JPH0131479B2 - - Google Patents

Info

Publication number
JPH0131479B2
JPH0131479B2 JP59127112A JP12711284A JPH0131479B2 JP H0131479 B2 JPH0131479 B2 JP H0131479B2 JP 59127112 A JP59127112 A JP 59127112A JP 12711284 A JP12711284 A JP 12711284A JP H0131479 B2 JPH0131479 B2 JP H0131479B2
Authority
JP
Japan
Prior art keywords
crystal
melt
chamber
crucible
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59127112A
Other languages
Japanese (ja)
Other versions
JPS616194A (en
Inventor
Takashi Fujii
Masayuki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12711284A priority Critical patent/JPS616194A/en
Publication of JPS616194A publication Critical patent/JPS616194A/en
Publication of JPH0131479B2 publication Critical patent/JPH0131479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は液体封止チヨクラルスキー法(LEC
法)による単結晶の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to the liquid-enclosed Czyochralski method (LEC).
This invention relates to an apparatus for producing single crystals using a method (method).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

GaAs、InP、GaPなどの高温下で分解する物
質の単結晶製造には、従来よりLEC法が用いら
れている。このLEC法は、結晶原料融液の表面
を不揮発性の液体封止材で覆い、更に原料の飛散
を防ぐために高圧をかけて結晶引上げを行なうも
のである。従来のLEC法によるGaAs単結晶製造
装置の基本構成を第5図に示す。高圧容器1内
に、支持軸8によつて原料GaAsと封止材B2O3
入つたルツボ2を支持して装着し、このルツボ2
をヒータ5により加熱してB2O3融液4により覆
われたGaAs融液3を形成する。このとき高圧容
器1内は不活性ガス例えばArガスで20気圧程度
の高圧状態に保たれる。そして結晶引上げ軸6の
先端に取付けた種子結晶7を降下させ、B2O3
液4を通してGaAs融液3に接触させ、種子結晶
を回転させながら引上げて単結晶を得る。
The LEC method has traditionally been used to produce single crystals of materials that decompose at high temperatures, such as GaAs, InP, and GaP. In this LEC method, the surface of the crystal raw material melt is covered with a non-volatile liquid sealant, and high pressure is applied to pull the crystal to prevent the raw material from scattering. Figure 5 shows the basic configuration of a GaAs single crystal manufacturing apparatus using the conventional LEC method. A crucible 2 containing a raw material GaAs and a sealing material B 2 O 3 is supported and installed in a high-pressure container 1 by a support shaft 8.
is heated by a heater 5 to form a GaAs melt 3 covered with a B 2 O 3 melt 4. At this time, the inside of the high-pressure container 1 is maintained at a high pressure of about 20 atmospheres using an inert gas, for example, Ar gas. Then, the seed crystal 7 attached to the tip of the crystal pulling shaft 6 is lowered, brought into contact with the GaAs melt 3 through the B 2 O 3 melt 4, and pulled up while rotating to obtain a single crystal.

ところでこのような装置において、結晶引上の
最適温度は、±1℃といつた非常に狭い温度範囲
に限られており、また引上速度や回転数等によつ
ても最適温度が異なるため、引上条件の設定は極
めて難しい。このため一般に、引上最適温度は、
種子結晶を融液表面に接触させた後、種子結晶の
先端が溶けて融液面から離れるまでの時間を測定
することによつて決定している。しかしこの方法
によつても最適温度を見出すことは容易ではな
く、2回、3回と操作を繰返すことも多い。この
ような操作を繰返すと、その度に種子結晶は小さ
くなり、最適温度を見出す前に結晶引上ができな
い状態となることもしばしばである。この場合一
般には、一旦温度を室温まで下げ、高圧容器を開
けて種子結晶をつけ変えることが行われる。この
ような種子結晶交換作業は結晶引上の作業性の低
下をもたらす。また、温度を下げることによりル
ツボの破損を生じたり、結晶原料の汚染や組成の
ずれ等による結晶製造の歩留り低下を来たす。
However, in such a device, the optimum temperature for crystal pulling is limited to a very narrow temperature range of ±1°C, and the optimum temperature also varies depending on the pulling speed, number of rotations, etc. Setting the pulling conditions is extremely difficult. Therefore, in general, the optimum pulling temperature is
It is determined by measuring the time it takes for the tip of the seed crystal to melt and separate from the melt surface after the seed crystal is brought into contact with the melt surface. However, even with this method, it is not easy to find the optimum temperature, and the operation is often repeated two or three times. When such an operation is repeated, the seed crystal becomes smaller each time, and it often becomes impossible to pull the crystal before finding the optimum temperature. In this case, the temperature is generally lowered to room temperature, the high-pressure container is opened, and the seed crystals are added and replaced. Such seed crystal replacement work reduces the workability of crystal pulling. Further, lowering the temperature may cause damage to the crucible, or may cause a decrease in the yield of crystal production due to contamination of the crystal raw material, deviation in composition, etc.

〔発明の目的〕[Purpose of the invention]

本発明は、結晶原料を融液の状態に保つたまま
種子結晶の交換作業等を行ない得るようにし、も
つて結晶製造の作業性向上と歩留り向上を可能と
したたLEC法による単結晶製造装置を提供する
ことを目的とする。
The present invention provides a single crystal manufacturing apparatus using the LEC method, which enables the replacement of seed crystals while keeping the crystal raw material in a melt state, thereby improving the workability and yield of crystal manufacturing. The purpose is to provide

〔発明の概要〕[Summary of the invention]

本発明は、高圧容器を結晶引上方向に3つに分
割するシヤツタを備え、シヤツタが閉の状態で各
室の圧力を独立に調整可能としたことを特徴とす
る。3つの室は例えば、下部のルツボ収容室と、
上部の作業室と、これらの中間にあつてシヤツタ
が閉の状態でルツボ収容室よりも高圧に保たれる
隔離室とから構成する。この様な構成として、ル
ツボ収容室内で結晶原料を融液の状態に保ちなが
ら、作業室で種子結晶の交換作業を行なうように
する。
The present invention is characterized in that it is equipped with a shutter that divides the high-pressure container into three parts in the crystal pulling direction, and that the pressure in each chamber can be adjusted independently when the shutter is closed. For example, the three chambers include a lower crucible storage chamber,
It consists of an upper working chamber and an isolation chamber located in between these, which is maintained at a higher pressure than the crucible storage chamber when the shutter is closed. With this configuration, the seed crystal is replaced in the work chamber while the crystal raw material is maintained in a melt state in the crucible housing chamber.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ルツボ内の原料融液を融液の
状態に保つたまま種子結晶の交換作業を行なうこ
とができ、結晶製造の作業性を向上させることが
できる。また、高温高圧にして形成した原料融液
を、種子結晶交換のために一旦温度を下げて外気
にさらすという必要がないから、ルツボの破損や
原料の汚染、組成変化等もなく、歩留りのよい結
晶製造が可能となる。
According to the present invention, the seed crystal can be replaced while the raw material melt in the crucible is kept in a melt state, and the workability of crystal production can be improved. In addition, since there is no need to lower the temperature of the raw material melt formed under high temperature and high pressure and expose it to the outside air in order to exchange seed crystals, there is no damage to the crucible, no contamination of raw materials, no change in composition, etc., and a high yield is achieved. Crystal production becomes possible.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例の装置を第1図および第2図に
示す。第1図はシヤツタが開で結晶引上を行なう
状態、第2図はシヤツタが閉で種子結晶の交換作
業を行なう状態をそれぞれ示している。なおこれ
らの図で第5図と対応する部分には第5図と同じ
符号を付してある。従来と異なる点は、高圧容器
1が結晶引上げ方向に3つの室、即ち下部のルツ
ボ収容室A、上部の作業室Cおよびこれらの中間
にある隔離室Bに分割されるようになつているこ
とである。各室の連通部はシヤツタ91,92の平
行移動により開閉できる。この実施例ではシヤツ
タ91,92にそれぞれ永久磁石101,102が取
付けられていて、容器外部から磁石により操作す
ることで第1図のシヤツタ開の状態、第2図のシ
ヤツタ閉の状態が得られる。各室はそれぞれ独立
に圧力調整ができるようにガス供給口を持つ。第
2図のシヤツタ閉の状態で隔離室Bをルツボ収容
室Aより高圧に保つように高圧ガスを供給して、
シヤツタ91,92をパツキング131,132を介
して隔離室壁に密着させることにより、ルツボ収
容室Aを所定の高圧に保つたまま作業室Cを常圧
に戻すことができるようになつている。作業室C
には作業用の窓14が設けられ、通常はこの窓1
4は蓋15により閉じられている。
An apparatus according to an embodiment of the invention is shown in FIGS. 1 and 2. FIG. 1 shows a state in which the shutter is open and crystal pulling is performed, and FIG. 2 shows a state in which the shutter is closed and a seed crystal replacement operation is performed. In these figures, parts corresponding to those in FIG. 5 are given the same reference numerals as in FIG. 5. The difference from the conventional method is that the high-pressure container 1 is divided into three chambers in the crystal pulling direction, namely, a lower crucible housing chamber A, an upper working chamber C, and an isolation chamber B located in the middle. It is. The communication portion between each chamber can be opened and closed by parallel movement of the shutters 9 1 and 9 2 . In this embodiment, permanent magnets 10 1 and 10 2 are attached to the shutters 9 1 and 9 2 , respectively, and by operating the magnets from outside the container, the shutters can be opened in the open state shown in FIG. 1 or closed in FIG. 2. The state is obtained. Each chamber has a gas supply port so that pressure can be adjusted independently. With the shutter closed as shown in Figure 2, high pressure gas is supplied to keep isolation chamber B at a higher pressure than crucible storage chamber A.
By bringing the shutters 9 1 and 9 2 into close contact with the walls of the isolation chamber via the packings 13 1 and 13 2 , it is possible to return the working chamber C to normal pressure while maintaining the crucible storage chamber A at a predetermined high pressure. It's summery. Work room C
is provided with a working window 14, and normally this window 1
4 is closed with a lid 15.

この装置による結晶引上げおよび種子結晶交換
の作業を次に説明する。まずシヤツタ91,92
開けて3つの室A,B,Cをつなげた第1図の状
態として、従来と同様にルツボ2に例えばGaAs
融液3とB2O3融液を形成する。より具体的に説
明すれば、ルツボ2は例えば直径96mmの熱分解窒
化硼素製であり、これにGa500g、As550g、
B2O3200gを入れ、このルツボ2を支持軸8に装
着して容器内をArガスで30気圧に加圧し、カー
ボン製ヒータ5により加熱してGaAs融液3と
B2O3融液4を形成する。そして種子結晶7を
GaAs融液3に接触させて結晶引上げを行なう。
The operations of crystal pulling and seed crystal exchange using this device will be explained below. First, open the shutters 9 1 and 9 2 to connect the three chambers A, B, and C as shown in FIG.
Form melt 3 and B 2 O 3 melt. To be more specific, the crucible 2 is made of pyrolytic boron nitride with a diameter of 96 mm, and is filled with 500 g of Ga, 550 g of As,
200 g of B 2 O 3 is put in, this crucible 2 is attached to the support shaft 8, the inside of the container is pressurized to 30 atmospheres with Ar gas, and heated by the carbon heater 5 to form the GaAs melt 3.
A B 2 O 3 melt 4 is formed. and seed crystal 7
The crystal is pulled up by bringing it into contact with the GaAs melt 3.

ここで何らかの原因で種子結晶7の交換の必要
が生じたとする。この時第2図に示すように結晶
引上げ軸6を引上げ、種子結晶7を作業室Cまで
上昇させてシヤツタ91,92を閉じる。そして隔
離室B内に不活性ガスを供給してその圧力をルツ
ボ収容用室Aより高圧状態、例えば50気圧程度に
する。この後作業室C内を不活性ガスに置換して
大気圧と同じ圧力まで戻し、蓋15を開けて種子
結晶7の交換を行なう。このときルツボ収容室A
内で有毒ガスを使用していたとしても、隔離室B
内が高圧に保たれているためルツボ収容室Aから
作業室Cにガスもれを生じることはない。またシ
ヤツタ91,92に多少のリークがあつたとして
も、隔離室Bは安全な不活性ガスにより高圧とか
けているので、作業の安全性にとつて支障はな
い。
Suppose here that for some reason it becomes necessary to replace the seed crystal 7. At this time, as shown in FIG. 2, the crystal pulling shaft 6 is pulled up, the seed crystal 7 is raised to the working chamber C, and the shutters 9 1 and 9 2 are closed. Then, an inert gas is supplied into the isolation chamber B to make the pressure higher than that in the crucible storage chamber A, for example, about 50 atmospheres. Thereafter, the inside of the working chamber C is replaced with an inert gas to return the pressure to the same as atmospheric pressure, the lid 15 is opened, and the seed crystal 7 is replaced. At this time, crucible storage chamber A
Even if toxic gas is used inside isolation room B,
Since the internal pressure is maintained at high pressure, there will be no gas leakage from the crucible housing chamber A to the working chamber C. Furthermore, even if there is some leakage in the shutters 9 1 and 9 2 , there will be no problem in the safety of the work because the isolation room B is under high pressure with safe inert gas.

こうしてこの実施例によれば、種子結晶の交換
作業が容易でLEC法による結晶引上の作業性向
上、結晶製造の歩留り向上が図られる。
In this manner, according to this embodiment, the work of replacing the seed crystal is easy, and the workability of crystal pulling by the LEC method is improved, and the yield of crystal production is improved.

本発明の装置は、種子結晶の交換作業に有用で
あるだけでなく、以下の述べるように他の用途に
も有用である。
The apparatus of the present invention is not only useful for seed crystal replacement operations, but also for other applications as discussed below.

例えば、炉内の温度測定に有用である。第3図
に示すように結晶引上軸6の先端に熱分解窒化硼
素製保護管で保護された熱電対161,162を取
付けたものを用意する。そして第1図に示すよう
にシヤツタ開の状態で所定の条件で原料融液を形
成し、熱電対161で融液の温度を、熱電対162
でルツボ収容室内の温度をそれぞれ測定する。そ
してこれらの熱電対161,162を作業室Cまで
引上げ、先の種子結晶交換作業と同様にして熱電
対161,162を種子結晶に取替える。この後、
同じ温度条件下で結晶引上げを行なう。このよう
にすれば、炉内温度の結晶成長に与える影響を簡
単に調べることができる。
For example, it is useful for measuring temperature inside a furnace. As shown in FIG. 3, a crystal pulling shaft 6 with thermocouples 16 1 and 16 2 protected by a protective tube made of pyrolytic boron nitride attached to the tip is prepared. Then, as shown in FIG. 1, a raw material melt is formed under predetermined conditions with the shutter open, and the temperature of the melt is measured with a thermocouple 16 1 .
Measure the temperature inside the crucible housing chamber. These thermocouples 16 1 and 16 2 are then pulled up to the work chamber C, and the thermocouples 16 1 and 16 2 are replaced with seed crystals in the same manner as the previous seed crystal replacement work. After this,
Crystal pulling is carried out under the same temperature conditions. In this way, the effect of furnace temperature on crystal growth can be easily investigated.

また原料融液の組成ずれや不純物分布のチエツ
クも容易に行なうことができる。例えば第4図に
示すように結晶引上げ軸6の先端に熱分解窒化硼
素製のスプーン17を取付ける。これを用いて前
述の温度測定と同様の操作で原料融液の一部を掬
い上げ、原料融液の不純物や組成の分析を行なう
ことができる。ルツボ収容室A内の温度、圧力を
結晶引上げに必要な所定の条件に設定した状態の
まま、このような原料融液の分析を何回も行なう
ことにより、時間経過による不純物混入変化等を
チエツクすることができる。
Furthermore, it is also possible to easily check compositional deviations and impurity distribution in the raw material melt. For example, as shown in FIG. 4, a spoon 17 made of pyrolytic boron nitride is attached to the tip of the crystal pulling shaft 6. Using this, a portion of the raw material melt can be scooped up in the same manner as the temperature measurement described above, and the impurities and composition of the raw material melt can be analyzed. By analyzing the raw material melt many times with the temperature and pressure inside the crucible storage chamber A set to the predetermined conditions necessary for crystal pulling, changes in impurity contamination over time can be checked. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例の結晶
製造装置を示す図、第3図はこの装置により炉内
温度測定を行なう例を説明するための図、第4図
は同じく原料融液のチエツクを行なう例を説明す
るための図、第5図は従来の結晶製造装置を示す
図である。 1……高圧容器、2……ルツボ、3……GaAs
融液、4……B2O3融液、5……ヒータ、6……
結晶引上げ軸、7……種子結晶、8……支持軸、
1,92……シヤツタ、101,102……永久磁
石、131,132……パツキング、14……作業
窓、15……蓋、A……ルツボ収容室、B……隔
離室、C……作業室。
FIGS. 1 and 2 are diagrams showing a crystal manufacturing apparatus according to an embodiment of the present invention, FIG. 3 is a diagram for explaining an example of measuring the temperature inside a furnace using this apparatus, and FIG. FIG. 5, which is a diagram for explaining an example of checking the liquid, is a diagram showing a conventional crystal manufacturing apparatus. 1... High pressure container, 2... Crucible, 3... GaAs
Melt, 4... B 2 O 3 melt, 5... Heater, 6...
Crystal pulling shaft, 7... seed crystal, 8... support shaft,
9 1 , 9 2 ... shutter, 10 1 , 10 2 ... permanent magnet, 13 1 , 13 2 ... packing, 14 ... working window, 15 ... lid, A ... crucible storage chamber, B ... isolation Room, C... work room.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧容器と、この容器内に収容され、液体封
止材で覆われた原料融液が形成されるルツボと、
種子結晶を用いて前記原料融液から単結晶を引上
げる手段とを有する単結晶製造装置において、前
記高圧容器を、結晶引上げ方向に3つの室に分割
するシヤツタを備え、前記3つの室は、下部のル
ツボ収容室と、上部の作業室と、これらの中間に
あつて前記シヤツタが閉の状態でルツボ収容室よ
りも高圧に保たれる隔離室とからなることを特徴
とする単結晶製造装置。
1 a high-pressure container, a crucible housed in the container and in which a raw material melt covered with a liquid sealing material is formed;
A single crystal manufacturing apparatus having means for pulling a single crystal from the raw material melt using a seed crystal, comprising a shutter that divides the high pressure container into three chambers in the crystal pulling direction, the three chambers comprising: A single crystal production apparatus comprising a lower crucible housing chamber, an upper working chamber, and an isolation chamber located between these, which is maintained at a higher pressure than the crucible housing chamber when the shutter is closed. .
JP12711284A 1984-06-20 1984-06-20 Device for preparing single crystal Granted JPS616194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12711284A JPS616194A (en) 1984-06-20 1984-06-20 Device for preparing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12711284A JPS616194A (en) 1984-06-20 1984-06-20 Device for preparing single crystal

Publications (2)

Publication Number Publication Date
JPS616194A JPS616194A (en) 1986-01-11
JPH0131479B2 true JPH0131479B2 (en) 1989-06-26

Family

ID=14951902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12711284A Granted JPS616194A (en) 1984-06-20 1984-06-20 Device for preparing single crystal

Country Status (1)

Country Link
JP (1) JPS616194A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655576B2 (en) * 1992-09-30 1997-09-24 信越半導体株式会社 Isolation valve in single crystal pulling device
JP2002241189A (en) * 2001-02-13 2002-08-28 Komatsu Electronic Metals Co Ltd Single crystal pulling device
KR20030070432A (en) * 2002-02-25 2003-08-30 네오세미테크 주식회사 Apparatus and Method for Growing GaAs Crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582197A (en) * 1981-06-27 1983-01-07 岸 光宏 Initial push-up mechanism for lifting gear

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582197A (en) * 1981-06-27 1983-01-07 岸 光宏 Initial push-up mechanism for lifting gear

Also Published As

Publication number Publication date
JPS616194A (en) 1986-01-11

Similar Documents

Publication Publication Date Title
EP0173764B1 (en) Single crystal growing method and apparatus
US3777009A (en) Method for direct melt synthesis of intermetallic compounds
Route et al. Growth of AgGaSe2 for infrared applications
JPH0131479B2 (en)
Route et al. Preparation of large untwinned single crystals of AgGaS2
US5322591A (en) Hydrothermal growth on non-linear optical crystals
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
Mullin et al. Pressure balancing: a technique for suppressing dissociation during the melt-growth of compounds
JPH0365593A (en) Single crystal growing apparatus
JPH0142919B2 (en)
KR940004641B1 (en) Apparatus for manufacturing single crystals
JP2823257B2 (en) Semiconductor single crystal manufacturing equipment
Feigelson et al. Crystal growth and optical properties of CdGa2S4
JP2690420B2 (en) Single crystal manufacturing equipment
JP2560383B2 (en) Single crystal manufacturing equipment
EP0100453A1 (en) Method for growing a GaAs single crystal by pulling from GaAs melt
JPH01264989A (en) Device for growing single crystal
JP2710429B2 (en) High dissociation pressure compound semiconductor processing equipment
Linz et al. Growth of fluoride laser host crystals
JP3170577B2 (en) Processing equipment for high dissociation pressure compounds
Tornero et al. Growth of NH4MnCl3 single crystals
JPS62113795A (en) Method for pulling up single crystal of iii-v compound semiconductor
JP2992539B2 (en) Processing equipment for high dissociation pressure compounds
JPH04259830A (en) Temperature measuring method at time of growing single crystal of semiconductor
JPS6036397A (en) Apparatus for growing compound single crystal