JPH01313189A - Powder cutting method for stainless steel slab - Google Patents

Powder cutting method for stainless steel slab

Info

Publication number
JPH01313189A
JPH01313189A JP14364988A JP14364988A JPH01313189A JP H01313189 A JPH01313189 A JP H01313189A JP 14364988 A JP14364988 A JP 14364988A JP 14364988 A JP14364988 A JP 14364988A JP H01313189 A JPH01313189 A JP H01313189A
Authority
JP
Japan
Prior art keywords
cutting
iron powder
preheating
carrier gas
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14364988A
Other languages
Japanese (ja)
Other versions
JPH0661614B2 (en
Inventor
Keiji Yasuzawa
安沢 啓次
Tadaaki Akatsuka
赤塚 忠昭
Mareo Nagahiro
長広 希夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP14364988A priority Critical patent/JPH0661614B2/en
Publication of JPH01313189A publication Critical patent/JPH01313189A/en
Publication of JPH0661614B2 publication Critical patent/JPH0661614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To cut stainless steel in the best condition by preheating a place to be cut and blowing cutting oxygen thereon and specifying the ratio of the cutting oxygen quantity to the iron powder supply quantity and the carrier gas pressure respectively at the time of injecting iron powder by carrier gas. CONSTITUTION:A preheating flame 4 made of combustible gas for preheating and preheating oxygen is blown from a nozzle 1 against the place to be cut of the stainless steel to preheat it and the cutting oxygen 5 with high purity is blown against its preheated area. The iron powder 2 (about 20-300mu particle size) is injected and filled into an oxidation reaction part 6 generated by the cutting oxygen 5 by the carrier gas mainly made of nitrogen via a supply pipe 3 and oxidizing heat generated by reaction of the iron powder 2 with the cutting oxygen 5 is utilized to melt the place to be cut. At this time, the ratio of the cutting oxygen quantity (Nm<3>/min) to the iron powder supply quantity (g/min) and the carrier gas pressure are regulated to 1:25-1:40 and 0.2-0.3kg/cm<2> respectively. By this method, the stainless steel can be cut economically in the best condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、最良の状態で且つ経済的に切断が行えるステ
ンレス鋼スラブのパウダーカッティング方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for powder cutting stainless steel slabs, which allows the cutting to be carried out in the best possible manner and economically.

〔従来の技術〕[Conventional technology]

ステンレス鋼スラブを切断するとき、特にこれが連続鋳
造されてくるステンレス鋼スラブである場合には、次工
程の目的に合わせた長さにステンレス鋼スラブを切断す
ることを切断不能に至ること無く効率的に且つ良好に行
わねばならない。
When cutting a stainless steel slab, especially if it is a continuously cast stainless steel slab, it is efficient to cut the stainless steel slab to a length that suits the purpose of the next process without becoming uncut. It must be carried out in a good manner.

ところで、普通鋼のスラブの切断は通常のガス切断方法
により行われるが、ステンレス鋼は普通鋼に比較して熱
伝導率が172〜l/3程度に小さいので、そのスラブ
の切断にはパウダーカッティング方法が用いられる。
By the way, ordinary steel slabs are cut using the usual gas cutting method, but since stainless steel has a lower thermal conductivity than ordinary steel, at about 172 to 1/3, powder cutting is used to cut the slabs. method is used.

次に一般的なパウダーカッティング方法を図面により説
明する。第2図はガス切断に用いる軟管の火口の1例を
示しくイ)は縦断面図で(ロ)は同図(イ)中のA−A
線断面図、第3図はパウダーカッティング実施状態の説
明図である。
Next, a general powder cutting method will be explained with reference to the drawings. Figure 2 shows an example of a soft pipe crater used for gas cutting.
The line sectional view and FIG. 3 are explanatory diagrams of the state in which powder cutting is performed.

パウダーカッティングの基本になっているものは通常の
ガス切断(酸素切断とも言う)である。
The basis of powder cutting is ordinary gas cutting (also called oxygen cutting).

これは、例えば第2図(イ)及び(ロ)に示す如き切断
酸素口1aを囲んでその周囲に予熱用可燃性ガス口1b
及び予熱酸素口1cがそれぞれ配置された火口1を有す
る軟管の各日から気体を切断個所に向って噴流せしめ、
外側の予熱用可燃性ガス(例えばLPG)及び予熱酸素
によって生じる予熱フレームにより目標個所が充分な燃
焼温度に加熱された予熱域に火口1の中心部から噴流し
ている純度の高い切断酸素を吹き付けると、その切断個
所が直ちに激しい酸化反応を起こして(この部分を酸化
反応部と言う)溶融酸化鉄となり、N!素気流の力でこ
の溶融酸化鉄を吹き飛ばすことによって行われる。
This includes, for example, a preheating flammable gas port 1b surrounding the cutting oxygen port 1a as shown in FIGS. 2(a) and 2(b).
and a soft pipe having a crater 1 in which a preheating oxygen port 1c is respectively disposed, and a gas is jetted toward the cutting point from each day,
High-purity cutting oxygen jetted from the center of the crater 1 is blown into the preheating area where the target location is heated to a sufficient combustion temperature by the preheating flame generated by the external preheating combustible gas (for example, LPG) and preheated oxygen. The cut area immediately undergoes a violent oxidation reaction (this area is called the oxidation reaction area) and becomes molten iron oxide, resulting in N! This is done by blowing away this molten iron oxide using the force of a stream of bare air.

しかしながら、ステンレス鋼スラブの場合は通常のガス
切断方法のみでは溶融状態が不充分なために良好に切断
できない、そこでパウダーカッティング方法が採用され
ている。この原理は、通常用いられているガス切断方法
において、第3図に示す如く鉄粉2を乾燥空気又は窒素
を主とするキャリアガスにより火口1の近くの鉄粉供給
管3から酸化反応部6に向って噴射注入すると、鉄粉2
は予熱フレーム4を貫通するとき予熱された状態となっ
て酸化反応部6に達し、鉄粉2と切断酸素5とが反応し
て生じる酸化熱を利用して酸化反応部6の加熱を強めて
ステンレス鋼スラブの切断個所を溶融させ、切断を可能
にさせるのである。鉄粉2としては一般に粒径20〜3
00声のものが使用される。
However, in the case of stainless steel slabs, ordinary gas cutting methods alone cannot cut the slabs well because the molten state is insufficient, so powder cutting methods are employed. This principle is based on the commonly used gas cutting method, in which iron powder 2 is transferred from an iron powder supply pipe 3 near a crater 1 to an oxidation reaction section 6 using dry air or a carrier gas mainly composed of nitrogen, as shown in FIG. When injected toward the iron powder 2
When passing through the preheating frame 4, it reaches the oxidation reaction section 6 in a preheated state, and the oxidation heat generated by the reaction between the iron powder 2 and the cutting oxygen 5 is used to intensify the heating of the oxidation reaction section 6. This melts the stainless steel slab at the point where it will be cut, allowing it to be cut. Iron powder 2 generally has a particle size of 20 to 3
00 voices are used.

従来、ステンレス鋼スラブのパウダーカッティングにお
いては、切断酸素量(N rn’ 7分)と鉄粉供給M
、Cg1分)とは多い目の方が切断能力があり、そして
切断酸素量(N rn’ 7分):鉄粉供給量(g/分
)を1.5 : (200〜250)とすると最も良好
な結果が得られるとするのが通説であり、また鉄粉を供
給するキャリアガスの圧力は0.7〜0.8kg/ff
lが適正だと言われてきた。
Conventionally, in powder cutting of stainless steel slabs, cutting oxygen amount (N rn' 7 minutes) and iron powder supply M
, Cg1min), the higher the cutting capacity, the greater the cutting capacity.If the cutting oxygen amount (Nrn' 7min): iron powder supply amount (g/min) is 1.5: (200-250), the most It is generally accepted that good results can be obtained, and the pressure of the carrier gas supplying the iron powder is 0.7 to 0.8 kg/ff.
It has been said that l is appropriate.

しかしながら、実際には上記従来の条件で行うと酸化反
応部6の溶融が不充分で、切断速度を上げようとすると
予熱や溶融が不足で吹上げが発生し、飛散した溶鋼が火
口1に付着して切断不能となって火口1の交換を強いら
れ、交換が間に合わない場合は連続鋳造停止に至ること
もあった。また切断速度が上げられないため、同じ位置
を時間をかけて切断することになり、切断ノロが多く発
生してロール表面やスラブ切断面に付着することが屡々
あった。このため、次工程でのスラブ手入れ時間や歩留
等へ影響を及ぼしコスト高となっていた。
However, in reality, when the conventional conditions described above are used, the melting of the oxidation reaction zone 6 is insufficient, and when trying to increase the cutting speed, blow-up occurs due to insufficient preheating and melting, and the scattered molten steel adheres to the crater 1. When it became impossible to cut, the tip 1 had to be replaced, and if the replacement was not done in time, continuous casting could be halted. Furthermore, since the cutting speed cannot be increased, it takes a long time to cut at the same position, and a lot of cutting slag is generated and often adheres to the roll surface or the cut surface of the slab. For this reason, the slab cleaning time and yield rate in the next process are affected, resulting in high costs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の課題は、上記従来技術の欠点を解消し、最良の
状態で且つ経済的に切断が行えるようにステンレス鋼ス
ラブのパウダーカッティング方法の条件を定めることに
ある。
SUMMARY OF THE INVENTION The object of the present invention is to eliminate the drawbacks of the prior art described above and to define conditions for a method for powder cutting stainless steel slabs so that the cutting can be carried out in the best possible condition and economically.

〔課題を解決するための手段〕[Means to solve the problem]

本発明考等は上記課題を解決するため、種々な検討を行
った。
In order to solve the above-mentioned problems, the present inventors conducted various studies.

先ず、従来のパウダーカッティング条件で切断時の状態
を詳細にamした結果、切断個所から切断方向のわずか
な先にある酸化反応部6が安定且つ連続的に形成されて
おらず、噴射された鉄粉の酸化反応部6への供給状態も
良くないことが判明した。もともとこのパウダーカッテ
ィングにおいてはステンレス鋼の小さな熱伝導率に基づ
く酸化反応部6の加熱不足を補う目的で鉄粉2を供給し
てその酸化熱溶剤作用を利用して切断するのであるから
、その目的に反して酸化反応部6が安定して形成されて
いないことは改善すべき重要な事項である。更に、切断
後のスラブを観察すると未反応の鉄粉2が切断部付近に
多量に付着していた。
First of all, as a result of a detailed analysis of the state during cutting under conventional powder cutting conditions, it was found that the oxidation reaction zone 6 located slightly ahead of the cutting point in the cutting direction was not stably and continuously formed, and the injected iron It was also found that the supply condition of the powder to the oxidation reaction section 6 was not good. Originally, in this powder cutting, iron powder 2 was supplied to compensate for the insufficient heating of the oxidation reaction part 6 due to the small thermal conductivity of stainless steel, and the cutting was performed using the oxidation thermal solvent action. On the other hand, the fact that the oxidation reaction portion 6 is not stably formed is an important matter that should be improved. Furthermore, when the slab after cutting was observed, a large amount of unreacted iron powder 2 was found to have adhered to the vicinity of the cut portion.

これらのことから鉄粉供給量が多いと鉄粉2の予熱不足
により却って酸化反応が妨げられ、またキャリアガス圧
が高いとキャリアガスによる冷却効果や鉄粉2の予熱フ
レーム4N3M時間短縮のために充分に鉄粉2が予熱さ
れないのではないかと考え、段階的に条件を変更して種
々検討を重ねた結果、供給される鉄粉2が予熱フレーム
4で予熱されて燃焼直前の状態となってから切断酸素5
と反応させて一気に燃焼させる条件が最適であること、
そしてこのような状態にするためには切断酸素量に対す
る鉄粉供給量及びキャリアガス圧は従来の通説よりも可
成り小さいところにその最適範囲があり、この条件を定
めることによって上記課題を解決できることを究明して
本発明を成した。
For these reasons, if the amount of iron powder supplied is large, the oxidation reaction will be hindered due to insufficient preheating of iron powder 2, and if the carrier gas pressure is high, the cooling effect of the carrier gas and the preheating frame 4N3M time of iron powder 2 will be shortened. I thought that the iron powder 2 might not be sufficiently preheated, and as a result of various studies by changing the conditions step by step, I found that the supplied iron powder 2 was preheated in the preheating frame 4 and reached a state just before combustion. cutting oxygen from 5
The conditions for reacting with and combusting all at once are optimal;
In order to achieve this condition, the optimum range of the iron powder supply amount and carrier gas pressure relative to the cutting oxygen amount is much smaller than the conventional wisdom, and by setting these conditions, the above problems can be solved. The present invention was achieved by investigating the following.

以下、本発明に係るステンレス鋼スラブのパウダーカッ
ティング方法を図面によって詳細に説明する。
Hereinafter, the method for powder cutting a stainless steel slab according to the present invention will be explained in detail with reference to the drawings.

第1図はキャリアガスの各種圧力における切断酸素量と
鉄粉供給量との比と切断速度との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the ratio of cutting oxygen amount to iron powder supply amount and cutting speed at various carrier gas pressures.

本発明方法はステンレス鋼スラブをパウダーカッティン
グするに当り、切断酸素量(827分)と鉄粉供給量(
g/分)との比を1=25〜1:40とし且つキャリア
ガスの圧力を0.2〜0.3kg/cdとすることが特
徴である。
The method of the present invention uses the amount of cutting oxygen (827 minutes) and the amount of iron powder supplied (
The carrier gas is characterized by having a ratio of 1=25 to 1:40 and a carrier gas pressure of 0.2 to 0.3 kg/cd.

このことは第1図から説明される。第1図はキャリアガ
スの圧力を0.1kg/aJ、 0.2kg/a#、 
0.3kg/cd、 0.5kg/aJ及び0.8kg
/adの各種として用い、各圧毎に切断酸素量(Nn(
/分)と鉄粉供給t (g/分)との比(以下、酸素・
鉄粉比と言うことがある)を種々に変えて、そのときの
良好且つ安定状態で切断可能な最大切断速度(m /分
)との関係を長期間に亘って実験確認して集積したデー
ターに基づいて作成した図である。
This is explained from FIG. Figure 1 shows carrier gas pressures of 0.1 kg/aJ, 0.2 kg/a#,
0.3kg/cd, 0.5kg/aJ and 0.8kg
/ad, and cut oxygen amount (Nn(
/min) and iron powder supply t (g/min) (hereinafter referred to as oxygen/
Data collected by experimenting over a long period of time to confirm the relationship between the maximum cutting speed (m/min) that can be cut in good and stable conditions by varying the iron powder ratio (sometimes referred to as the iron powder ratio). This is a diagram created based on.

この第1図から上記本発明で規定した酸素・鉄粉比及び
キャリヤガス圧の範囲の場合に最大切断速度が大きいす
なわち切断状態が良好なことが判り、また切断速度を上
げても吹上げもなかった。逆に酸素・鉄粉比及びキャリ
アガス圧が上記範囲よりも大き過ぎると過剰な鉄粉2や
キャリアガスの冷却効果により安定した切断に必要な充
分な予熱が得られず、また反対に小さ過ぎる場合は鉄粉
2の供給不足によりこれもまた熱不足となり、酸化反応
部6における安定且つ連続的な溶融状態が得ら    
′れず、切断がスムーズに行えないのである。更に説明
すると、鉄粉2がキャリアガスと共に予熱フレーム4を
通過する間に鉄粉2が充分予熱されることが必要である
が、鉄粉2を多量に供給することは却って予熱を妨げて
いることになる。またキャリアガス圧が高いとキャリア
ガスの流速が速すぎるため予熱フレーム4を乱し、この
ようなことによっても効率良く鉄粉の予熱が行われない
ことになるのである0本発明方法で規定した切断酸素f
i(NrrI″/分):鉄粉供給量(g/分)及びキャ
リアガス圧に関する前記条件は、上記の如き酸化反応部
6の溶融を不充分とさせる要因をすべて排除したもので
ある。本発明方法において規定した条件以外のパウダー
カッティング条件(各ガスの圧力や流量等)は従来のパ
ウダーカッティングのそれで良く、その標準的なものは
実施例で示す。
From FIG. 1, it can be seen that when the oxygen/iron powder ratio and carrier gas pressure are within the ranges specified in the present invention, the maximum cutting speed is high, that is, the cutting condition is good, and even if the cutting speed is increased, no blow-up occurs. There wasn't. On the other hand, if the oxygen/iron powder ratio and carrier gas pressure are too large than the above ranges, sufficient preheating necessary for stable cutting cannot be obtained due to the cooling effect of excess iron powder 2 and carrier gas, or on the contrary, it is too small. In this case, due to the insufficient supply of iron powder 2, there is also a lack of heat, and a stable and continuous molten state cannot be obtained in the oxidation reaction section 6.
This prevents smooth cutting. To explain further, the iron powder 2 needs to be sufficiently preheated while passing through the preheating frame 4 together with the carrier gas, but supplying a large amount of the iron powder 2 actually impedes preheating. It turns out. Furthermore, if the carrier gas pressure is high, the flow rate of the carrier gas is too fast, which disturbs the preheating frame 4, which also prevents the iron powder from being efficiently preheated. cutting oxygen f
i (NrrI''/min): The above conditions regarding the iron powder supply amount (g/min) and carrier gas pressure exclude all factors that would cause insufficient melting in the oxidation reaction section 6 as described above. The powder cutting conditions (pressure and flow rate of each gas, etc.) other than those specified in the method of the invention may be those of conventional powder cutting, and the standard conditions are shown in the examples.

〔実施例〕〔Example〕

厚さ200mmの5II9304の連続鋳造スラブを第
2図に示す火口1(火口1の外径29m、切断酸素口1
aの直径5m+、予熱用可燃性ガスロ1bの1つの孔の
直径2 m 、予熱用可燃性ガス口1bの孔数11.予
熱酸素口1cの幅1臘で外側径19+m)を使用して本
発明方法によりパウダーカッティングを行った。
A continuously cast slab of 5II9304 with a thickness of 200 mm was placed at the crater 1 shown in Figure 2 (the outer diameter of the crater 1 was 29 m, the cutting oxygen port 1 was
a diameter of 5 m+, the diameter of one hole of the preheating flammable gas outlet 1b is 2 m, and the number of holes of the preheating flammable gas outlet 1b is 11. Powder cutting was performed according to the method of the present invention using a preheated oxygen port 1c with a width of 1 l and an outer diameter of 19+ m.

予熱用可燃性ガスとしてはLPGを、また鉄粉キャリア
ガスとしては窒素ガスをそれぞれ使用したパウダーカッ
ティングの各条件は表に示す、キャリアガス以外の各ガ
スの圧力は軟管入口でのものである。ここで、切断酸素
圧を9 kg/adとしたのは、高圧酸素規制(10k
g/cd以上)以下でなるべく高い圧力としたからであ
り、また予熱酸素圧及びLPG圧がそれぞれ3 kg/
a#及び0.3kg/ajであるのは、予熱フレーム4
の先端115程がスラブ表面にかかった状態にしたとき
の圧力である。キャリアガス圧は、鉄粉を供給する場合
常時均一には送粉できず、どうしても多少変動するから
平均圧力で示しである。また、使用する鉄粉の粒径につ
いても種々検討した結果、従来より若干細粒の30〜2
50μsのものを使用した。上記条件下に良好に切断で
きた最大切断速度及び切断溝幅を表に示す。
The powder cutting conditions using LPG as the flammable gas for preheating and nitrogen gas as the iron powder carrier gas are shown in the table.The pressures of each gas other than the carrier gas are at the soft tube inlet. . Here, the cutting oxygen pressure was set to 9 kg/ad because of the high pressure oxygen regulation (10 kg/ad).
This is because the pressure was set as high as possible (at least 3 kg/cd) and the preheating oxygen pressure and LPG pressure were each 3 kg/cd.
a# and 0.3 kg/aj are preheating frame 4
This is the pressure when about 115 of the tip is applied to the slab surface. When supplying iron powder, the carrier gas pressure cannot be uniformly distributed all the time, and it inevitably fluctuates somewhat, so the average pressure is shown. In addition, as a result of various studies regarding the particle size of the iron powder used, we found that the particle size of the iron powder used was slightly finer than the conventional one.
A 50 μs one was used. The table shows the maximum cutting speed and width of the cutting groove that could be cut successfully under the above conditions.

鉄粉供給量及びキャリアガス圧(従って流量)を変えた
以外は上記と同様の条件の従来方法で行った比較例も表
に併記する。
Comparative examples conducted using the conventional method under the same conditions as above except that the amount of iron powder supplied and the carrier gas pressure (therefore, the flow rate) were changed are also listed in the table.

表 表から本発明方法による場合は従来方法と比較して遥か
に速く(本例では1.4倍の速さで)良好に、且つ切断
溝幅も格段に狭く(本例では35〜40%狭く)ステン
レス鋼スラブを切断できることが判る。そして切断ノロ
の発生が少なかった。
As can be seen from the table, the method of the present invention is much faster than the conventional method (1.4 times faster in this example), and the width of the cutting groove is also much narrower (35 to 40% in this example). It can be seen that it is possible to cut stainless steel slabs (narrowly). Also, there was less occurrence of cutting slag.

5US430.5US316等のスラブについても本発
明方法を実施し、同様な結果が得られている。
The method of the present invention was also applied to slabs such as 5US430.5US316, and similar results were obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明に係るステンレス鋼スラブのパウダ
ーカッティング方法は、切断酸素量と鉄粉供給量との比
及びキャリアガスの圧力を従来の定説とは異なる特定の
範囲に規定したことにより、以下に述べる効果を有する
The stainless steel slab powder cutting method according to the present invention described in detail above is as follows by specifying the ratio of cutting oxygen amount to iron powder supply amount and the carrier gas pressure to a specific range different from the conventional theory. It has the effects described in .

(a)切断不能に至ること無く良好に切断できる最大切
断速度が従来の条件に比較し、大幅に向上した。
(a) The maximum cutting speed that allows good cutting without becoming impossible to cut has been significantly improved compared to conventional conditions.

(b)鉄粉使用量が約174に減少した。(b) The amount of iron powder used decreased to about 174.

(C)切断溝幅が格段に狭くなり、従って封材歩留が向
上した。
(C) The width of the cutting groove was significantly narrowed, and the yield of sealing material was therefore improved.

(d)切断ノロの発生が少なくなってロール面やスラブ
切断面へのノロ付着が減少し、従ってスラブ手入れ時間
が減少すると共にスラブ疵取時の歩留が向上した。
(d) The generation of cutting slag is reduced, and the adhesion of slag to the roll surface and the cut surface of the slab is reduced, and therefore, the slab cleaning time is reduced and the yield when removing defects from the slab is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はキャリアガスの各種圧力における切断酸素量と
鉄粉供給量との比と切断速度との関係を示す図であり、
第2図はガス切断に用いる軟管の火口の1例の(イ)は
縦断面図で(ロ)は同図(イ)中A−A線断面図、第3
図はパウダーカッティング実施状態の説明図である。 図面中 1・・・・火口 la・・・・切断酸素口 1b・・・・予熱用可燃性ガス口 1c・・・・予熱酸素口 2・・・・鉄粉 3・・・・鉄粉供給管 4・・・・予熱フレーム 5・・・・切断酸素 6・・・・酸化反応部
FIG. 1 is a diagram showing the relationship between the ratio of cutting oxygen amount to iron powder supply amount and cutting speed at various pressures of carrier gas,
Figure 2 shows an example of a soft pipe crater used for gas cutting.
The figure is an explanatory diagram of a state in which powder cutting is performed. In the drawing 1... Crater la... Cutting oxygen port 1b... Preheating flammable gas port 1c... Preheating oxygen port 2... Iron powder 3... Iron powder supply Pipe 4... Preheating frame 5... Cutting oxygen 6... Oxidation reaction section

Claims (1)

【特許請求の範囲】 1 切断個所に向つて切断酸素流とそれを囲んで予熱用
可燃性ガス流及び予熱酸素流とを火口より噴流させ後者
によつて生じる予熱フレームにより加熱された予熱域に
切断酸素が吹き付けられて形成されている酸化反応部に
上記予熱フレームを貫通してキャリアガスにより鉄粉を
噴射供給してステンレス鋼スラブをパウダーカッティン
グするに当り、切断酸素量(Nm^3/分)と鉄粉供給
量(g/分)との比を1:25〜1:40とし且つキャ
リアガスの圧力を0.2〜0.3kg/cm^2とする
ことを特徴とするステンレス鋼スラブのパウダーカッテ
ィング方法。 2 鉄粉として粒径が30〜250μmのものを使用す
る請求項1に記載のステンレス鋼スラブのパウダーカッ
ティング方法。
[Scope of Claims] 1. A cutting oxygen stream is directed toward the cutting location, and surrounding it, a preheating flammable gas stream and a preheating oxygen stream are jetted from a crater into a preheating area heated by a preheating flame generated by the latter. When powder cutting a stainless steel slab by injecting and supplying iron powder with a carrier gas through the preheating frame to the oxidation reaction zone formed by spraying cutting oxygen, the amount of cutting oxygen (Nm^3/min) is ) and iron powder supply rate (g/min) is 1:25 to 1:40, and the carrier gas pressure is 0.2 to 0.3 kg/cm^2. powder cutting method. 2. The method for powder cutting a stainless steel slab according to claim 1, wherein iron powder having a particle size of 30 to 250 μm is used.
JP14364988A 1988-06-13 1988-06-13 How to powder cut stainless steel slabs Expired - Lifetime JPH0661614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14364988A JPH0661614B2 (en) 1988-06-13 1988-06-13 How to powder cut stainless steel slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14364988A JPH0661614B2 (en) 1988-06-13 1988-06-13 How to powder cut stainless steel slabs

Publications (2)

Publication Number Publication Date
JPH01313189A true JPH01313189A (en) 1989-12-18
JPH0661614B2 JPH0661614B2 (en) 1994-08-17

Family

ID=15343695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14364988A Expired - Lifetime JPH0661614B2 (en) 1988-06-13 1988-06-13 How to powder cut stainless steel slabs

Country Status (1)

Country Link
JP (1) JPH0661614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118180475A (en) * 2024-05-17 2024-06-14 四川汇达未来科技有限公司 Equidistant cutting device for manufacturing teaching instrument and use method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118180475A (en) * 2024-05-17 2024-06-14 四川汇达未来科技有限公司 Equidistant cutting device for manufacturing teaching instrument and use method

Also Published As

Publication number Publication date
JPH0661614B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US5043548A (en) Axial flow laser plasma spraying
GB2227964A (en) Laser welding apparatus and process
KR100960845B1 (en) Apparatus and method for cutting with plasma
US20080093045A1 (en) Method for Producing Metal Products
JPH01313189A (en) Powder cutting method for stainless steel slab
JPS58177403A (en) Method and device for manufacturing ceramic-free high purity metal powder
US2468816A (en) Process for making composite welded articles
US4366950A (en) Method and apparatus for cutting stainless steel
JPS63165074A (en) Build-up welding method for wear resistant metal
JPH0360595B2 (en)
JP2604817B2 (en) Cooling method of bottom tuyere for refining furnace
JPH04276058A (en) Manufacture of dispersion plated steel sheet and torch to be used
JPH01162578A (en) Torch for powder plasma build-up welding
JPH0235895B2 (en)
JPH03177556A (en) Nozzle for laser beam thermal spraying
JP2603837B2 (en) Plasma cutting method
JP3508308B2 (en) Method and apparatus for producing oxygen-containing titanium
JPS644967B2 (en)
JPH044973A (en) Powder gas cutting method and device for high alloy stainless steel
JPH08168877A (en) Powder gas cutting method for hardly fusion cuttable metallic material and iron powder used for the same
JPH0328254B2 (en)
JPS60145257A (en) Production of metallic ribbon
JPS62177107A (en) Apparatus for producing pulverized powder by laser
Yasuda et al. Investigations into the phenomena of high speed one-sided welding of thin sheet, paying attention to arc force
SE509795C2 (en) Nozzle for delivering oxygen rich gas to converter device used for recovering non ferrous metals from sulphide ores