JPH01315418A - Production of polyanilines - Google Patents

Production of polyanilines

Info

Publication number
JPH01315418A
JPH01315418A JP14579288A JP14579288A JPH01315418A JP H01315418 A JPH01315418 A JP H01315418A JP 14579288 A JP14579288 A JP 14579288A JP 14579288 A JP14579288 A JP 14579288A JP H01315418 A JPH01315418 A JP H01315418A
Authority
JP
Japan
Prior art keywords
molten salt
electrolytic
electrode
polyanilines
anilines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14579288A
Other languages
Japanese (ja)
Inventor
Kazuyuki Chiba
和幸 千葉
Kenichi Takahashi
健一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP14579288A priority Critical patent/JPH01315418A/en
Publication of JPH01315418A publication Critical patent/JPH01315418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To improve the reproducibility of chemical properties, etc., of polyalinines and to simplify the production process of the polymer, by carrying out the electrolytic oxidative polymerization of anilines in a molten salt containing at least one kind of anilines. CONSTITUTION:The objective polyanilines can be produced by using an electrolytic solution comprising preferably a normal-temperature molten salt (e.g., an alkylpyridinum halide and a metal halide) containing at least one kind of anilines, adding an organic solvent (e.g., benzene) and a halide (e.g., lithium chloride) to the solution and carrying out electrolytic polymerization preferably by three-electrode controlled potential electrolysis.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電解酸化重合法を用いたポリアニリン類の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing polyanilines using an electrolytic oxidation polymerization method.

(従来の技術) 近年、導電性高分子が電気あるいは電子産業分野のみな
らず色々な産業分野から新しい材料として注目されてい
る。その中でも、ポリアニリンまたはその誘導体は空気
中で安定であり、その酸化・還元状態により吸収波長が
変化することからエレクトロクロミック索子として、ま
た、その電気化学的性質を利用した電池の正極材料とし
ての応用があるなど、特に興味深い材料である。しかし
ながら、上述のような特性を有するポリアニリンおよび
その誘導体は、対応するモノマーを含む酸性水溶液中か
らの電解酸化重合によってのみ作製されている。これは
、電解液を中性水溶液、アルカリ性水溶液、あるいはア
セトニトリルなどの非水溶液にすると電気絶縁性のポリ
アニリンしか得られないためである(J、Electr
oanal、Ches、、181゜399(1984)
、を参照)。したがって、ポリアニリンまたはその誘導
体を電気化学的素子や電極の正極として、電気化学的な
安定性の広い有機電解液中での使用を考えた場合に、電
解液の種類の不一致が生じる。このため、これまでは、
ポリアニリンおよびその誘導体作製後に水を除くための
工程が不可欠であり、これは設備費の増大、素子作成時
間の増加、工程の複雑化などをもたらし、結局コストが
増加することになる。
(Prior Art) In recent years, conductive polymers have attracted attention as new materials not only in the electrical and electronic industries but also in various industrial fields. Among them, polyaniline or its derivatives are stable in air, and their absorption wavelength changes depending on their oxidation/reduction state, so they can be used as electrochromic ropes, and as cathode materials for batteries that utilize their electrochemical properties. It is a particularly interesting material with many applications. However, polyaniline and its derivatives having the above-mentioned properties have only been produced by electrolytic oxidative polymerization from an acidic aqueous solution containing the corresponding monomer. This is because if the electrolyte is a neutral aqueous solution, an alkaline aqueous solution, or a non-aqueous solution such as acetonitrile, only electrically insulating polyaniline can be obtained (J, Electr.
oanal, Ches, 181°399 (1984)
). Therefore, when considering the use of polyaniline or a derivative thereof as a positive electrode of an electrochemical device or electrode in an organic electrolyte having a wide range of electrochemical stability, a discrepancy arises in the type of electrolyte. For this reason, until now,
A process for removing water is essential after producing polyaniline and its derivatives, which increases equipment costs, increases device production time, complicates the process, and ultimately increases costs.

(発明が解決しようとする問題点) 本発明の目的は、簡便に電気伝導性に優れたポリアニリ
ン類を、対応するモノマーから電解酸化重合法により製
造する方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for easily producing polyanilines with excellent electrical conductivity from corresponding monomers by electrolytic oxidative polymerization.

(問題点を解決するための手段) 本発明者らは、上記問題点を解決するために鋭意検討を
行なった結果、アニリン類を少なくとも−ti以上含む
溶融塩中で電解酸化することによって、電気伝導性に優
れたのポリアニリン類を作製できることを見出だし本発
明を完成するに至った。
(Means for Solving the Problems) As a result of intensive studies in order to solve the above problems, the present inventors found that electrolytic oxidation of anilines in a molten salt containing at least -ti or more was performed. The present inventors have discovered that polyanilines with excellent conductivity can be produced and have completed the present invention.

すなわち本発明は、アニリン類を少なくとも一種以上含
む溶融塩中のアニリン類を、電解酸化重合重合すること
を特徴とするポリアニリン類の製造方法である。次に本
発明を更に詳細に説明する。
That is, the present invention is a method for producing polyanilines, which is characterized by subjecting anilines in a molten salt containing at least one type of anilines to electrolytic oxidation polymerization. Next, the present invention will be explained in more detail.

本発明のポリアニリン類の製造方法において電解酸化重
合法が行なわれるが、電解液としてはアニリン類を少な
くとも一種以上含む溶融塩が用いられる。このときの溶
融塩は、28i類あるいはそれ以上の塩を混合してなる
溶融塩を用いることができ、常温溶融塩、高温溶融塩の
制限はない。ただし、高温溶融塩の場合、その融点はア
ニリン類の沸点以下である必要がある。また、工業的お
よびコスト的見地から、常温溶融塩を用いることが好ま
しい。具体的には、アルキルピリジニウムハロゲン化物
と金属のハロゲン化物、1.2.3、−トリアルキルイ
ミダゾリウムハロゲン化物と金属のハロゲン化物、そし
て1.3−ジアルキルイミダゾリウムハロゲン化物と金
属のハロゲン化物を挙げることができる。さらに具体的
には、アルキル基の炭素数が1〜12のものを用いるこ
とが好ましく、ハロゲンとしてはCjl、Br、1など
を挙げることができるが、Cgであればより電気化学的
に安定であるので好ましい。また、金属としてはアルミ
ニウム、亜鉛、鉄などを挙げることができるが溶融塩の
電導度、融点などから、アルミニウムが好ましい。さら
に、電解液の粘度調整、電導度の向上、生成するポリア
ニリンおよびポリアニリン誘導体の特性の変化などをは
かるために、アセトニトリル、ベンゼン、トルエンなど
の有機溶媒や、塩化リチウム、塩化カリウムなどのハロ
ゲン化物を電解液に添加しても何ら差し支えない。
In the method for producing polyanilines of the present invention, an electrolytic oxidation polymerization method is carried out, and a molten salt containing at least one type of aniline is used as the electrolyte. As the molten salt at this time, a molten salt obtained by mixing salts of class 28i or higher can be used, and there is no restriction on room temperature molten salt or high temperature molten salt. However, in the case of a high-temperature molten salt, its melting point must be below the boiling point of the aniline. Further, from an industrial and cost standpoint, it is preferable to use a room temperature molten salt. Specifically, alkylpyridinium halides and metal halides, 1.2.3-trialkylimidazolium halides and metal halides, and 1.3-dialkylimidazolium halides and metal halides. can be mentioned. More specifically, it is preferable to use an alkyl group having 1 to 12 carbon atoms, and examples of the halogen include Cjl, Br, 1, etc., but Cg is more electrochemically stable. It is preferable because there is. Further, examples of the metal include aluminum, zinc, iron, etc., but aluminum is preferable in view of the conductivity of the molten salt, melting point, etc. In addition, organic solvents such as acetonitrile, benzene, toluene, and halides such as lithium chloride and potassium chloride are added to adjust the viscosity of the electrolyte, improve conductivity, and change the properties of polyaniline and polyaniline derivatives. There is no problem in adding it to the electrolyte.

アニリン類を重合するときの電解重合は、動作電極、対
極および基準電極をそなえた三電極式で行なっても、動
作電極および対極からなる二電極式で行なってもよいが
、動作電極の電位を制御できる三電極式が好ましい。動
作電極の形状は板状、棒状、コイル状、繊維状、網状な
どいかなるものでもよい。また、その材質は、溶融塩中
で電極として安定に動作するものであれば何ら差し支え
ない。、炭素、金、白金、ITOなどを例示することが
できる。電解重合は、定電位、低電流、電位ステップ、
電位走引などのいずれの電解方法でも可能であるが電位
の制御が容易な定電位、電位ステップ、電位走引法が好
ましい。また、対極は動作電極で起きる電子移動反応を
妨げない材質、面積であればよい。基準電極は溶融塩中
で使用可能なものであればとくに、限定されるものでは
ない。
Electrolytic polymerization when polymerizing anilines can be carried out using a three-electrode system with a working electrode, a counter electrode, and a reference electrode, or a two-electrode system consisting of a working electrode and a counter electrode. A controllable three-electrode system is preferred. The shape of the working electrode may be any shape such as a plate, rod, coil, fiber, or net. Further, the material may be any material as long as it operates stably as an electrode in molten salt. , carbon, gold, platinum, ITO, etc. Electrolytic polymerization is a constant potential, low current, potential step,
Although any electrolysis method such as potential scanning is possible, constant potential, potential step, and potential scanning methods are preferred because they allow easy control of the potential. Further, the counter electrode may be made of any material and have an area that does not interfere with the electron transfer reaction occurring at the working electrode. The reference electrode is not particularly limited as long as it can be used in molten salt.

更に、電解条件は通常の電解酸化重合の条件を採用する
ことができる。
Furthermore, the electrolytic conditions can be those of ordinary electrolytic oxidation polymerization.

電解酸化重合に用いるアニリン類としては、アニリンあ
るいはアニリン誘導体を用いることができる。また、ア
ニリン誘導体としてはアルキル基、アルコキシ基などを
アニリンの窒素原子上あるいはベンゼン環のオルト位、
あるいはメタ位に、一つあるいはそれ以上置換したもの
を用いることができ、更に置換基の種類は異なっていて
もよい。
As the anilines used in electrolytic oxidative polymerization, aniline or aniline derivatives can be used. In addition, as aniline derivatives, alkyl groups, alkoxy groups, etc. can be added to the nitrogen atom of aniline or the ortho position of the benzene ring.
Alternatively, one or more substituents may be used at the meta position, and the types of substituents may be different.

具体的には、アルキル基あるいはアルコキシ基の炭素数
は1〜4であり、さらに具体的には、N−メチルアニリ
ン、N−エチルアニリン、N−ブチルアニリン、2−メ
チルアニリン、3−メチルアニリン、2.6−シメチル
アニリン、2−エチルアニリン、3−エチルアニリン、
2−エトキシアニリン、3−エトキシアニリン、2.5
−ジメトキシアニリンなどを例示することができるが、
何らこれらに限定されるものではない。
Specifically, the alkyl group or alkoxy group has 1 to 4 carbon atoms, and more specifically, N-methylaniline, N-ethylaniline, N-butylaniline, 2-methylaniline, 3-methylaniline. , 2.6-dimethylaniline, 2-ethylaniline, 3-ethylaniline,
2-ethoxyaniline, 3-ethoxyaniline, 2.5
- Dimethoxyaniline etc. can be exemplified, but
It is not limited to these in any way.

(作用) 本発明により得られるポリアニリン類は溶融塩中から、
容易で再現性のある電解重合法により作製されるため、
それらの電気的、化学的性質は再現性がよ<、シたがっ
て該ポリアニリン類の素子を構築した場合の素子の信頼
性がある。また、ポリアニリン類は動作電極の表面に生
成するため、薄膜として、あるいは電極表面から剥離す
ることによって粉末として得ることができる。
(Function) The polyanilines obtained by the present invention are extracted from the molten salt,
Because it is produced by an easy and reproducible electrolytic polymerization method,
Their electrical and chemical properties are highly reproducible, and therefore devices made of the polyanilines are reliable. Further, since polyanilines are generated on the surface of the working electrode, they can be obtained as a thin film or as a powder by peeling from the electrode surface.

更に本発明によれば、電解酸化重合に、用いられる電解
液中に水を含まないので、生成したポリアニリン類中に
も水は含まれない。これはポリアニリン類を非水溶液中
で使用しようとするときに脱水などの操作を必要とせず
、したがって時間、設備、コスト面で大きな利点となる
Further, according to the present invention, since water is not contained in the electrolytic solution used in the electrolytic oxidative polymerization, water is not contained in the polyanilines produced. This does not require operations such as dehydration when polyanilines are used in a non-aqueous solution, which is a major advantage in terms of time, equipment, and cost.

(実施例) 本発明を更に詳細に説明するため以下に実施例をあげる
が、本発明はこれらに限定されるものではない。
(Examples) Examples are given below to explain the present invention in more detail, but the present invention is not limited thereto.

実施例 1 塩化アルミニウム(66、7so1%)とブチルピリジ
ニウムクロライド(33,3so1%)を混合し、溶融
塩を得た。この溶融塩にアニリンを10vo1%になる
ように加えた。この溶液に、アセトニトリルを等量論え
、電解液を作製した。これに、動作電極としてITO被
覆ガラス電極、基準電極としてアルミニウム線、対極と
してアルミニウム巻線を浸漬し、2.  OV vs、
 AIの電位を印加した。
Example 1 Aluminum chloride (66,7so1%) and butylpyridinium chloride (33,3so1%) were mixed to obtain a molten salt. Aniline was added to this molten salt at a concentration of 10vol%. Equivalent amounts of acetonitrile were added to this solution to prepare an electrolytic solution. An ITO-coated glass electrode as a working electrode, an aluminum wire as a reference electrode, and an aluminum winding wire as a counter electrode were immersed in this; 2. OV vs.
A potential of AI was applied.

10分後に動作電極を取り出したところ、電極表面に青
緑色のポリアニリンが生成した。そのIRスペクトルを
調べたところ、アミノ基、ベンゼン環に特徴的な吸収が
確認され、アニリンの基本骨格は保持されていることが
わかった。さらに、lRスペクトルを解析した結果、6
20 am−’にベンゼン環の隣接二水素に特徴的な吸
収ピークが観測され、この方法で得られたポリアニリン
は、ベンゼン環のバラ位で結合してい°ることがわかっ
た。
When the working electrode was taken out after 10 minutes, blue-green polyaniline was produced on the electrode surface. When its IR spectrum was examined, absorption characteristic of the amino group and benzene ring was confirmed, indicating that the basic skeleton of aniline was retained. Furthermore, as a result of analyzing the IR spectrum, 6
An absorption peak characteristic of dihydrogen adjacent to the benzene ring was observed at 20 am-', and it was found that the polyaniline obtained by this method was bonded at the rose position of the benzene ring.

また、電気伝導度はおよそ10S−cl−1であった。Further, the electrical conductivity was approximately 10S-cl-1.

実施例 2 動作電極の材質を白金にし、実施例1と同様の方法で1
.8V vs、 AIで電解した。10分後に動作電極
を取り出したところ、電極表面に青緑色のポリアニリン
が生成した。
Example 2 Using platinum as the material of the working electrode, 1 was prepared in the same manner as in Example 1.
.. Electrolyzed with 8V vs. AI. When the working electrode was taken out after 10 minutes, blue-green polyaniline was produced on the electrode surface.

実施例 3 動作電極の材質を炭素にし、実施例1と同様の方法で1
. 9V vs、 AIで電解した。5分後に動作電極
を取り出したところ、電極表面に青緑色のポリアニリン
が生成した。
Example 3 Using carbon as the material of the working electrode, 1 was prepared in the same manner as in Example 1.
.. Electrolyzed with 9V vs. AI. When the working electrode was taken out after 5 minutes, blue-green polyaniline was produced on the electrode surface.

実施例 4 塩化アルミニウム(66、7mo1%)とブチルピリジ
ニウムクロライド(33,3厳o1%)を混合し、溶融
塩を得た。この溶畿塩にアニリンを10vo1%になる
ように加え、電解液を作製した。これに、動作電極とし
てITO被覆ガラス電極を用い、実施例1と同様の方法
で電解を行った。5分後に動作電極を取り出したところ
、電極表面に青緑色のポリアニリンが生成した。
Example 4 Aluminum chloride (66,7 mo1%) and butylpyridinium chloride (33,3 mo1%) were mixed to obtain a molten salt. Aniline was added to this molten salt at a concentration of 10 vol % to prepare an electrolytic solution. Electrolysis was carried out in the same manner as in Example 1 using an ITO-coated glass electrode as the working electrode. When the working electrode was taken out after 5 minutes, blue-green polyaniline was produced on the electrode surface.

実施例 5 塩化アルミニウム(66、7mo1%)とブチルピリジ
ニウムクロライド(33,3so1%)を混合し、溶融
塩を得た。この溶融塩にアニリンを10vo1%、KC
Iをl vt% になるように加え、電解液を作製した
以外は実施例1と同様の方法で電解を行った。
Example 5 Aluminum chloride (66, 7mol%) and butylpyridinium chloride (33,3so1%) were mixed to obtain a molten salt. Add 10vol 1% of aniline to this molten salt, KC
Electrolysis was performed in the same manner as in Example 1, except that I was added to lvt% to prepare an electrolytic solution.

10分後に動作電極を取り出したところ、電極表面に青
緑色のポリアニリンが生成した。
When the working electrode was taken out after 10 minutes, blue-green polyaniline was produced on the electrode surface.

実施例 6 ブチルピリジニウムクロライドのかわりに1−エチル、
3−メチルイミダゾリウムクロライドを用い、実施例1
と同様の方法で電解を行った。10分後に動作電極を取
り出したところ、電極表面に青緑色のポリアニリンが生
成した。
Example 6 1-ethyl instead of butylpyridinium chloride,
Example 1 using 3-methylimidazolium chloride
Electrolysis was carried out in the same manner. When the working electrode was taken out after 10 minutes, blue-green polyaniline was produced on the electrode surface.

実施例 7 アニリンのかわりにN−メチルアニリンを用い、実施例
1と同様の方法で電解を行った。10分後に動作電極を
取り出したところ、電極表面に青緑色のポリ(N−メチ
ルアニリン)が生成した。そ=3 の電気伝導度は、およそ10S−cI−1であった。
Example 7 Electrolysis was carried out in the same manner as in Example 1, using N-methylaniline instead of aniline. When the working electrode was taken out after 10 minutes, blue-green poly(N-methylaniline) was generated on the electrode surface. The electrical conductivity of So=3 was approximately 10S-cI-1.

実施例 8 アニリンのかわりに2−二チルアニリンを用い、実施例
1と同様の方法で電解を行った。10分後に動作電極を
取り出したところ、電極表面に青緑色のポリ(N−エチ
ルアニリン)が生成した。
Example 8 Electrolysis was carried out in the same manner as in Example 1, using 2-ditylaniline instead of aniline. When the working electrode was taken out after 10 minutes, blue-green poly(N-ethylaniline) was generated on the electrode surface.

(発明の効果) 以上のように本発明によれば、ポリアニリン類を水を含
まない状態で作製することができ、非水溶液中で使用す
るときに非常に有利となる。また、それらの作製法は容
易な手段である電解重合法であるため、作製が容易でか
つ再現性のあるポリアニリン類を得ることができる。
(Effects of the Invention) As described above, according to the present invention, polyanilines can be produced in a water-free state, which is very advantageous when used in a non-aqueous solution. Moreover, since the method for producing them is an electrolytic polymerization method, which is a simple means, polyanilines can be easily produced and reproducible.

Claims (1)

【特許請求の範囲】[Claims] (1)アニリン類を少なくとも一種以上含む溶融塩中の
アニリン類を、電解酸化重合することを特徴とするポリ
アニリン類の製造方法。
(1) A method for producing polyanilines, which comprises subjecting anilines in a molten salt containing at least one type of anilines to electrolytic oxidative polymerization.
JP14579288A 1988-06-15 1988-06-15 Production of polyanilines Pending JPH01315418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14579288A JPH01315418A (en) 1988-06-15 1988-06-15 Production of polyanilines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14579288A JPH01315418A (en) 1988-06-15 1988-06-15 Production of polyanilines

Publications (1)

Publication Number Publication Date
JPH01315418A true JPH01315418A (en) 1989-12-20

Family

ID=15393266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14579288A Pending JPH01315418A (en) 1988-06-15 1988-06-15 Production of polyanilines

Country Status (1)

Country Link
JP (1) JPH01315418A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118480A (en) * 1993-10-21 1995-05-09 Sony Corp Polymer solid electrolyte
WO2006088033A1 (en) * 2005-02-17 2006-08-24 Kaneka Corporation Composition for metal surface coating, process for producing electrically conductive polymer, method for metal surface coating, and electrolytic capacitor and process for producing the same
JP2006257288A (en) * 2005-03-17 2006-09-28 Kaneka Corp Composition for coating metal surface, method of manufacturing conductive polymer, coating method for metal surface, electrolytic capacitor and method for manufacturing the same
JP2020509611A (en) * 2017-03-01 2020-03-26 ナワテクノロジーズ Method for preparing electrode including aluminum substrate, oriented carbon nanotube and conductive organic polymer, electrode and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118480A (en) * 1993-10-21 1995-05-09 Sony Corp Polymer solid electrolyte
WO2006088033A1 (en) * 2005-02-17 2006-08-24 Kaneka Corporation Composition for metal surface coating, process for producing electrically conductive polymer, method for metal surface coating, and electrolytic capacitor and process for producing the same
JP2006257288A (en) * 2005-03-17 2006-09-28 Kaneka Corp Composition for coating metal surface, method of manufacturing conductive polymer, coating method for metal surface, electrolytic capacitor and method for manufacturing the same
JP2020509611A (en) * 2017-03-01 2020-03-26 ナワテクノロジーズ Method for preparing electrode including aluminum substrate, oriented carbon nanotube and conductive organic polymer, electrode and use thereof

Similar Documents

Publication Publication Date Title
JP2777440B2 (en) Substituted thiophenes, conductive polymers derived from these thiophenes, methods for their preparation and devices containing these polymers
JPH09120709A (en) Highpolymer conductor having self-doping function and manufacture of highpolymer conductor
Fernandes et al. Electrosynthesis of polyaniline from choline-based deep eutectic solvents: morphology, stability and electrochromism
Guzel et al. Donor-acceptor type super-structural triazine cored conducting polymer containing carbazole and quinoline for high-contrast electrochromic device
Karatas et al. Asymmetric star-shaped functionalized triazine architecture and its electrochromic device application
Wen et al. Electrochemical Synthesis of a Polyaniline-Based Conducting Copolymer with—S—S—Links
JPH0795170B2 (en) Polyviologen modified electrode and its application
JPS62119237A (en) Dopant for electrically-conductive high polymer compound
JPH01315418A (en) Production of polyanilines
US5578699A (en) Process for making amino functional poly(para-phenylene vinylene)s
JPH02240163A (en) Conductive polymer solution
Soganci Effects of N-substitution group on electrochemical, electrochromic and optical properties of dithienyl derivative
Kurtay et al. Synthesis and computational bandgap engineering of new 3, 4-Alkylenedioxypyrrole (ADOP) derivatives and investigation of their electrochromic properties
Qiu et al. Poly [3, 6‐(carbaz‐9‐yl) propanesulfonate]: A Self‐Doped Polymer with Both Cation and Anion Exchange Properties
Zheng et al. Electrochemical synthesis of a novel sulfonated polyaniline and its electrochemical properties
JPH0574467A (en) Macromolecular solid electrolyte
JPH01500835A (en) Water-soluble self-doped conductive polymer and method for producing the same
US4816536A (en) Polymers of 3,4-substituted pyrrole compounds and their preparation method
JPH03174437A (en) Electroconductive polymer
Arjomandi et al. Characterization, Electrosynthesis and In Situ Spectroelectro-Chemical Studies of Poly (p-nitroaniline-co-p-aminophenol) in Aqueous Media
JP2001206938A (en) Method for producing soluble electroconductive polymer having acidic group
JP2003040856A (en) Meta-fluorobenzenesulfonic acid derivative and dopant
JPS6183221A (en) Polypyridazine and its production
JPS6345276A (en) Polymerizable thiophene monomer, its production and polymer obtained
Pokhodenko et al. Electrochemistry of conjugated organic polymers