JPH01311563A - Negative electrode for alkaline cell - Google Patents

Negative electrode for alkaline cell

Info

Publication number
JPH01311563A
JPH01311563A JP63139371A JP13937188A JPH01311563A JP H01311563 A JPH01311563 A JP H01311563A JP 63139371 A JP63139371 A JP 63139371A JP 13937188 A JP13937188 A JP 13937188A JP H01311563 A JPH01311563 A JP H01311563A
Authority
JP
Japan
Prior art keywords
negative electrode
alloy powder
added
discharge
discharge performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63139371A
Other languages
Japanese (ja)
Inventor
Kenichi Shinoda
健一 篠田
Hirohiko Ota
太田 廣彦
Kiyohide Tsutsui
清英 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP63139371A priority Critical patent/JPH01311563A/en
Publication of JPH01311563A publication Critical patent/JPH01311563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent an internal short circuit at the time of a specific load discharge by adding specific quantities of Al and Mg respectively in the alloy powder used for a negative electrode. CONSTITUTION:For the basic composition ratio of the alloy powder used for a negative electrode, Pb: 500ppm, In: 200ppm, Cd: 500ppm are added to Zn, the degree of amalgamation is set to 1.5% or below. Al 0.01 to 0.002wt.% and Mg 0.01 to 0.002wt.% are added to this alloy powder. An internal short circuit can be prevented at the time of a specific load discharge, the discharge performance in the low-amalgamation state can be improved in particular.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、低水銀化のためにPb、In、Cdを含有
させた合金粉末を用いるアルカリ電池用負極に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a negative electrode for alkaline batteries that uses an alloy powder containing Pb, In, and Cd to reduce mercury.

(従来の技術) Znを汞化するための水銀は、一種の公害物質であると
ころから、現在では水銀の含有量を低下させるための亜
鉛合金の開発が種々なされている。
(Prior Art) Since mercury for converting Zn into hydrogen is a type of pollutant, various zinc alloys are currently being developed to reduce the mercury content.

そのなかで、とりわけpbを0.01wt%以上含む亜
鉛合金は、アルカリ電解液中での水素ガスの発生が抑制
でき、低汞化のための有力な材料であることが注目され
ている。
Among these, zinc alloys containing PB of 0.01 wt% or more are attracting attention because they can suppress the generation of hydrogen gas in an alkaline electrolyte and are effective materials for reducing hydrogen flux.

特に、Pb、In、CdとともにAgを0.01wt%
以上Znに添加した亜鉛合金は水素ガス抑制効果がさら
に大きく、例えば水化度1.5%といった低汞化用亜鉛
合金として実用化されている。
In particular, 0.01wt% of Ag is added along with Pb, In, and Cd.
The above-mentioned zinc alloy added to Zn has an even greater hydrogen gas suppressing effect, and has been put to practical use as a zinc alloy for lowering the hydration degree, for example, 1.5%.

(発明が解決しようとする課題) しかしながら、前記A、9を0.01wt%以上含有す
る低汞化亜鉛合金を負極として用いた場合には、ある負
荷抵抗で急速に放電性能が低下する現象が発生する場合
があり、問題となっている。
(Problem to be Solved by the Invention) However, when a low-fragility zinc alloy containing 0.01 wt% or more of A and 9 is used as a negative electrode, a phenomenon occurs in which the discharge performance rapidly decreases at a certain load resistance. This may occur and is a problem.

この現象は、特に軽負荷放電時に特異的に発現している
が、これら放電性能の低下した電池の内部を分解して調
べた結果、放電生成物によって内部短絡を起こしている
ことが判明した。
This phenomenon occurs particularly during light load discharge, but as a result of disassembling and examining the inside of these batteries with degraded discharge performance, it was found that internal short circuits were caused by discharge products.

この原因としては、Agを含む亜鉛合金が、特定の電流
で放電されることによって導電性を持った特異な結晶が
析出し、この結晶が生長してセパレータを貫通し、その
結果短絡現象を引き起こすのであろうと考えられている
The cause of this is that when a zinc alloy containing Ag is discharged with a specific current, unique conductive crystals are precipitated, and these crystals grow and penetrate the separator, resulting in a short circuit phenomenon. It is thought that this may be the case.

従って、この対策としてまず最初に考えられることは、
セパレータの材質を厚くしたり、繊維を密にすることに
よって内部短絡を封することであるが、このような手段
で対処した場合には、ゲル状亜鉛負極の充填量の減少に
よる放電容量の低下や、内部抵抗の増大等の不都合を生
じ、放電性能や貯蔵性などの一般的性能を大幅に低下さ
せるものとなる。
Therefore, the first thing to consider as a countermeasure is to
The internal short circuit can be sealed by making the separator material thicker or making the fibers denser, but if these measures are taken, the discharge capacity will decrease due to a decrease in the filling amount of the gelled zinc negative electrode. This results in disadvantages such as an increase in internal resistance and a significant decrease in general performance such as discharge performance and storage performance.

そこで本発明者らは、この種の特異な結晶の生成を阻害
する物質について種々検討した結果、2nにPb、In
、Cdを添加してなる亜鉛合金に添加されるAlの一部
をMgに置き換え、これを汞化させた亜鉛合金粉末が特
定の負荷放電条件下での特異な結晶の析出・生成を抑制
する効果が得られたことを知得した。
Therefore, the present inventors investigated various substances that inhibit the formation of this type of unique crystal, and found that 2n contains Pb, In,
, a part of the Al added to the zinc alloy added with Cd is replaced with Mg, and the zinc alloy powder that is made into a starch suppresses the precipitation and formation of peculiar crystals under specific load discharge conditions. I learned that it was effective.

本発明は以上の知得に基づきなされたもので、充分に水
素ガス発生抑制効果があり、しかも特定の負荷放電時に
おける内部短絡などの特異的な現象を防止できるように
したアルカリ電池用負極を提供することを目的とするも
のである。
The present invention has been made based on the above knowledge, and provides a negative electrode for alkaline batteries that has a sufficient effect of suppressing hydrogen gas generation and can prevent specific phenomena such as internal short circuits during discharge under a specific load. The purpose is to provide

(課題を解決するための手段) 前記目的を達成するため、この発明は、Znを主体とし
、これにPb、In、Cdを添加した合金粉末を汞化さ
せて負極として用いるアルカリ電池において、 前記合金粉末中にAIIを0.01〜0.002wt%
、Mgを0.01〜0.002wt%添加したことを要
旨とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an alkaline battery in which an alloy powder mainly composed of Zn and to which Pb, In, and Cd are added is used as a negative electrode by aqueousization. 0.01-0.002wt% AII in alloy powder
, the gist is that 0.01 to 0.002 wt% of Mg is added.

すなわち、本発明の負極は、従来のPb−In−Cd系
合金組成に加えて、微量のAfI及びMgを添加した合
金粉末を用いたものであって、Alの特性である耐蝕効
果に加え、これと類似の作用効果が期待できるMgによ
る耐蝕効果との相乗効果を利用したものであるシ 上記合金粉末の基本的な組成比は、Znに対してPb 
: 500ppm 、 I n : 2001)I)I
 SCd :5.00 ppa+を添加し、その汞化度
を1.5%以下にする。
That is, the negative electrode of the present invention uses an alloy powder in which trace amounts of AfI and Mg are added in addition to the conventional Pb-In-Cd alloy composition, and in addition to the corrosion-resistant effect that is a characteristic of Al, The basic composition ratio of the above-mentioned alloy powder is Pb to Zn.
: 500ppm, I n : 2001)I)I
SCd: 5.00 ppa+ is added to reduce the degree of filtration to 1.5% or less.

以上の基本的組成の合金粉末に対する前記Allの含有
量は0.002wt%以上が好ましく、これを下回った
場合にはAjlの特性である耐蝕効果が乏しいものとな
る。また、その上限は0.01wt%以下が好ましく、
この上限を越えると放電性能において、前述の特異現象
を生ずる。
The content of All in the alloy powder having the above basic composition is preferably 0.002 wt% or more, and if it is less than this, the corrosion resistance effect, which is a characteristic of Ajl, will be poor. Further, the upper limit thereof is preferably 0.01 wt% or less,
If this upper limit is exceeded, the above-mentioned peculiar phenomenon occurs in discharge performance.

また、前記Mgは耐蝕上A、l)に近い作用効果があり
、ガス発生を抑制し、放電性能上では問題がない。しか
しながらその下限である0、002wt%を下回った場
合には、絶対量の不足によってA゛ぶの場合と同様に耐
蝕効果が乏しいものとなる。
Further, the Mg has an effect similar to A, l) in terms of corrosion resistance, suppresses gas generation, and has no problem in terms of discharge performance. However, if it falls below the lower limit of 0,002 wt%, the corrosion resistance effect will be poor as in the case of A-type due to insufficient absolute amount.

これに対し、上限の値である0、01wt%を上回って
添加しても、耐蝕効果および放電性能の両面で、新たに
格別の効果が得られることはない。従って、Mgは以上
の範囲内に限定される。
On the other hand, even if it is added in an amount exceeding the upper limit of 0.01 wt%, no new special effects will be obtained in terms of both corrosion resistance and discharge performance. Therefore, Mg is limited within the above range.

(作 用) AI及びMgを以上の配合比率で微量添加した亜鉛合金
粉末を用いて負極を構成することによって、耐蝕上の問
題がなく、特定の負荷抵抗での放電性能の低下は見られ
なくなった。またこの事実に対する理由は必ずしも明ら
かでないが、ANの一部がMgに置き換えられることに
よって、AIを添加することによって生ずる特定の負荷
放電時における放電生成物の生長を抑制し、結晶の成長
が阻害され、結晶による内部短絡現象がなくなるからで
あると推定される。
(Function) By constructing the negative electrode using zinc alloy powder to which a small amount of AI and Mg are added in the above blending ratio, there is no problem with corrosion resistance, and no deterioration in discharge performance is observed under a specific load resistance. Ta. Although the reason for this fact is not necessarily clear, replacing a part of AN with Mg suppresses the growth of discharge products during a specific load discharge caused by adding AI, inhibiting the growth of crystals. This is presumed to be because the internal short circuit phenomenon caused by the crystal disappears.

(実 施 例) 以下、この発明の実施例を図面を参照して詳細に説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、この発明の実施に用いたLR6形アルカリ電池の
構造は、第1図に示す一般的構造となっている。
First, the structure of the LR6 type alkaline battery used in carrying out the present invention is the general structure shown in FIG.

このアルカリ電池は、有底円筒型の電池ケース1の上部
開口の内周部を負極端子板2の周縁フランジ部に封口ガ
スケット3を介して絞り加工、カール加工などによって
カシメ付け、電池内部を密封している。
This alkaline battery is manufactured by caulking the inner periphery of the upper opening of a bottomed cylindrical battery case 1 to the peripheral flange of a negative electrode terminal plate 2 via a sealing gasket 3 by drawing or curling, thereby sealing the inside of the battery. are doing.

電池内部には、上端を前記封口ガスケット3の中心を貫
通して前記負極端子板2に電気的接続した集電棒4と、
該集電棒4の外周を取巻くようにして負極5、セパレー
タ6、及び二酸化マンガンを主体とする正極合剤7が同
心状に充填され、発電要素を構成している。
Inside the battery is a current collector rod 4 whose upper end passes through the center of the sealing gasket 3 and is electrically connected to the negative terminal plate 2;
A negative electrode 5, a separator 6, and a positive electrode mixture 7 mainly composed of manganese dioxide are filled concentrically around the outer periphery of the current collector rod 4 to constitute a power generation element.

前記負極5は前述の合金粉末を1.5%の水銀で汞化し
たものと、ゲル状アルカリ電解液との混合物からなって
いる。
The negative electrode 5 is made of a mixture of the aforementioned alloy powder aqueous with 1.5% mercury and a gelled alkaline electrolyte.

ゲル状電解液は、水酸化カリウム溶液とCMC等のゲル
化剤からなる組成であって、このゲル状電解液に前述の
配合比率で汞化された合金粉末を混合分散しである。
The gel electrolyte has a composition consisting of a potassium hydroxide solution and a gelling agent such as CMC, and the gelatinized alloy powder is mixed and dispersed in the gel electrolyte at the above-mentioned mixing ratio.

そしてこの合金粉末におけるAg及びMgの添加量を種
々変えて配合した本発明のサンプルと、本発明の上下限
を越えたサンプル、AIlおよびMgの単体を含む比較
品、Al2およびMgを含まない水化度3%の従来品と
で75Ω負荷連続放電時の放電性能および60℃20日
間貯蔵した後のガス発生速度を測定した結果、以下の表
および第2図、第3図に示す特性値を得た。
Samples of the present invention in which the amounts of Ag and Mg added in this alloy powder were varied, samples exceeding the upper and lower limits of the present invention, comparative products containing single substances of Al2 and Mg, and water containing no Al2 and Mg. As a result of measuring the discharge performance during continuous discharge under a 75Ω load and the gas generation rate after storage at 60°C for 20 days with a conventional product with a degree of hydrogenation of 3%, the characteristic values shown in the table below and Figures 2 and 3 were obtained. Obtained.

尚、本発明の負極の配合例は以下の通りである。Incidentally, a formulation example of the negative electrode of the present invention is as follows.

40”% KOH溶液  38W1% ケ/l、lt剤(CMC)   2wt%合  金  
粉  末       6 o Vt%前記合金粉末は
、水化度1.5%のものであって、その組成比はP b
 500 ppl : I n 200 ppIl: 
Cd500ppffl:残部Znを基本としてAg及び
Mgの添加量を変えた参照例を含むサンプル(イ)〜(
す)までの9種類を用意し、LR6形アルカリ電池に組
立てた。また、参照用の従来品としては、Al2および
Mgを含まないPb500ppa+ : I n200
ppm  : Cd500ppraの亜鉛合金粉で水化
度3%の負極からなるアルカリ電池を用いた。
40”% KOH solution 38W1% Ke/l, lt agent (CMC) 2wt% alloy
Powder 6 o Vt% The alloy powder has a hydration degree of 1.5%, and its composition ratio is P b
500 ppl: In 200 ppl:
Cd500ppffl: Samples (A) to (A) including reference examples in which the addition amount of Ag and Mg was changed based on the balance Zn.
Nine types (up to 1) were prepared and assembled into an LR6 type alkaline battery. In addition, as a conventional product for reference, Pb500ppa+ which does not contain Al2 and Mg: I n200
An alkaline battery consisting of a negative electrode made of zinc alloy powder with ppm: Cd of 500 ppra and a degree of hydration of 3% was used.

表 *測定項目: ■75Ω連続放電時間(単位Hr終止電圧0.9V)・
・・従来品を100として指数比で表示■ガス発生速度
(μm/g、day) 次に以上の表に示す測定値および第2図、第3図に示す
特性値から結論づけられる点を以下にのべる。
Table *Measurement items: ■75Ω continuous discharge time (unit: Hr final voltage 0.9V)・
...Displayed as an index ratio with the conventional product set as 100 ■Gas generation rate (μm/g, day) Next, the points that can be concluded from the measured values shown in the table above and the characteristic values shown in Figures 2 and 3 are as follows. Spread.

まず、ガス発生試験結果において、数値および第2図に
示す特性から、Al2およびMgの添加量がそれぞれ0
.002%以上であることが好ましいことが判明し、耐
蝕上好ましい範囲であることが理解できる。
First, in the gas generation test results, from the numerical values and the characteristics shown in Figure 2, the amounts of Al2 and Mg added were each 0.
.. 0.002% or more is preferable, and it can be understood that this is a preferable range from the viewpoint of corrosion resistance.

また、75Ω放電試験結果からは、A、17の添加量が
0.02%以上では放・電性能の低下が認められる。一
方、Mgは放電性能には影響を及ぼさないことが判明し
ている。さらに比較例に示すように、いずれか単体だけ
では、放電性能またはガス発生のいずれか一方の性能低
下が顕著となる。したがって、All!およびMgの添
加量は少量でしかもそれぞれ耐蝕上問題のない範囲であ
る0、01〜0.002wt%が好ましい。
Furthermore, from the results of the 75Ω discharge test, it is recognized that when the amount of A and 17 added is 0.02% or more, the discharge performance deteriorates. On the other hand, Mg has been found to have no effect on discharge performance. Further, as shown in the comparative example, when either one is used alone, the performance of either discharge performance or gas generation is significantly deteriorated. Therefore, All! The amount of addition of Mg and Mg is preferably 0.01 to 0.002 wt%, which is a small amount and does not cause any corrosion resistance problems.

(発明の効果) 以上実施例によって詳細に説明したように、この発明に
あっては、特定の負荷放電時での内部短絡をAl1の一
部をMgに置き換えることで防止でき、特に低汞化状態
における放電性能を向上できる。
(Effects of the Invention) As described above in detail through the embodiments, in the present invention, internal short circuits at the time of specific load discharge can be prevented by replacing a part of Al1 with Mg, and in particular, the It is possible to improve the discharge performance under these conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るアルカリ電池の断面図、第2図は
ガス発生試験結果を示すグラフ、第3図は75Ω連続放
電性能の試験結果を示すグラフである。 1・・・正極缶     2・・・負極端子板3・・・
封口ガスケット 4・・・集電棒5・・・負 極   
   6・・・セパレータ7・・・正極合剤 特許出願人    富士電気化学株式会社代  理  
人        弁理士  −色  健  補間  
     弁理士 松 本 雅 利第1図 /
FIG. 1 is a sectional view of an alkaline battery according to the present invention, FIG. 2 is a graph showing the results of a gas generation test, and FIG. 3 is a graph showing the results of a 75Ω continuous discharge performance test. 1... Positive electrode can 2... Negative electrode terminal plate 3...
Sealing gasket 4... Current collector rod 5... Negative electrode
6... Separator 7... Positive electrode mixture patent applicant Fuji Electrochemical Co., Ltd. representative
Person Patent Attorney - Color Ken Interpolation
Patent Attorney Masatoshi Matsumoto Figure 1/

Claims (1)

【特許請求の範囲】[Claims] (1)Znを主体とし、これにPb、In、Cdを添加
した合金粉末を汞化させて負極として用いるアルカリ電
池において、 前記合金粉末中にAlを0.01〜0.002wt%、
Mgを0.01〜0.002wt%添加したことを特徴
とするアルカリ電池用負極。
(1) In an alkaline battery in which an alloy powder containing Zn as a main ingredient and Pb, In, and Cd added thereto is used as a negative electrode, 0.01 to 0.002 wt% of Al is contained in the alloy powder;
A negative electrode for an alkaline battery, characterized in that 0.01 to 0.002 wt% of Mg is added.
JP63139371A 1988-06-08 1988-06-08 Negative electrode for alkaline cell Pending JPH01311563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139371A JPH01311563A (en) 1988-06-08 1988-06-08 Negative electrode for alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139371A JPH01311563A (en) 1988-06-08 1988-06-08 Negative electrode for alkaline cell

Publications (1)

Publication Number Publication Date
JPH01311563A true JPH01311563A (en) 1989-12-15

Family

ID=15243770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139371A Pending JPH01311563A (en) 1988-06-08 1988-06-08 Negative electrode for alkaline cell

Country Status (1)

Country Link
JP (1) JPH01311563A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646534U (en) * 1979-09-20 1981-04-25
JPS59191322U (en) * 1983-06-06 1984-12-19 昭和電工株式会社 Assembly type pallet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646534U (en) * 1979-09-20 1981-04-25
JPS59191322U (en) * 1983-06-06 1984-12-19 昭和電工株式会社 Assembly type pallet

Similar Documents

Publication Publication Date Title
JPH08510355A (en) Additive for primary electrochemical cells with manganese dioxide cathode
CA1232634A (en) Battery cell
JPH0222984B2 (en)
JPH01311563A (en) Negative electrode for alkaline cell
JPS6240162A (en) Zinc alkaline battery
JP3188651B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JPH0418671B2 (en)
JP3188652B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JPH01236577A (en) Gel-like zinc negative electrode for alkaline battery
JP2609609B2 (en) Alkaline battery
JP2563109B2 (en) Alkaline battery
JPH065284A (en) Zinc alkaline battery
JPH0459374B2 (en)
JPH10334909A (en) Negative electrode zinc-base alloy powder for alkaline battery
JPH0140472B2 (en)
JP2563108B2 (en) Alkaline battery
KR890004989B1 (en) Zinc-alkaline battery
JPH0317182B2 (en)
JPS63279566A (en) Alkaline battery
JPH10334905A (en) Negative electrode zinc base alloy powder for alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPH0418674B2 (en)
JP3163005B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery
JP4733816B2 (en) Negative electrode for alkaline battery and alkaline battery using the same
JP3163007B2 (en) Method for producing negative electrode zinc-based alloy powder for alkaline battery