JPH01317110A - Production of fine carbon powder having high purity - Google Patents

Production of fine carbon powder having high purity

Info

Publication number
JPH01317110A
JPH01317110A JP63149359A JP14935988A JPH01317110A JP H01317110 A JPH01317110 A JP H01317110A JP 63149359 A JP63149359 A JP 63149359A JP 14935988 A JP14935988 A JP 14935988A JP H01317110 A JPH01317110 A JP H01317110A
Authority
JP
Japan
Prior art keywords
iron powder
reaction
furnace
carbon
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63149359A
Other languages
Japanese (ja)
Inventor
Eiji Ikezaki
英二 池崎
Hiroshi Miyamura
宮村 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63149359A priority Critical patent/JPH01317110A/en
Publication of JPH01317110A publication Critical patent/JPH01317110A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Abstract

PURPOSE:To produce high-purity C in high efficiency at a low cost by fluidizing an iron powder layer with a by-product gas composed mainly of CO while controlling the layer to a specific temperature, thereby forming fine carbon powder on the surface of the iron powder. CONSTITUTION:An iron powder layer in a fluidizing furnace is controlled to 400-600 deg.C. A by-product gas composed mainly of CO and generated from a refinery furnace or melting furnace is introduced into the fluidizing furnade to fluidize the fluidizing layer and cause the reaction 2CO CO2+C. The produced fine C powder is separated and recovered from the surface of the iron powder.

Description

【発明の詳細な説明】 (産業上の利用分計) 本発明は99.9%以上の高純度カーボン微粒子を高い
収率で且つ廉価に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Applicability) The present invention relates to a method for producing high-purity carbon particles of 99.9% or more in high yield and at low cost.

(従来の技術) 近年耐熱性、導電性、潤滑性、耐腐食性等にすぐれた特
性を有すカーボンは電極耐火物等の大量使用製品から熱
間加工潤滑剤、カーボンブラック、減摩材、鉛筆用等の
多岐にわたる用途に使用されている。
(Prior art) In recent years, carbon, which has excellent properties such as heat resistance, conductivity, lubricity, and corrosion resistance, has been used in products that are used in large quantities such as electrode refractories, hot processing lubricants, carbon black, anti-friction materials, It is used for a wide variety of purposes, including pencils.

これらの用途に応し種々のカーボンの製造プロセスが現
存するが、カーボン微粒子の代表例であるカーボンブラ
ックの製造法を例にとれば、LNG或いはオイルで増炭
素した可燃性ガスに適当量の一次空気を混入し、チャン
ネル鋼で構成されたチャンネルハウス内で無数の小さな
火炎を形成しチャンネル鋼に火炎をあてることによりチ
ャンネル鋼表面に生成したカーホンブラックを付着せし
めた後これをかきとり飛散スケールな磁選除去した後粉
砕して粉状製品か得られている(化学プロセス集成36
0〜363頁社口演人化学工学協会発行昭45.3.3
)。
Various carbon manufacturing processes currently exist depending on these uses, but taking the manufacturing method of carbon black, which is a typical example of carbon fine particles, as an example, an appropriate amount of primary carbon is added to combustible gas enriched with LNG or oil. Air is mixed in to form countless small flames in a channel house made of channel steel, and by applying the flame to the channel steel, carbon black generated on the surface of the channel steel is deposited, and then this is scraped off to remove any scattered scale. After magnetic separation and removal, a powder product is obtained by pulverizing (Chemical Process Collection 36)
Pages 0-363 Published by the Society of Chemical Engineers, Shaguchi, March 3, 1972.
).

しかし、この製法は付着したカーホンブラックを容易に
かき落すため、および設備費を安くする目的で市販のチ
ャンネル鋼を使用するため火炎とチャンネル鋼との接触
面積を充分にとれない難点があり、カーボンブラックの
収率は18〜25%程度の低いレベルにとどまらざるを
えない難点があった。
However, this manufacturing method uses commercially available channel steel in order to easily scrape off the attached carphone black and to reduce equipment costs, so it has the disadvantage that it is not possible to ensure a sufficient contact area between the flame and the channel steel. There was a drawback that the yield of carbon black had to remain at a low level of about 18 to 25%.

また、得られた製品も炭化水素系ガスのクラッキング過
程で得られたものであるためにH,O,S等の不純物を
含有し、炭素%が95〜97%程度のものしか得られず
高純化が困難であった。
In addition, since the obtained product is obtained through the cracking process of hydrocarbon gas, it contains impurities such as H, O, and S, and the carbon percentage is only about 95 to 97%. Purification was difficult.

(発明か解決しようとする課題) 本発明は前述した如き従来の炭素粉末製造法の欠点であ
る付着析出カーボンの生産性が極めて高く、しかも回収
されたカーホンを微細粒化できるとともに、不純物か少
なく高純化できる高純度カーホン微粒子の製造法を提供
することにある。
(Problems to be Solved by the Invention) The present invention has extremely high productivity of deposited carbon, which is a disadvantage of the conventional carbon powder manufacturing method as described above, and can further reduce the amount of impurities in the recovered carphone. An object of the present invention is to provide a method for producing high-purity carphone fine particles that can be highly purified.

(課題を解決するための手段) 転炉或いはスクラップを多量に溶解させる電炉の如き精
錬炉又は高炉、キュポラ類等の溶解炉においては溶銑中
のC1投入炭材、炭化水素の熱分解、黒鉛製電極等の酸
化により多量のCOを主成分とする排ガスが発生する。
(Means for solving the problem) In smelting furnaces such as converters or electric furnaces that melt large amounts of scrap, blast furnaces, and melting furnaces such as cupolas, C1 input carbonaceous material in hot metal, thermal decomposition of hydrocarbons, graphite Oxidation of electrodes, etc. generates a large amount of exhaust gas containing CO as a main component.

転炉を例にとれは粗filTon当り約100〜12O
Nm3で且つCOを70〜80%含有した排ガスが発生
するがその排ガスはベンチュリースクラバーで冷却除塵
され極めて清浄なガスとして主として燃料に利用されて
いる。
Taking a converter as an example, it is approximately 100 to 12 O per crude filTon.
Exhaust gas containing Nm3 and 70 to 80% CO is generated, but the exhaust gas is cooled and dust-removed by a venturi scrubber and is used as an extremely clean gas mainly for fuel.

本発明者等は第1図に示すように清浄で廉価な副生ガス
をそのまま又は加熱あるいは冷却等の温度制御を行ない
400℃から600℃の範囲に保持し粉状或いは繊維状
の鉄粉に接触させれば金属粉体が触媒となって200→
CO2+Cなる発熱反応が促進され、鉄粉表面に純度が
999%以上のC微粒子が多量に付着することを知見し
た。
As shown in Fig. 1, the inventors of the present invention converted clean and inexpensive by-product gas into powdered or fibrous iron powder by keeping it in the range of 400°C to 600°C either as it is or by controlling the temperature by heating or cooling. When brought into contact, the metal powder becomes a catalyst and 200 →
It was found that the exothermic reaction of CO2+C was promoted and a large amount of C fine particles with a purity of 999% or more adhered to the surface of the iron powder.

同時に400℃以下の低温域では、上記反応速度が遅く
かつ600℃以上の高温域ではCの収率が極端に悪化す
ることも見いだした。
At the same time, it has been found that the reaction rate is slow in a low temperature range of 400°C or lower, and that the yield of C is extremely poor in a high temperature range of 600°C or higher.

更に、前述したようにこの反応は生成C1kg当り32
30 kcalの発熱を伴う反応であることから、例え
ば副生ガスの温度の低い反応の開始時においては反応温
度に達するまでバーナー等による熱エネルギーの供給に
よる温度制御が必要である。しかし、−旦反応が開始す
れば多量の熱エネルギー放出があり反応域の温度が上昇
し600℃以上の高温になりC収率が極端に悪化するた
め、反応域の温度を連続的に検出しつつ冷却による抜熱
操作を行ない400〜600℃の範囲に反応域温度を制
御することが必要であることも見出した。
Furthermore, as mentioned above, this reaction produces 32
Since the reaction is accompanied by heat generation of 30 kcal, for example, at the start of the reaction when the temperature of the by-product gas is low, it is necessary to control the temperature by supplying thermal energy with a burner or the like until the reaction temperature is reached. However, once the reaction starts, a large amount of thermal energy is released and the temperature in the reaction zone rises to over 600°C, resulting in an extremely poor C yield. Therefore, the temperature in the reaction zone must be continuously detected. It has also been found that it is necessary to control the reaction zone temperature within the range of 400 to 600°C by carrying out a heat extraction operation by cooling.

以上の実験より得られた知見をもとに一例として第2図
に示す如く円筒容器14内に金属鉄分が95〜97%で
平均粒子径が70〜100μmの鉄粉層1を触媒として
充填し予め無酸化τ囲気下で鉄粉層1を490〜520
℃程度に予熱した。次いで0070〜75%、Go21
2〜15%、l−121〜2%、N210〜13%、 
020.3%以下の組成をもった転炉排ガスを排ガス供
給管11から鉄粉層下部の多数の小孔を有する目皿2よ
り鉄粉層1内に導入し円筒容器14内の転炉排ガスの通
過空塔速度を015〜0.2 m/sに保持し鉄粉層1
の流動層を形成した。その結果排ガスを導入して数分後
多量のC微粒子の生成が始まり、鉄粒子表面に付着した
C微粒子が流動層内の金属粒子の激しい運動とこれに伴
ない逐次剥til!離脱し反応した後のガスに随伴しキ
ャリーオーバーすることが判った。
Based on the knowledge obtained from the above experiments, as an example, as shown in Fig. 2, a cylindrical container 14 is filled with an iron powder layer 1 having a metallic iron content of 95 to 97% and an average particle diameter of 70 to 100 μm as a catalyst. Iron powder layer 1 was heated to 490 to 520 in advance under a non-oxidizing τ atmosphere.
Preheated to about ℃. Then 0070-75%, Go21
2-15%, l-121-2%, N210-13%,
Converter exhaust gas having a composition of 0.020.3% or less is introduced into the iron powder layer 1 from the exhaust gas supply pipe 11 through the perforated plate 2 having many small holes at the bottom of the iron powder layer, and the converter exhaust gas in the cylindrical container 14 is introduced. The passing superficial velocity of the iron powder layer 1 was maintained at 0.15 to 0.2 m/s.
A fluidized bed was formed. As a result, a few minutes after introducing the exhaust gas, a large amount of C fine particles started to be produced, and the C fine particles adhering to the surface of the iron particles were gradually peeled off due to the intense movement of the metal particles in the fluidized bed! It was found that there was carryover accompanying the gas after the desorption and reaction.

このキャリーオーバーしたC微粒子をステンレスファイ
バー製のバグフィルタ−6で捕集し排出系7の適宜部位
で捕集物内に微量に存在する触媒として充填した鉄粉の
微粉を磁力選鉱法により除去した後Cの純度を分析した
結果999%を上回る高純度Cが73〜75%の高い収
率で得られた。
The carried over C fine particles were collected by a bag filter 6 made of stainless fiber, and a small amount of iron powder filled as a catalyst present in the collected material was removed at an appropriate part of the discharge system 7 by magnetic beneficiation. As a result of analyzing the purity of C, high purity C exceeding 999% was obtained at a high yield of 73 to 75%.

ここで12は副生ガス供給管11から供給されるガスの
温度が熱電対9の計測により低い場合に該副生ガスを加
熱する熱交換器であり、燃焼用ガスの供給管8及び燃焼
用空気管10とを燃焼するバーナー31及びその集合排
ガス管13が設けである。また鉄粉中に当該副生ガスを
吹込む方式の場合あまりにも反応が急激て鉄粉層中でC
が多量に生成し鉄粉粒子表面を逐次被覆し触媒効果が減
した場合は第3図に示すごとく円筒容器14の側壁に鉄
粉のオーバーフロー管15を設置し摩鉱機16内に導入
しC粒子を剥離除去した後にリサイクルルート17を経
て円筒容器14の上から再投入する連続循環再生ライン
を設けることで容易に解決でとる。
Here, 12 is a heat exchanger that heats the by-product gas when the temperature of the gas supplied from the by-product gas supply pipe 11 is low as measured by the thermocouple 9; A burner 31 for burning the air pipe 10 and its collective exhaust gas pipe 13 are provided. In addition, in the case of the method in which the by-product gas is blown into the iron powder, the reaction is too rapid, resulting in carbon dioxide in the iron powder layer.
If a large amount of C is generated and successively covers the surface of the iron powder particles, reducing the catalytic effect, an overflow pipe 15 for iron powder is installed on the side wall of the cylindrical container 14 as shown in FIG. 3, and the iron powder is introduced into the grinder 16. This problem can easily be solved by providing a continuous circulation regeneration line that re-injects the particles from above into the cylindrical container 14 via the recycling route 17 after peeling them off.

あるいはオーバーフロー管15より流下する鉄粉は表層
が浸炭された硬いものであるためこれをショツトブラス
ト用等に利用することも可能である。
Alternatively, since the iron powder flowing down from the overflow pipe 15 is hard and has a carburized surface layer, it can also be used for shot blasting.

この場合は円筒容器14上からオーバーフロー分に見合
う処女鉄粉を補給してやれば良い。
In this case, it is sufficient to replenish virgin iron powder from above the cylindrical container 14 in an amount corresponding to the overflow.

また円筒客器14内で発生する多量の反応熱を抜熱する
ため円筒客器14の側壁には冷却水と空気が冷媒として
導入できる供給口4及び排出口5を持った冷却管3を取
付けておくことが望ましい。つまり、円筒容器14内鉄
粉温度を熱電対9で検出しその温度レベルにより多量の
抜熱が必要な場合は冷却水を僅かな抜熱で良い場合は空
気をその中間の抜熱量の場合は気水混相流を冷却管に流
すことにより自由に鉄粉温度を制御することができるか
らである。
In addition, in order to remove a large amount of reaction heat generated within the cylindrical passenger container 14, a cooling pipe 3 having a supply port 4 and a discharge port 5 through which cooling water and air can be introduced as a refrigerant is attached to the side wall of the cylindrical passenger container 14. It is desirable to keep it. In other words, the temperature of the iron powder inside the cylindrical container 14 is detected by the thermocouple 9, and depending on the temperature level, if a large amount of heat is required to be removed, if a small amount of heat is required to be removed from the cooling water, or if the amount of heat removed is between the two, This is because the temperature of the iron powder can be freely controlled by flowing the air-water multiphase flow through the cooling pipe.

また、キャリーオーバーされたC微粒子の捕集にあたっ
てはハゲフィルタ一方式以外に電気集塵機による方式を
用いても良い。
Furthermore, in order to collect the carried over C fine particles, an electrostatic precipitator may be used instead of the bald filter method.

次に第4図に示す如く反応触媒たる金属鉄製細線で製作
したメツシュベルト18を反応炉27内を通過させメッ
シュベルト18自体は炉内と炉外な駆動ロール26及び
支持ロール26a〜26cにより循環させる機構とし、
メツシュベルト18の炉出側にはメツシュベルト18へ
の付着Cをすみやかに冷却し酸化を防止するための水冷
ジャケット22を内蔵した冷却帯及びメツシュベルト下
面の付着Cをそぎ落す当接板23、メツシュベルト上面
の付着Cをそぎ落す当接板32、メツシュ内に付着した
Cを払い落す加振装置24、同じくベンディングロール
29等で構成した設備を設は更に反応炉27内には転炉
或いは溶解炉副生ガスの吹込み口19、炉内反応ガスの
メツシュベルト18との接触効率を良くし且つ炉内温度
を400〜600℃の範囲に制御するための抜熱間(図
示せず)を有する炉内仕切板20、また反応開始温度ま
で炉内温度を昇熱させるいわゆるウオーミングアツプ用
熱源供給装置としてのバーナー31を具備した設備にて
も前記組成の転炉副生ガスを吹込むことにより同様の結
果か得られる。ここで、21は反応炉27の炉内を示し
、25は捕集炭素ホッパーを示し、30は反応炉内のガ
スの流れを示すとともに、他は第2図、第3図と同様の
要素を表わすが、特に熱交換器12は反応炉27の排ガ
スを直接用いた場合を示す。
Next, as shown in FIG. 4, a mesh belt 18 made of thin metal wire serving as a reaction catalyst is passed through the reactor 27, and the mesh belt 18 itself is circulated by a drive roll 26 and support rolls 26a to 26c inside and outside the furnace. As a mechanism,
On the exit side of the mesh belt 18 from the furnace, there is a cooling zone with a built-in water cooling jacket 22 for quickly cooling the C adhering to the mesh belt 18 and preventing oxidation, an abutment plate 23 for scraping off the C adhering to the lower surface of the mesh belt, and a contact plate 23 for scraping off the C adhering to the lower surface of the mesh belt. Equipment consisting of a contact plate 32 for scraping off the adhered C, a vibrating device 24 for scraping off the C adhered to the inside of the mesh, and a bending roll 29 are also installed in the reactor 27. A gas inlet 19, a furnace partition having a heat removal space (not shown) for improving the contact efficiency of the reaction gas in the furnace with the mesh belt 18 and controlling the furnace temperature in the range of 400 to 600°C. Similar results can be obtained by injecting the converter byproduct gas having the above composition into equipment equipped with the plate 20 and a burner 31 as a so-called warming-up heat source supply device for raising the temperature inside the furnace to the reaction starting temperature. can get. Here, 21 indicates the inside of the reactor 27, 25 indicates the captured carbon hopper, 30 indicates the flow of gas in the reactor, and other elements are the same as in FIGS. 2 and 3. In particular, the heat exchanger 12 shows the case where the exhaust gas from the reactor 27 is directly used.

この場合もステンレスファイバー製バグフィルタ−6や
当接板23.32等で得られたC粒子バルク中に微量に
含まれるメツシュベルトから剥離した微量の酸化鉄を磁
力遷鉱機33で除去した後のCの純度は999%を上回
るものが71〜75%の高い収率て得られた。
In this case as well, after removing a trace amount of iron oxide exfoliated from the mesh belt contained in the C particle bulk obtained by the stainless fiber bag filter 6 and the contact plate 23. The purity of C was over 999% and the yield was as high as 71-75%.

この時の原料ガスとしての転炉副生ガス1m3当りのC
生成量は、前述した鉄粉層内への吹込み法、後述したメ
ツシュベルトへの吹付は法いずれの場合も0.1kg程
度の高い生産1生が実現できる。
C per 1 m3 of converter byproduct gas as raw material gas at this time
A high production amount of approximately 0.1 kg can be achieved in both the above-mentioned method of blowing into the iron powder layer and the method of blowing onto the mesh belt described below.

(実 施 例) 以下、本発明の実施例について述へる。(Example) Examples of the present invention will be described below.

C析出に用いた原料ガスは転炉の副生ガス(LDG )
 でソノ組成はCo;7.1%、CO2,14,5%、
N2 : 12j% ソ(7)他)12.02等の微量
ガスが1.7%である。
The raw material gas used for C precipitation is converter byproduct gas (LDG)
Sono composition is Co; 7.1%, CO2, 14.5%,
N2: 12j% Trace gases such as (7) and others) 12.02 are 1.7%.

一方触媒には、平均粒径85μmのH2還元処理を行な
った鉄粉を槽径200mmの円筒型反応槽に充填し、反
応槽下部より前記LDGを188℃/分吹込んだ。
On the other hand, as a catalyst, iron powder subjected to H2 reduction treatment and having an average particle size of 85 μm was filled in a cylindrical reaction tank with a tank diameter of 200 mm, and the LDG was blown at 188° C./min from the bottom of the reaction tank.

この場合反応槽内の鉄粉温度は490〜520℃に操業
し、その結果出側排ガス組成は、co;a、a96、c
o2;7o、o絋その他(N2.82.820.02 
) ;21.2商であった。この排ガスにキャリーオー
バーされたダストを出側バグフィルタ−により除塵し磁
選分離した結果、1.1 kg/Hrのカーボンが回収
され約70%のカーボン収率がえられることを確認した
In this case, the iron powder temperature in the reaction tank is operated at 490 to 520°C, and as a result, the exhaust gas composition on the outlet side is co; a, a96, c
o2;7o, o 狋 and others (N2.82.820.02
) ; The quotient was 21.2. As a result of removing the dust carried over into the exhaust gas by a bag filter on the outlet side and performing magnetic separation, it was confirmed that 1.1 kg/Hr of carbon was recovered and a carbon yield of about 70% was obtained.

一方メッシュベルト方式を採用し、前記反応槽内に線径
100μmの鋼線を充填し同様な温度条件原料ガス条件
で実施した。このときの出側排ガス組成はCO; 8.
5%、CO2; 70.4%、その他(N2. )12
. N20 、02)  ; 21.1%と流動層方式
とほとんど同様な結果が得られた。但しカーボンの回収
量は1.0kg/Hrと若干少ない結果が得られた。こ
れは鋼線表面にトラップされたものが通気カスにキャリ
ーオーバーされることなく槽内に留ったためであり、従
って実機プラント設計に際しては第4図に示すごとくメ
ツシュベルトからカーホンを払落とす機構を設けること
が有効である。
On the other hand, a mesh belt system was adopted, and the reaction vessel was filled with steel wire having a wire diameter of 100 μm, and the experiments were carried out under the same temperature and raw gas conditions. The outlet exhaust gas composition at this time is CO; 8.
5%, CO2; 70.4%, other (N2.) 12
.. N20, 02); 21.1%, which is almost the same result as the fluidized bed method, was obtained. However, the amount of carbon recovered was slightly lower at 1.0 kg/Hr. This is because the material trapped on the surface of the steel wire remained in the tank without being carried over to the ventilation scum.Therefore, when designing the actual plant, a mechanism to remove the carphone from the mesh belt is provided as shown in Figure 4. This is effective.

(発明の効果) 以上述へた如く本発明により転炉あるいは溶解炉より副
生ガスとして得られるGOを主成分とした廉価な原料ガ
スを用いて、気体からCを生成するため極めて純度の高
いCが高い収率で得ることができ、その効果は甚大であ
る。
(Effects of the Invention) As described above, the present invention generates C from gas using an inexpensive raw material gas mainly composed of GO obtained as a by-product gas from a converter or melting furnace, resulting in extremely high purity. C can be obtained in high yield, and the effect is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は副生ガス温度と炭素収率(%)の関係を示す図
、第2図は本発明により高純度カーボン微粒子を製造す
る態様例の略断面図及びガスフロー図、第3図は第2図
に金属粉体の循環再生系を付設した場合を示す図、第4
図は金属粉体にかえてメツシュベルトを用いた場合の実
施態様例を示す図である。 1・・・鉄粉層     3・・・冷却管6・・・バッ
グフィルター 9・・・熱電対 11・・・副生ガスの供給管 12・・・熱交換器   14・・・円筒客器17・・
・リサイクルルート 18・・・メツシュベルト 22・・・水冷ジャケット 23.32・・・当接板第
1図 温度(°d)
Fig. 1 is a diagram showing the relationship between by-product gas temperature and carbon yield (%), Fig. 2 is a schematic cross-sectional view and gas flow diagram of an embodiment of producing high-purity carbon particles according to the present invention, and Fig. 3 is a diagram showing the relationship between by-product gas temperature and carbon yield (%). Figure 2 shows a case where a metal powder circulation regeneration system is attached, Figure 4
The figure shows an example of an embodiment in which a mesh belt is used instead of metal powder. 1... Iron powder layer 3... Cooling pipe 6... Bag filter 9... Thermocouple 11... By-product gas supply pipe 12... Heat exchanger 14... Cylindrical passenger device 17・・・
・Recycling route 18...Mesh belt 22...Water cooling jacket 23.32...Temperature (°d) of contact plate Figure 1

Claims (1)

【特許請求の範囲】 1 精錬炉、あるいは溶解炉から発生する一酸化炭素を
主成分とする副生ガスを400〜600℃に温度制御し
て鉄粉層内に導入し該鉄粉層内を流動せしめつつ、前記
の副生ガス中の一酸化炭素を 2CO→CO_2+C なる反応を行なわしめ該鉄粉の表面に付着した微粉炭素
を分解回収することを特徴とした高純度カーボン微粒子
の製造法。 2 精錬炉、あるいは溶解炉から発生する一酸化炭素を
主成分とする副生ガスを400〜600℃に温度制御し
て炉内を移動する鉄製メッシュベルトに接触せしめ、前
記の副正ガス中の一酸化炭素を 2CO→CO_2+C なる反応を行なわしめて、該鉄粉の表面に付着した微粉
炭素を分離回収することを特徴とした高純度カーボン微
粒子の製造法。
[Claims] 1. A by-product gas containing carbon monoxide as a main component generated from a smelting furnace or a melting furnace is controlled at a temperature of 400 to 600°C and introduced into the iron powder layer. A method for producing high-purity carbon particles, characterized in that carbon monoxide in the by-product gas undergoes a reaction of 2CO→CO_2+C while flowing, and fine carbon adhering to the surface of the iron powder is decomposed and recovered. 2. By-product gas mainly composed of carbon monoxide generated from a smelting furnace or melting furnace is temperature-controlled at 400 to 600°C and brought into contact with an iron mesh belt moving inside the furnace. A method for producing high-purity carbon particles, which comprises subjecting carbon monoxide to a reaction of 2CO→CO_2+C and separating and recovering fine carbon adhering to the surface of the iron powder.
JP63149359A 1988-06-17 1988-06-17 Production of fine carbon powder having high purity Pending JPH01317110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63149359A JPH01317110A (en) 1988-06-17 1988-06-17 Production of fine carbon powder having high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63149359A JPH01317110A (en) 1988-06-17 1988-06-17 Production of fine carbon powder having high purity

Publications (1)

Publication Number Publication Date
JPH01317110A true JPH01317110A (en) 1989-12-21

Family

ID=15473408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63149359A Pending JPH01317110A (en) 1988-06-17 1988-06-17 Production of fine carbon powder having high purity

Country Status (1)

Country Link
JP (1) JPH01317110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945402A1 (en) * 1998-03-25 1999-09-29 Research Institute of Innovative Technology for the Earth Method for producing carbon
JP2018104282A (en) * 2012-04-16 2018-07-05 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945402A1 (en) * 1998-03-25 1999-09-29 Research Institute of Innovative Technology for the Earth Method for producing carbon
JP2018104282A (en) * 2012-04-16 2018-07-05 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide

Similar Documents

Publication Publication Date Title
MX2007001249A (en) Method and apparatus for producing clean reducing gases from coke oven gas.
CA1244656A (en) Processes and appparatus for the smelting reduction of smeltable materials
KR850001212B1 (en) Recovering non-volatile metals from dust containing metal oxides
AU2005300680B2 (en) Process and plant for producing titania slag from ilmenite
US4571259A (en) Apparatus and process for reduction of metal oxides
KR950704515A (en) PROCESS AND DEVICE FOR PRODUCING PIG IRON FROM IRON ORE OR THE THERMALLY AND / OR CHEMICALLY TREATING AN EASILY DECOMPOSABLE MATERIAL
US4179284A (en) Method for direct recovery of metal from metal-bearing ores
JPH06172835A (en) Method and device for reducing iron ore
CA1200102A (en) Process and apparatus for generating synthesis gas
AU2001267365B2 (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
US4900356A (en) Process and apparatus for producing metallized pellets and scrubbing spent reducing gas
US4756748A (en) Processes for the smelting reduction of smeltable materials
KR100291250B1 (en) Process for reducing the electric steelworksdusts and facility for implementing it
US3723608A (en) Production of phosphorus
US2781255A (en) Treatment of fumes containing suspended solids
KR100240810B1 (en) A process for the production of molten pig iron or steel pre-products and a plant for carrying out the process
JPH01317110A (en) Production of fine carbon powder having high purity
US2540593A (en) Method of melting reduced metal dust
US3649186A (en) Continuous process for obtaining high-grade zinc oxide from zinc-containing minerals
CA1126508A (en) Method and apparatus for the continuous recovery of heavy-metal phases
RU2090623C1 (en) Method and furnace for preparing liquid iron from fine-grain iron oxides
US5286273A (en) Method for steel making in high temperature reactor
US2782022A (en) Apparatus for preparing metals and alloys from substances, containing fine-grain metal
US1430454A (en) Chloridizing process and apparatus
GB2189260A (en) Improved process for producing metallized pellets