a particle size of 3 to 20 μm was applied to the surface several times, dried at 110 C for 4 hours, and baked at 1400 C for 1 hour to obtain a product with only the first layer. .

これらの製品を切断し顕微鏡で第1層の厚さを調へ、又
これらを炉内に配置してその上にチタン酸バリウムを乗
せ1400 Cで2時間かけて焼成した。その結果を第
1表に示す。
These products were cut and the thickness of the first layer was measured using a microscope, and they were placed in a furnace, barium titanate was placed thereon, and fired at 1400 C for 2 hours. The results are shown in Table 1.

第   1    表 次に、同じ焼結基体に上記と同様にして第1層が70〜
150μmの厚さとなるように塗布し、更に粒径数十〜
200μmのOaO安定化ジルコニアの粉末を50重量
%の水溶液として数回塗布し、上記と同様にして乾燥焼
成して第1層の上に第2層を形成した製品を得た。
Table 1 Next, on the same sintered substrate, a first layer of 70~
Coat to a thickness of 150 μm, and further increase the particle size to several tens of μm.
A 200 μm OaO-stabilized zirconia powder was applied several times as a 50% by weight aqueous solution, and dried and fired in the same manner as above to obtain a product in which a second layer was formed on the first layer.

これらの製品を切断し顕微鏡で第2層の厚さを調べ、又
これらを炉内に配置してその上にチタン酸バリウムを乗
せ、1400rで2時間かけて焼成した。その結果を第
2表に示す。
These products were cut and the thickness of the second layer was examined using a microscope, and they were placed in a furnace, barium titanate was placed thereon, and fired at 1400 rpm for 2 hours. The results are shown in Table 2.

第   2   表 〔発明の効果〕 本発明によれば、反応性に富むセラミックを焼成するた
めの、セラミックと反応しない軽くて熱効率が良く耐久
性のある耐火材を提供でさる。
Table 2 [Effects of the Invention] According to the present invention, it is possible to provide a lightweight, highly thermally efficient, and durable refractory material that does not react with ceramics and is used for firing highly reactive ceramics.

出願人  イソライト工業株式会社Applicant: Isolite Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ繊維と、易焼結性アルミナ微粉末と、シリ
カ微粉末と、これらのアルミナ繊維と易焼結性アルミナ
微粉末との合計100重量部に対して0.3〜1.5重
量部のMgOとからなる焼結基体と、該焼結基体の表面
に一体に焼結された数〜20μmの粒径の部分安定化ジ
ルコニアからなる70〜150μmの厚さの第1層と、
該第1層の上に一体に焼結された数十〜200μmの粒
径の部分安定化ジルコニアからなる100〜250μm
の厚さの第2層とを有するセラミック焼成用耐火材。
1. 0.3 to 1.5 parts by weight of alumina fibers, easily sinterable alumina fine powder, silica fine powder, and 100 parts by weight in total of these alumina fibers and easily sinterable alumina fine powder. a sintered base made of MgO; a first layer with a thickness of 70 to 150 μm made of partially stabilized zirconia with a grain size of several to 20 μm integrally sintered on the surface of the sintered base;
100 to 250 μm consisting of partially stabilized zirconia with a grain size of several tens to 200 μm integrally sintered on the first layer.
A refractory material for ceramic firing having a second layer having a thickness of .
JP63147397A 1988-06-15 1988-06-15 Refractory material for calcining ceramic Granted JPH01317173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147397A JPH01317173A (en) 1988-06-15 1988-06-15 Refractory material for calcining ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147397A JPH01317173A (en) 1988-06-15 1988-06-15 Refractory material for calcining ceramic

Publications (2)

Publication Number Publication Date
JPH01317173A true JPH01317173A (en) 1989-12-21
JPH05359B2 JPH05359B2 (en) 1993-01-05

Family

ID=15429354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147397A Granted JPH01317173A (en) 1988-06-15 1988-06-15 Refractory material for calcining ceramic

Country Status (1)

Country Link
JP (1) JPH01317173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158189A (en) * 1990-10-19 1992-06-01 Ngk Insulators Ltd Baking shelf plate
JPH05270925A (en) * 1992-03-23 1993-10-19 Ngk Insulators Ltd Refractory material for ceramic burning
JP2005041777A (en) * 2004-09-22 2005-02-17 Mitsui Mining & Smelting Co Ltd Electronic component firing tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158189A (en) * 1990-10-19 1992-06-01 Ngk Insulators Ltd Baking shelf plate
JPH05270925A (en) * 1992-03-23 1993-10-19 Ngk Insulators Ltd Refractory material for ceramic burning
JP2005041777A (en) * 2004-09-22 2005-02-17 Mitsui Mining & Smelting Co Ltd Electronic component firing tool

Also Published As

Publication number Publication date
JPH05359B2 (en) 1993-01-05

Similar Documents

Publication Publication Date Title
US6764742B2 (en) Honeycomb structure body and production method thereof
US8449644B2 (en) Silicon carbide porous body
JPS63206367A (en) Lightweight refractories and manufacture
US4428895A (en) Composite inorganic structures and process of producing same
CA1161238A (en) Inorganic composite structures
US20090149311A1 (en) Monolithic refractory material having low expansibility, high strength, and crack extension resistance
US4895815A (en) Sintered form body
JPH01317173A (en) Refractory material for calcining ceramic
EP1443031A1 (en) Thermally insulating coating material for refractory containing carbon
EP0363911B1 (en) Refractories for use in firing ceramics
JPS6054258B2 (en) Method for producing flame spray powder
JPH0798707B2 (en) Porous refractory molding for firing functional parts
JP2002316877A (en) Burning tool for electronic parts
JPH0535708B2 (en)
JP3108362B2 (en) High-strength inorganic fiber molded body
JPH02239173A (en) Lightweight heat resistant tray
JP3127514B2 (en) Furnace material for ceramic firing
US5244727A (en) Refractories for use in firing ceramics
JP4054098B2 (en) Firing jig
JPS643825B2 (en)
JPH0269381A (en) Jig for calcining electronic parts
JP2550547B2 (en) Modification method of ceramic molded products
JPS62216974A (en) Porous refractories
CA1185080A (en) Process for freezing an inorganic particulate slurry or suspension
JP2000159569A (en) Multi-layered structure refractory for sintering ceramic