JPH01316454A - Control of vacuum discharge - Google Patents

Control of vacuum discharge

Info

Publication number
JPH01316454A
JPH01316454A JP1046698A JP4669889A JPH01316454A JP H01316454 A JPH01316454 A JP H01316454A JP 1046698 A JP1046698 A JP 1046698A JP 4669889 A JP4669889 A JP 4669889A JP H01316454 A JPH01316454 A JP H01316454A
Authority
JP
Japan
Prior art keywords
cathode
voltage
arc discharge
anode
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1046698A
Other languages
Japanese (ja)
Other versions
JPH0747818B2 (en
Inventor
Dietmar Schulze
デイ―トマール・シユルツエ
Ruediger Wildberg
リユーデイゲル・ウイルベルク
Werner Fleischer
ウエルネル・フライシエル
Pompe Wolfgang
ウオルフガング・ポムペ
Hans-Joachim Scheibe
ハンス・ヨハヒム・シヤイベ
Peter Siemroth
ペーター・ジームロート
Eberhard Steigmann
エーベルハルト・シユタイクマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochvakuum Dresden VEB
Original Assignee
Hochvakuum Dresden VEB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DD31326488A external-priority patent/DD277178A3/en
Priority claimed from DD31623488A external-priority patent/DD272666B5/en
Application filed by Hochvakuum Dresden VEB filed Critical Hochvakuum Dresden VEB
Publication of JPH01316454A publication Critical patent/JPH01316454A/en
Publication of JPH0747818B2 publication Critical patent/JPH0747818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/52Generating plasma using exploding wires or spark gaps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To surely control the transfer of a spot on a cathode and to lessen the formation of liquid drops, by impressing voltage in a pulse state to between an anode and the cathode, and applying laser pulses locally onto the cathode surface at every time of the max. voltage.
CONSTITUTION: Voltages are impressed in a pulse to between the anode and cathode of a high-vacuum vapor deposition equipment and the laser pulses are locally determined and applied onto the cathode surface every time the max. voltage is generated. The max. voltage between both electrodes is specified to the automatic ignition voltage of an arc discharge or below. The position where the laser pulses collide against each other on the cathode is changed by a suitable means between the two ignition pulses. The cathode surface is scanned according to the uniform and constant patterns. Then, the max. utilization of the cathode as a material source is made possible.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空放電を制御する方法に関するもので、
導電性材料、特に種々の応用に供する金属を蒸着する所
謂陰極アーク蒸着の形で、例えば反応性プラズマの固体
被覆のために使用される。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for controlling vacuum discharge,
It is used in the form of so-called cathodic arc deposition to deposit electrically conductive materials, in particular metals for various applications, for example for solid state coatings in reactive plasmas.

この種の蒸着系は上から下に向けて蒸着することができ
、蒸着速度が高いことで優れている。
This type of deposition system is advantageous in that it can be deposited from top to bottom and has a high deposition rate.

〔従来の技術〕[Conventional technology]

真空アーク放電に起因する蒸着構造とその作用は、種々
説明され、広く公知である(例えば、VDI−Zeit
schrift 129.1987.1.84)。
Deposition structures and their effects caused by vacuum arc discharge have been variously explained and are widely known (for example, VDI-Zeit
scrift 129.1987.1.84).

この蒸着の機能は、真空容器中で蒸着しようとする比較
的広い導電性電極とこの電極に対して絶縁して配設した
陽極の間に公知の方法でアークを点火させることに基づ
いている。更に、通常陽極点火電極を陰極に接触させて
いる。点火させるため、特別な高周波プラズマ又は集束
レーザビームを採用することも提唱されている(ヨーロ
ッパ特許第211413号公報)。
The function of this vapor deposition is based on the ignition in a known manner of an arc between a relatively wide electrically conductive electrode to be vaporized and an anode arranged insulated from this electrode in a vacuum vessel. Furthermore, the anode ignition electrode is usually in contact with the cathode. It has also been proposed to employ a special high-frequency plasma or a focused laser beam for ignition (EP 211 413).

アーク放電は、電圧が20 Vから50 Vの場合数1
0Aから10OAの間の電流が流れ、所謂陰極スポット
になって陰極に接続し、そこで融解材料損傷を与える。
Arc discharge occurs as follows when the voltage is 20 V to 50 V:
A current between 0 A and 10 OA flows and connects to the cathode in a so-called cathode spot, where it causes damage to the molten material.

直径が数μ暖のこの陰極スポット・ではエネルギ密度が
非常に高いので、極端に早く加熱され、陰極材料の溶融
状蒸着及びイオン化をもたらす。この場合、プラズマ中
の荷電粒子は高いエネルギと密度を有する。
The energy density in this cathode spot, which is a few microns in diameter, is so high that it heats up extremely quickly, resulting in molten deposition and ionization of the cathode material. In this case, the charged particles in the plasma have high energy and density.

上記の真空アーク放電の原理での問題の一つは、陰極ス
ポットが完全に確率的で制御不能に陰極表面上を移動す
ることから生じている。この非常に早い移動はアークの
不安定に繋がり、更にアークが折れ曲がり、絶縁物、シ
ールド材等の陰極の近くの構造体に損傷を与える。この
問題を排除するために、アークを陰極表面に制限する内
容を有する提案が既に提唱されている。***特許第35
28677号公報では、アークを案内する磁場が提示さ
れている。また***特許第3345493号公報には電
子放出係数の低い特別な材料から成る抑制装置が採用さ
れている。
One of the problems with the vacuum arc discharge principle described above arises from the fact that the cathode spot moves completely stochastically and uncontrollably over the cathode surface. This very rapid movement leads to instability of the arc, which can also bend and damage structures near the cathode, such as insulators and shielding materials. In order to eliminate this problem, proposals have already been put forward which have the content of restricting the arc to the cathode surface. West German Patent No. 35
No. 28677 presents a magnetic field that guides the arc. Further, West German Patent No. 3345493 employs a suppressor made of a special material with a low electron emission coefficient.

これ等の提唱に共通することは、陰極スポットの移動に
影響を及ぼすが、アーク又は陰極スポットの移動が陰極
上で決まっているように制御できないことにある。それ
故、アークの折れ曲がりを阻止する安全性がない。磁場
の大きさは、例えば溶融領域を確実に制限するためには
必ずしも充分でない、電気的に活性な制限法は放電作業
の間、蒸着によって働かせることができない。しかし、
一般にこの種の変形によって、溶融が生じる陰極領域が
制限される。従って、陰極での材料利用率とこの方法の
有効性とが低下する。上記真空アーク放電蒸着のその他
の欠点は、所謂液滴と呼ばれる液滴形成を防止する問題
が未だに未解決である点にある。
What these proposals have in common is that they affect the movement of the cathode spot, but the movement of the arc or cathode spot cannot be controlled as fixed on the cathode. Therefore, there is no safety to prevent arc bending. The magnitude of the magnetic field, for example, is not always sufficient to reliably limit the melting region, and electrically active limiting methods cannot be activated by vapor deposition during discharge operations. but,
This type of deformation generally limits the cathode area in which melting occurs. Therefore, the material utilization at the cathode and the effectiveness of the method are reduced. Another drawback of the vacuum arc discharge deposition described above is that the problem of preventing the formation of so-called droplets remains unsolved.

液滴は、比較的大きな物質粒子であって、陰極作用、特
に陰極上のスポットが種々の大きさの制御不能な速度に
よって生じている。これ等の液滴が基板に当たると被膜
形成を阻止し、被膜の品質を低下させる。それ故、基板
と被膜が部分的に使用不能になる。
Droplets are relatively large particles of material that are produced by cathodic action, in particular spots on the cathode of varying size and uncontrollable speed. When these droplets hit the substrate, they prevent film formation and reduce the quality of the film. Therefore, the substrate and coating become partially unusable.

しかしながら、真空アーク放電蒸着による多層被膜を作
製するには、種々の材料を一個の蒸発体から蒸発させる
場合:相当困難になる。
However, the production of multilayer coatings by vacuum arc discharge deposition becomes considerably difficult when various materials are evaporated from one evaporator.

***特許第3152736号公報には、異なる大きさの
陰極の傾斜を有する金属の多層被膜から成るアーク金属
蒸発体用の陰極が説明しである。それ等の多層被膜は、
陰極の傾斜が陰極の幾何学軸からその端部に向けて少な
くなるように配設しである。異なった陰極傾斜を介して
陰極スポットの固有な動きと共に磁場の相互作用により
、−枚の二層被膜を作製できる。しかしながら、再現性
を持って決めた個々の被膜成分を付着させることは不可
能である。
German Patent No. 3,152,736 describes a cathode for an arc metal evaporator consisting of a multilayer coating of metal with cathode slopes of different sizes. Such multilayer coatings are
The arrangement is such that the slope of the cathode decreases from the geometrical axis of the cathode towards its end. Due to the interaction of the magnetic field with the inherent movement of the cathode spot through different cathode tilts, two-layer coatings can be produced. However, it is not possible to reproducibly deposit individual coating components.

米国特許筒4.596,716号公報には、蒸着すべき
材料の二つの電極が陰極と陽極として選択的にしかも交
互に接続できる真空放電蒸着用の装置が記載されている
。しかしながら、この種の装置では純粋な単層を付着さ
せるこができない。何故なら、切換の後物理的に避けが
たい陰極から陽極への材料の移動が生じ、後で一緒に蒸
発するからである。
U.S. Pat. No. 4,596,716 describes an apparatus for vacuum discharge deposition in which two electrodes of the material to be deposited can be connected selectively and alternately as cathode and anode. However, this type of device does not allow the deposition of pure monolayers. This is because after switching there is a physically unavoidable movement of material from the cathode to the anode, which later evaporates together.

特に、非常に薄い光学被膜を作製する場合、これ等の汚
れは擾乱を与える。
Particularly when making very thin optical coatings, these contaminants cause disturbance.

〔発明の課題〕[Problem of invention]

この発明の課題は、陰極上のスポットの移動を確実に制
御して液滴の形成を低減し、陰極材料の利用度を高め、
しかも多層被膜を作製できる方法を提供することにある
The object of this invention is to reliably control the movement of the spot on the cathode to reduce droplet formation and increase the utilization of the cathode material.
Moreover, it is an object of the present invention to provide a method by which a multilayer coating can be produced.

〔課題の解決〕[Solving issues]

上記の課題は、この発明により、陽極と陰極の間の電圧
をパルス状に印加し、最大電圧時毎にレーザーパルスを
陰極表面上に局所的に定めて当てることによって解決し
ている。この場合、陽極と陰極の間の電圧は、通常アー
ク放電が自己点火するのに必要な電圧以下に置かれてい
る。この場合、電圧の最低値は確実にアーク放電を消弧
させる値になっている。通常のアーク放電蒸着の場合に
は、電圧の最大値は100Vになり、最小値は10 、
Vになる。アーク放電の燃焼時間は、陰極材料と陰極の
表面状態に依存して数μsの領域に設定されている。ス
ポットの時間間隔(パルス)当たりに変換される出力を
決めるには、真空アーク放電の電流供給回路を適切に設
計することによって可能になる。
The above-mentioned problem is solved according to the invention by applying the voltage between the anode and the cathode in pulses and applying a laser pulse locally on the cathode surface at each maximum voltage. In this case, the voltage between the anode and the cathode is usually placed below the voltage required for the arc discharge to self-ignite. In this case, the lowest voltage value is a value that reliably extinguishes arc discharge. In the case of normal arc discharge deposition, the maximum value of the voltage is 100V, and the minimum value is 10V,
It becomes V. The burning time of arc discharge is set in the range of several microseconds depending on the cathode material and the surface condition of the cathode. Determining the power converted per spot time interval (pulse) is possible by appropriate design of the current supply circuit of the vacuum arc discharge.

〔作 用〕[For production]

導電性表面で電圧の最大値に到達する時点で、この発明
による強収斂レーザパルスを導入することによって、そ
の位置にプラズマが発生する。プラズマの先端面は、ア
ーク放電蒸発体の陽極に達し、陽極と陰極上のレーザビ
ームの衝突位置の間に真空放電を点火させることになる
。この場合、レーザのパルス期間は、陽極と陰極の間の
電圧が低下して初めて消弧する真空アークの燃焼期間に
比べて短い、パルス継続周期は、広い範囲に選択でき、
しかもレーザの出力と、アーク放電蒸着体のパルス用エ
ネルギを設定するため必要となる時間とによってのみ決
まる。
At the moment when the maximum value of the voltage is reached at the conductive surface, a plasma is generated at that location by introducing a highly convergent laser pulse according to the invention. The front surface of the plasma will reach the anode of the arc discharge evaporator and ignite a vacuum discharge between the impact location of the laser beam on the anode and cathode. In this case, the laser pulse period is shorter than the combustion period of a vacuum arc, which is extinguished only when the voltage between the anode and cathode drops, and the pulse duration period can be selected within a wide range.
Moreover, it is determined only by the power of the laser and the time required to set the energy for pulsing the arc discharge deposit.

この発明によれば、レーザパルスが陰極上で衝突する位
置は二つの点火パルスの間で適当な手段(例えば、回転
鏡又は揺動鏡)によって変更され、陰極表面は一様にな
いしは一定のパターンに従って走査される。従って、陰
極は材料源として最大に利用され、溶融形状を決める必
要に応じて形成される。例えば、陰極の上記溶融形状を
、陰極を均すために必要な全時間間隔にわたって蒸着特
性を一定に維持するか、あるいはそれお狙って変更する
ように形成することができる。更に、陰極スポットの移
動を制御することによって、陰極領域からアークの飛び
出させないことを保証することができる。
According to the invention, the position at which the laser pulse impinges on the cathode is varied between two ignition pulses by suitable means (e.g. a rotating or oscillating mirror), so that the cathode surface is formed in a uniform or regular pattern. scanned according to Therefore, the cathode is maximally utilized as a source of material and formed as needed to define the melt shape. For example, the above-mentioned melt shape of the cathode can be configured in such a way that the deposition properties remain constant or are targeted to change over the entire time interval required to level the cathode. Furthermore, by controlling the movement of the cathode spot, it can be ensured that no arcs are ejected from the cathode region.

この発明の解決策によって、初めて陰極上でスポットの
移動を確実に制御できる。この場合、液滴の形成は大幅
に低減できる。結局、陰極材料を全表面にわたって利用
できる。更に、この制御性によって蒸発速度と蒸着特性
を大幅な制御が達成される。
The solution of this invention allows for the first time to reliably control the movement of the spot on the cathode. In this case, droplet formation can be significantly reduced. After all, the cathode material can be utilized over the entire surface. Furthermore, this controllability provides significant control over evaporation rates and deposition characteristics.

種々の蒸着材料に多層膜を作製するためには、パスルが
印加している間陰極のスポット予測される最大移動値が
ターゲットの端部までの最小間隔より短く、作製する個
々の被膜の膜厚がアーク放電の数によってターゲットに
対して、ないしは対応する材料上で決まるように、アー
ク放電を多数のターゲットの一つの中心に対して選択的
に点火し、パルス間隔、つまりアーク放電の燃焼間隔を
選択する。
In order to produce multilayer films on various evaporation materials, the expected maximum movement of the cathode spot during pulse application must be less than the minimum distance to the edge of the target, and the thickness of each individual film to be produced should be The arc discharge is ignited selectively to the center of one of the many targets, and the pulse interval, i.e. the firing interval of the arc discharge, is determined by the number of arc discharges on the target or on the corresponding material. select.

個々の材料を変えることは、点火位置を変えることによ
って簡単にできる。種々の蒸着物質の数は基本的には自
由である。それ等の材料を共通の陰極ターゲット保持台
に設置すると有利である。
Changing individual materials can be easily done by changing the ignition position. The number of different vapor deposition substances is basically free. It is advantageous to place these materials on a common cathode target holder.

点火後は、アーク放電の陰極スポットが直接ターゲット
蒸発の下で物理的に制御不能な動き、移動とも呼ばれる
、をターゲット表面上で始める。陰極スポットの移動と
ターゲット上での半径方向の端部間隔に応じて、アーク
放電のパルス間隔ないしは燃焼間隔はアーク電圧の低下
によって、アーク陰極スポットの移動距離がターゲット
上の最短距離より短いように決定される。これによって
、陰極ターゲット支持台の直ぐ近くに他のターゲット材
料があっても、−個のアーク放電パルス内でこの一つの
ターゲットの材料のみが蒸発することが保証される。
After ignition, the cathode spot of the arc discharge starts to physically uncontrollable movement, also called movement, on the target surface directly under the target evaporation. Depending on the movement of the cathode spot and the radial edge spacing on the target, the pulse interval or firing interval of the arc discharge is such that due to the reduction of the arc voltage, the moving distance of the arc cathode spot is shorter than the shortest distance on the target. It is determined. This ensures that only the material of this one target is evaporated within - arc discharge pulses, even if there are other target materials in the immediate vicinity of the cathode target support.

一パルスの間で蒸発する量は、通常被膜の技術的な作製
にとって低すぎる。それ故、同じターゲットにアーク放
電のパルスを何回連続して点火させ、何時点火位置を変
えてアーク放電を他のターゲットに点火させるかが技術
的に必要になる。
The amount evaporated during one pulse is usually too low for the technical production of coatings. Therefore, it is technically necessary to know how many times to ignite a pulse of arc discharge to the same target in succession and at what point to change the ignition position and ignite the arc discharge to another target.

−個のアーク放電のパルスに対するパルス時間は非常に
異なり、材料とそれに基づく陰極スポットの移動速度と
ターゲットの量に応じて調整される。通常の大きさでは
、パルス時間は数ミリセカンドになる。
- The pulse times for the individual arc discharge pulses are very different and are adjusted depending on the material and hence the moving speed of the cathode spot and the amount of target. At typical magnitudes, the pulse time will be a few milliseconds.

大きなりレータ−を防止するため、ターゲット上で点火
位置を放電から放電に応じて一回の放電パルスの間、平
均移動距離より短い距離の範囲で変えると有利である。
In order to prevent large ramps, it is advantageous to vary the ignition position on the target from discharge to discharge over a range of distances shorter than the average travel distance during one discharge pulse.

この製造管理によって、種々の導電性材料の多層膜を可
変できる膜厚と高い純度で非常に良好に作製できる。
This manufacturing control allows multilayer films of various conductive materials to be produced very well with variable thickness and high purity.

一回のアーク放電パルスの場合には比較的少ない蒸着量
のため、アーク放電がそれに向かって燃焼するターゲッ
トを常時交換する場合、それが単なる多層膜であっても
、可能な混合層も実際に作製できる。
Due to the relatively small amount of deposition in the case of a single arc discharge pulse, if the target that the arc discharge burns towards is constantly replaced, even if it is just a multilayer, a possible mixed layer is actually It can be made.

この発明による製造法に無関係に、作業雰囲気は不活性
ないしは活性であってもよく、それに応じて、基板に付
着させた層は変わる。
Irrespective of the manufacturing method according to the invention, the working atmosphere may be inert or active, and the layers deposited on the substrate will vary accordingly.

〔実施例〕〔Example〕

この発明を以下に一例でより詳しく説明することにする
The invention will be explained in more detail below by way of an example.

例I 高真空蒸着設備に、水冷したターゲット陰極とリング状
の陽極から成る冷陰極蒸着装置が組み込んである。この
蒸着装置の電流供給部は、最大負荷電流100Aの場合
100Vの点火電圧が数μ−のパスル間隔で行われるよ
うに設計されている。
Example I A cold cathode evaporator consisting of a water-cooled target cathode and a ring-shaped anode is installed in a high-vacuum deposition facility. The current supply of this vapor deposition device is designed in such a way that, at a maximum load current of 100 A, an ignition voltage of 100 V occurs with a pulse interval of a few microns.

上端電圧に達すると同時に、出力密度10’ W/cm
2のNd−YAGレーザパルスを陰極表面上に当てる。
As soon as the upper voltage is reached, the power density becomes 10' W/cm.
2 Nd-YAG laser pulses are applied onto the cathode surface.

こうして、この発明による真空アーク放電が点火し、下
端しきい値電圧に達するまで燃焼する。
Thus, the vacuum arc discharge according to the invention ignites and burns until the lower threshold voltage is reached.

レーザパルスの期間は、500 nsで、真空アーク放
電の燃焼期間は約10 usになる。パルス周期はこの
例では10 Hzになる。
The duration of the laser pulse is 500 ns, resulting in a combustion period of about 10 us for the vacuum arc discharge. The pulse period will be 10 Hz in this example.

レーザービームを陰極表面に導入するには、集束系と二
輪の回りにプログラムして偏向させることのできる揺動
鏡とレーザー導入窓によって行っている。それ故、陰極
表面はプログラムで点状に走査できる。陰極がグラファ
イト状の炭素で作製されている上記の製法を用いて、0
.5 gemの蒸発速度を得る。陰極から10 c+s
の間隔に配設しである基板上には、大部分がs p ’
J結合を有し、ダイヤモンド特性を示す炭素被膜が付着
する。
The laser beam is introduced onto the cathode surface using a focusing system, an oscillating mirror that can be programmably deflected around two wheels, and a laser introduction window. Therefore, the cathode surface can be programmatically scanned point-wise. Using the above manufacturing method in which the cathode is made of graphitic carbon, 0
.. Obtain an evaporation rate of 5 gems. 10 c+s from cathode
On the substrate, which is arranged at intervals of
A carbon film having J-bonds and exhibiting diamond properties is deposited.

例■ 個々の単一層液膜を高純度にして、基板上にタングステ
ンカーバイドの多層被膜を形成することが目的である。
Example ■ The purpose is to form a multilayer coating of tungsten carbide on a substrate by making each single layer liquid film highly pure.

この種の蒸着膜は、例えばX線反射鏡に必要である。This type of vapor deposited film is required, for example, for X-ray reflecting mirrors.

真空アーク放電蒸着装置と基板装置を有する公知の実施
例の高真空蒸着設備では、この発明の製造方法が実現さ
れる。必要な点火装置として、レーザービームを異なる
二つの陰極ターゲット(WとC)の中心に選択的に指向
させる組込反射系を有するレーザービーム装置がある。
The manufacturing method of the present invention is implemented in a known embodiment of a high vacuum deposition facility having a vacuum arc discharge deposition device and a substrate device. The required ignition system is a laser beam device with a built-in reflection system that selectively directs the laser beam to the center of two different cathode targets (W and C).

陰極ターゲットは、陽極リングによって取り囲まれてい
る共通の陰極ホルダー上に設置しである。
The cathode targets are mounted on a common cathode holder surrounded by an anode ring.

タングステン・ターゲットは150 m−直径を有し、
カーボン・ターゲットは40 +*s+の直径を有する
The tungsten target has a diameter of 150 m;
The carbon target has a diameter of 40+*s+.

これ等の材料は、その材料特有な陰極スポットの速度と
可能なアーク電圧切換速度に調節される。
These materials are tailored to their specific cathode spot velocity and possible arc voltage switching speed.

他の技術上必要な予備調整過程に無関係に、この発明の
方法は以下の様に行われる。
Irrespective of other technically necessary preconditioning steps, the method of the invention is carried out as follows.

第一被膜として、基板上にW被膜を付着させる。As the first coating, a W coating is deposited on the substrate.

更に、陽極と陰極の間に、100■の電圧を印加し、ア
ーク電流は点火後80 Aになるように電流を供給する
。上に与えた電圧では、未だ自動点火が生じない、タン
グステン・ターゲツト板の中心にレーザパルスを向け、
このことが局所的なプラズマ形成に導くと、初めてアー
ク放電が点火する。陰極スポットがターゲット上で無制
御状態で移動を開始し、その場合ターゲットが蒸発する
。陰極スポットがターゲットの端部に達する前に、この
発明によればアーク電圧が50v以下に低下して、アー
ク放電が消弧する。アーク放電の燃焼期間は10 +m
sに調節される。従って、膜厚は約0.In−になる。
Further, a voltage of 100 μm was applied between the anode and the cathode, and a current was supplied so that the arc current would be 80 A after ignition. Aim the laser pulse at the center of the tungsten target plate, where auto-ignition has not yet occurred at the voltage applied above.
This leads to localized plasma formation, and only then the arc discharge is ignited. The cathode spot starts moving uncontrolled over the target, causing the target to evaporate. Before the cathode spot reaches the end of the target, according to the invention, the arc voltage drops below 50 volts and the arc discharge is extinguished. The combustion period of arc discharge is 10 + m
Adjusted to s. Therefore, the film thickness is approximately 0. Become In-.

技術的な制約のあるタングステン被膜の膜厚はこの種の
パルスの繰り返しを要求する。これに次いで、同じ方法
でアーク放電レーザーパルスをカーボン・ターゲットの
中心に向け、そこでアーク放電が点火する。電子的な経
費を低減するため、この場合でも燃焼期間を10 ms
に調節する。
The technically constrained tungsten film thickness requires this type of pulse repetition. This is followed by directing the arc discharge laser pulse in the same manner to the center of the carbon target where the arc discharge ignites. To reduce electronic costs, the combustion period is still 10 ms.
Adjust to

付着させたC被膜は、約(C1nmになり、アーク放電
パスルは充分である。全体の被膜を形成するためには、
全部で60W−C連続膜が順次蒸着される。個々の被膜
の間には、遷移領域が析出しない。
The deposited C film is about (C1 nm), and the arc discharge pulse is sufficient. In order to form the entire film,
A total of 60 W-C continuous films are sequentially deposited. No transition regions are deposited between the individual coatings.

Claims (1)

【特許請求の範囲】 1、陰極表面の陰極スポットの位置の影響を用いて真空
アーク放電を制御する方法において、陽極と陰極との間
に電圧をパルス的に印加し、最大電圧が生じる毎にレー
ザー・パルスを陰極表面上に局所的に決めて指向させる
ことを特徴とする方法。 2、陽極と陰極の間の最大電圧は、アーク放電の自動点
火電圧以下であることを特徴とする請求項1記載の方法
。 3、陽極と陰極間の最小電圧は、アーク放電の最小燃焼
電圧以下であることを特徴とする請求項1記載の方法。 4、レーザーパルスの衝突位置の順序は、規則正しく、
ないしは所定のパターンに従って陰極表面上で行われる
ことを特徴とする請求項1記載の方法。 5、多層被膜を作製するため、アーク放電は多数のター
ゲットの一つの中心に対して選択的に点火され、そのパ
ルスの間陰極スポットの予測される最大移動値がターゲ
ット端部までの最短間隔より短く、次いで他のアーク放
電が同じ様に同じ又は他のターゲットに対して点火する
ようにアーク放電のパルス期間を調節してあることを特
徴とする請求項1記載の方法。 6、付着させる被膜の膜厚はアーク放電パルスの数によ
って制御されることを特徴とする請求項5記載の方法。
[Claims] 1. In a method of controlling vacuum arc discharge using the influence of the position of a cathode spot on the cathode surface, a voltage is applied between an anode and a cathode in a pulse manner, and each time a maximum voltage is generated, A method characterized in that the laser pulses are locally determined and directed onto the cathode surface. 2. The method according to claim 1, characterized in that the maximum voltage between the anode and the cathode is below the auto-ignition voltage of the arc discharge. 3. The method according to claim 1, characterized in that the minimum voltage between the anode and the cathode is less than or equal to the minimum combustion voltage of the arc discharge. 4. The order of the collision positions of the laser pulses is regular.
2. A method according to claim 1, characterized in that it is carried out on the cathode surface according to a predetermined pattern. 5. To produce a multilayer coating, an arc discharge is selectively ignited to the center of one of the multiple targets, such that during the pulse the maximum expected displacement of the cathode spot is less than the shortest distance to the edge of the target. 2. A method as claimed in claim 1, characterized in that the pulse duration of the arc discharge is adjusted so that it is short and then other arc discharges are ignited in the same way against the same or other targets. 6. A method according to claim 5, characterized in that the thickness of the deposited coating is controlled by the number of arc discharge pulses.
JP1046698A 1988-03-01 1989-03-01 How to control vacuum discharge Expired - Lifetime JPH0747818B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DD31326488A DD277178A3 (en) 1988-03-01 1988-03-01 METHOD FOR CONTROLLING VACUUM ARC FLASH
DD31623488A DD272666B5 (en) 1988-05-31 1988-05-31 Process for producing multiple layers by means of a vacuum arc evaporator
DD23C/313264-8 1988-05-31
DD23C/316234-8 1988-05-31

Publications (2)

Publication Number Publication Date
JPH01316454A true JPH01316454A (en) 1989-12-21
JPH0747818B2 JPH0747818B2 (en) 1995-05-24

Family

ID=25748192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046698A Expired - Lifetime JPH0747818B2 (en) 1988-03-01 1989-03-01 How to control vacuum discharge

Country Status (2)

Country Link
JP (1) JPH0747818B2 (en)
DE (1) DE3901401C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525172A (en) * 2007-04-23 2010-07-22 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Assembly for forming a coating on a substrate in a vacuum
JP2010248574A (en) * 2009-04-16 2010-11-04 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2095880T3 (en) * 1990-03-01 1997-03-01 Balzers Hochvakuum DEVICE AND PROCEDURE FOR VAPORIZATION OF VACUUM MATERIAL, AS WELL AS APPLICATION OF THE PROCEDURE.
DE4037388A1 (en) * 1990-11-22 1992-05-27 Scheibe Hans Joachim Dr CIRCUIT ARRANGEMENT FOR THE POWER SUPPLY FOR PULSE-OPERATED VACUUM BOWS
DE19600993A1 (en) * 1995-01-13 1996-08-08 Technics Plasma Gmbh Appts. for high rate anodic evapn. for substrate coating
DE19618073C1 (en) * 1996-05-06 1997-09-18 Inovap Vakuum Und Plasmatechni Ignition unit for a vacuum arc discharge evaporator
US6533908B1 (en) 1998-08-26 2003-03-18 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Device and method for coating substrates in a vacuum utilizing an absorber electrode
WO2000012775A1 (en) 1998-08-26 2000-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for coating substrates in a vacuum
DE19850218C1 (en) * 1998-08-26 2000-03-30 Fraunhofer Ges Forschung Device and method for coating substrates in a vacuum
DE19838826B4 (en) * 1998-08-26 2005-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical element with transparent, scratch-resistant coating, method and device for its production and its use
DE19946080C2 (en) * 1998-10-06 2002-02-14 Fraunhofer Ges Forschung Test bottle and process for its manufacture
DE19924094C2 (en) 1999-05-21 2003-04-30 Fraunhofer Ges Forschung Vacuum arc evaporator and method for its operation
PL1863947T3 (en) 2005-03-24 2012-06-29 Oerlikon Trading Ag Hard material layer
DE102011003254A1 (en) 2011-01-27 2012-08-02 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, with a coating and method for producing a sliding element
DE102017205417A1 (en) 2017-03-30 2018-10-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for forming a layer formed with polycrystalline or monocrystalline diamond
DE102020215892A1 (en) * 2020-12-15 2022-06-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Device for forming amorphous carbon layers on component surfaces with reduced surface roughness

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011103B2 (en) * 1981-02-23 1985-03-23 レオニド パフロヴイツチ サブレフ Consumable cathode for electric arc metal evaporation equipment
GB2140040B (en) * 1983-05-09 1986-09-17 Vac Tec Syst Evaporation arc stabilization
US4596716A (en) * 1983-06-08 1986-06-24 Kennecott Corporation Porous silicon nitride semiconductor dopant carriers
US4555612A (en) * 1983-10-17 1985-11-26 General Electric Co. Plasma jet cleaning apparatus and method
US4724058A (en) * 1984-08-13 1988-02-09 Vac-Tec Systems, Inc. Method and apparatus for arc evaporating large area targets
EP0211413A3 (en) * 1985-08-09 1989-03-15 The Perkin-Elmer Corporation Arc ignition device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525172A (en) * 2007-04-23 2010-07-22 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Assembly for forming a coating on a substrate in a vacuum
JP2010248574A (en) * 2009-04-16 2010-11-04 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method

Also Published As

Publication number Publication date
DE3901401A1 (en) 1989-09-14
DE3901401C2 (en) 1996-12-19
JPH0747818B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
JPH01316454A (en) Control of vacuum discharge
US4673477A (en) Controlled vacuum arc material deposition, method and apparatus
US6063245A (en) Magnetron sputtering method and apparatus utilizing a pulsed energy pattern
US4917786A (en) Method and apparatus for evaporating material in vacuum
US5614273A (en) Process and apparatus for plasma-activated electron beam vaporization
US4512867A (en) Method and apparatus for controlling plasma generation in vapor deposition
EP0899772B1 (en) Cathodic arc vapor deposition apparatus
US5096558A (en) Method and apparatus for evaporating material in vacuum
US5441624A (en) Triggered vacuum anodic arc
JPH0356670A (en) Apparatus for stripping and grinding target material
EP0384617A1 (en) System and method for vacuum deposition of thin films
CN112831759A (en) Magnetic field auxiliary cathode arc striking device and film coating method
US5238546A (en) Method and apparatus for vaporizing materials by plasma arc discharge
US5830376A (en) Topographical selective patterns
DE4042337C1 (en) Controlling degree of ionisation of vapour for surface coating - by preventing straight line current flow between hot anode target surface and cold cathode by using movable wall between them
EP0174977A4 (en) Controlled vacuum arc material deposition, method and apparatus.
EP0444538B1 (en) Device and procedure for vacuum evaporation of a material and utilisation of the procedure
Scheibe et al. Laser-arc: A new method for preparation of diamond-like carbon films
DE4006456C1 (en) Appts. for vaporising material in vacuum - has electron beam gun or laser guided by electromagnet to form cloud or pre-melted spot on the target surface
EP0887435B1 (en) Free-standing rotating evaporation source
DE19724996C1 (en) Plasma-activated electron beam vapour deposition
KR101879896B1 (en) Carbon spark evaporation
US20060124450A1 (en) Method and apparatus for cathodic arc deposition of materials on a substrate
Schultrich et al. Methods of Vacuum Arc Deposition of ta-C Films
DE2628765C3 (en) Apparatus for vapor deposition, in particular sublimable substances, in a vacuum by means of an electron beam source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

EXPY Cancellation because of completion of term