JPH01309965A - Magnetron sputtering device - Google Patents

Magnetron sputtering device

Info

Publication number
JPH01309965A
JPH01309965A JP14108388A JP14108388A JPH01309965A JP H01309965 A JPH01309965 A JP H01309965A JP 14108388 A JP14108388 A JP 14108388A JP 14108388 A JP14108388 A JP 14108388A JP H01309965 A JPH01309965 A JP H01309965A
Authority
JP
Japan
Prior art keywords
substrate
target
magnet
pair
magnet pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14108388A
Other languages
Japanese (ja)
Inventor
Akira Okuda
晃 奥田
Hidetoshi Kawa
川 秀俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14108388A priority Critical patent/JPH01309965A/en
Publication of JPH01309965A publication Critical patent/JPH01309965A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin sputtered film having uniform characteristics on the surface of a substrate by keeping the positional relationship between a rotary magnet couple on the rear of a target and a rotating substrate to be treated always constant in a magnetron sputtering device. CONSTITUTION:In a vacuum tank 110, a rotatable cathode main body 106 in which a magnet couple 104 and a yoke 105 are provided to the rear of a backing plate 102 for a target 101 so that they are made eccentrically from the central axis of the target is provided, and also a substrate 107 capable of revolution and rotation in the position opposite to the target 101 is disposed. The inside of the vacuum tank 110 is evacuated and an Ar gas is introduced, and a DC or RF voltage is impressed on the cathode main body 106 by means of an electric power source 109 to produce plasma, by which the Ar gas is ionized and allowed to bombard the target 101 to form a thin film on the substrate 107. At this time, the substrate is subjected to revolution and rotation by means of a rotary mechanism 108 with a radius of rotation equal to the amount of eccentricity ot the magnet couple 104 from the central axis of the target 101 and at a rotational speed equal to the eccentric rotational speed of the magnet couple 104. By this method, the positional relationship between the magnet couple 104 and the substrate 107 is always kept constant, and the thin film having uniform thickness can be formed on the substrate 107 by means of sputtering.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マグネトロンスパッタ装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetron sputtering apparatus.

従来の技術 近年、マグネトロンスパッタ装置は、光磁気ディスク、
光ディスクの記録膜等の成膜に多く使用されている。
Conventional technology In recent years, magnetron sputtering equipment has been used for magneto-optical disks,
It is often used to form recording films for optical discs.

以下図面を参照しながら、従来のマグネトロンスパッタ
装置の一例について説明する。第2図において、1はタ
ーゲット、2はターゲット1を固定するバッキングプレ
ート、3はターゲット1を冷却するための冷却水の管、
4は磁石対、6はヨーク、6はターゲット1と、バッキ
ングプレート2と、冷却水の管3をもち、磁石対4、ヨ
ーク5をターゲット1の中心軸より偏芯させ回転させる
ことが可能なカソード本体、7はターゲット1に対向し
で配置され、スパッタにより膜が堆積される基板、8は
、基板アを保持し、自転させる基板回転機溝、9はカソ
ード本体6へ電圧を印加し、ターゲット1表面でプラズ
マを発生させるための電源、10は真空チャンバー、1
1は真空チャンバー10内を真空排気するための真空排
気ポンプ、121空チヤンバー10内にスパッタリング
ガスを供給するためのガス供給系である。
An example of a conventional magnetron sputtering apparatus will be described below with reference to the drawings. In FIG. 2, 1 is a target, 2 is a backing plate for fixing target 1, 3 is a cooling water pipe for cooling target 1,
4 has a magnet pair, 6 a yoke, 6 a target 1, a backing plate 2, and a cooling water pipe 3, and the magnet pair 4 and yoke 5 can be rotated eccentrically from the central axis of the target 1. A cathode body, 7 is a substrate placed opposite the target 1 and on which a film is deposited by sputtering, 8 is a groove for a substrate rotating machine that holds and rotates the substrate, 9 is for applying voltage to the cathode body 6; A power source for generating plasma on the surface of the target 1, 10 a vacuum chamber, 1
1 is a vacuum pump for evacuating the inside of the vacuum chamber 10; 121 is a gas supply system for supplying sputtering gas into the empty chamber 10;

以上のように構成されたスパッタリング装置について以
下その動作について説明する。
The operation of the sputtering apparatus configured as described above will be explained below.

まず、真空チャンバー10内をロータリーポンプ、油拡
散ポンプ、クライオポンプ等の真空排気ポンプ11によ
り1O−6Torr  台の真空度まで真空排気する。
First, the inside of the vacuum chamber 10 is evacuated to a degree of vacuum on the order of 10-6 Torr using a vacuum pump 11 such as a rotary pump, an oil diffusion pump, or a cryopump.

その後、ガス供給系12により、真空チャンバー10内
にAr 等スパッタリングガスを導入し、5 X 10
  Torr程度の真空度に設定し、カソード本体6へ
、電源9により、DCtたはRFの電圧を印加する。そ
れにより真空チャンバー10内にプラズマが発生する。
After that, a sputtering gas such as Ar is introduced into the vacuum chamber 10 by the gas supply system 12, and a sputtering gas of 5×10
The degree of vacuum is set to approximately Torr, and a DCt or RF voltage is applied to the cathode body 6 from the power source 9. As a result, plasma is generated within the vacuum chamber 10.

そのためAr イオンが発生する。また、磁石対4の磁
界により、プラズマ密度の高い部分が発生し、Ar  
イオンのターゲット1への衝突量が増加する。そして主
にその部分から粒子が飛散するが、磁石対4が、グーゲ
ット1の中心軸に対して偏芯し、回転しているため、タ
ーゲット1の表面全体の粒子が均一に飛散し、基板回転
機構8により自転し、対向して配置された基板子の表面
に堆積し膜が形成される。
Therefore, Ar ions are generated. Furthermore, due to the magnetic field of the magnet pair 4, a region with high plasma density is generated, and Ar
The amount of ions colliding with the target 1 increases. Particles are mainly scattered from that part, but since the magnet pair 4 is eccentric with respect to the central axis of the goo get 1 and rotates, the particles on the entire surface of the target 1 are evenly scattered, and the substrate rotates. The film is rotated by the mechanism 8 and deposited on the surface of the substrate elements arranged facing each other to form a film.

発明が解決しようとする課題 しかしながら上記のような構成では、ターゲットの利用
効率を向上するために、磁石対がターゲット中心軸に対
して偏芯し、回転しているため、磁石対によって、ター
ゲット表面より粒子の飛散が集中する箇所と基板との位
置関係が常に変化する。ここで、粒子の飛散が集中する
箇所は、リング状の磁石対の場合、磁石対の中心軸を中
心としたリングとなる。以下、このリングをプラズマリ
ングとする。マグネトロンスパッタ装置による、膜厚均
一性は、ターゲット表面から基板表面までの距離と、プ
ラズマリング径と、プラズマリングの中心軸と、基板中
心軸との偏芯量により決定する。よって、上記のような
構成では、プラズマリングが、常に移動しているため、
プラズマリングと基板との位置関係が変化する。そのた
め、磁石対固定の場合、例えば、φ2ooaIIの基板
内で、膜厚均一性が±3チ以内であったのが、磁石対を
回転することによυ±8%になるという問題点を有して
いた。また、膜厚均一性が低下するために、光磁気ディ
スク、光ディスク等の膜の特性均一性が低下するという
問題点も有していた。
Problems to be Solved by the Invention However, in the above configuration, in order to improve the utilization efficiency of the target, the magnet pair is rotated eccentrically with respect to the target center axis. The positional relationship between the substrate and the location where particles are more concentrated is constantly changing. Here, in the case of a ring-shaped magnet pair, the location where particle scattering is concentrated is a ring centered on the central axis of the magnet pair. Hereinafter, this ring will be referred to as a plasma ring. The film thickness uniformity in a magnetron sputtering device is determined by the distance from the target surface to the substrate surface, the diameter of the plasma ring, and the amount of eccentricity between the central axis of the plasma ring and the central axis of the substrate. Therefore, in the above configuration, since the plasma ring is constantly moving,
The positional relationship between the plasma ring and the substrate changes. Therefore, in the case of a fixed magnet pair, for example, within a φ2ooaII substrate, the film thickness uniformity, which was within ±3 inches, becomes υ±8% by rotating the magnet pair. Was. Furthermore, since the uniformity of the film thickness is reduced, there is also a problem that the uniformity of characteristics of the film of magneto-optical disks, optical disks, etc. is reduced.

本発明は上記問題点に鑑み、磁石対が回転可能なマグネ
トロンスパッタ装置において、磁石対回転による膜厚均
一性の低下を防ぎ、膜の特性の均一1生を向上するとい
うものである。
In view of the above-mentioned problems, the present invention aims to prevent a decrease in film thickness uniformity due to the rotation of the magnet pair and to improve the uniformity of film properties in a magnetron sputtering apparatus in which the magnet pair is rotatable.

課題を解決するための手段 上記問題点を解決するために、本発明のマグネトロンス
パッタ装置は、基板を保持し、磁石対のターゲット中心
軸からの偏芯量と同じ回転半径で、磁石対の偏芯回転速
度と同じ回転速度で、常時、磁石対と基板との位置関係
が同じになるように基板を公転し、さらに自転させるこ
とが可能な基板回転機構を備えたものである。
Means for Solving the Problems In order to solve the above problems, the magnetron sputtering apparatus of the present invention holds a substrate and rotates the magnet pair with the same rotational radius as the eccentricity of the magnet pair from the target central axis. It is equipped with a substrate rotation mechanism that can revolve the substrate at the same rotation speed as the core rotation speed so that the positional relationship between the magnet pair and the substrate is always the same, and further rotate the substrate.

作  用 本発明は上記した構成によって、スパッタの際に、磁石
対と基板との位置関係、すなわち、プラズマリングの中
心軸と、基板中心軸との偏芯量を常時一定に保つことに
よセ、磁石対固定で、スパッタした場合の膜厚均一性と
同等の膜厚均一性を得ることとなり、さらに、光磁気デ
ィスク、光ディスク等の膜の基板内の特性均一性を向上
することとなる。
Effect of the Invention With the above-described configuration, the present invention maintains the positional relationship between the magnet pair and the substrate, that is, the amount of eccentricity between the center axis of the plasma ring and the center axis of the substrate, constant during sputtering. By fixing the magnet pair, it is possible to obtain a film thickness uniformity equivalent to that obtained by sputtering, and further improve the characteristic uniformity within the substrate of a film such as a magneto-optical disk or an optical disk.

実施例 以下本発明の実施例のマグネトロンスパッタ装置につい
て、図面を参照しながら説明する。
EXAMPLE Hereinafter, a magnetron sputtering apparatus according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例におけるマグネトロンスパッタ
装置の概略断面図を示す。第1図において、101はタ
ーゲット、102はターゲット1o1を固定するバッキ
ングプレート、103はターゲット101を冷却するた
めの冷却水の管、104は磁石対、105はヨーク、1
06はターゲット101と、バッキングプレート102
と、冷却水の管103をもち、磁石対104、ヨーク1
05をターゲット101の中心軸より偏芯させ回転させ
ることが可能なカソード本体、107はターゲット1o
1に対向して配置され、スパッタにより膜が堆積される
基板、10Bは、基板107を保持し、磁石対104の
ターゲット101中心軸からの偏芯量と同じ回転半径で
、磁石対104の偏芯回転速度と同じ回転速度で、常時
、磁石対104と基板107との位置関係が同じになる
ように基板10了を公転し、さらに自転させることが可
能な基板回転機構、109はカソード本体106へ電圧
を印加し、ターゲット101表面でプラズマを発生させ
るだめの電源、110は真空チャンバー、111は真空
チャンバー110内を真空排気するための真空排気ポン
プ、112は真空チャンバー110内にスパッタリング
ガスを供給するためのガス供給系である。
FIG. 1 shows a schematic cross-sectional view of a magnetron sputtering apparatus in an embodiment of the present invention. In FIG. 1, 101 is a target, 102 is a backing plate for fixing the target 1o1, 103 is a cooling water pipe for cooling the target 101, 104 is a pair of magnets, 105 is a yoke, 1
06 is a target 101 and a backing plate 102
, a cooling water pipe 103, a magnet pair 104, and a yoke 1.
05 is a cathode body that can be eccentrically rotated from the central axis of the target 101, and 107 is a target 1o.
The substrate 10B, which is disposed opposite to the target 101 and on which a film is deposited by sputtering, holds the substrate 107 and rotates the magnet pair 104 with the same rotation radius as the eccentricity of the magnet pair 104 from the center axis of the target 101. A substrate rotation mechanism 109 is capable of revolving the substrate 10 at the same rotational speed as the core rotational speed so that the positional relationship between the magnet pair 104 and the substrate 107 is always the same, and further rotating the substrate 10; 109 is a cathode body 106; 110 is a vacuum chamber; 111 is a vacuum pump for evacuating the inside of the vacuum chamber 110; 112 is a supply of sputtering gas into the vacuum chamber 110; This is a gas supply system for

以上のように構成されたマグネトロンスパッタ装置にお
いて、以下第1図を用いてその動作を説明する。
The operation of the magnetron sputtering apparatus configured as described above will be described below with reference to FIG.

まず、真空チャンバー110内を、ロータリーポンプ、
油拡散ポンプ、クライオポンプ等の真空排気ポンプ10
8により、10””6Torr  台の真空度まで真空
排気する。その後、ガス供給系112により、真空チャ
ンバー 110内にAr等スパッタリングガスを導入し
、5X10  Torr程度の真空度に設定する。ここ
で磁石対104及びターゲット101は、冷却水の管1
03からの冷却水によって冷却されている。次にカソー
ド本体106へ、電源109により、DCまたはRFの
電圧を印加する。それによシ真空チャンバー110内に
プラズマが発生する。そのためAr イオンが発生する
。また磁石対104の磁界により、プラズマ密度の高い
部分が発生し、Arイオンのターゲット101への衝突
量が増加する。そして主に、その部分から粒子が飛散す
るが、ターゲット101の利用効率及び寿命向上のため
に、磁石対104が、ターゲラ)101の中心軸に対し
て偏芯し、回転しているため、ターゲット1010表面
全体の粒子が均一に飛散する。このとき、基板回転機構
108により、磁石対104のターゲット101中心軸
からの偏心量と同じ回転半径で、磁石対104の偏芯回
転速度と同じ回転速度で、常時、磁石対104と基板1
07との位置関係、すなわち、プラズマリングの中心軸
と、基板107の中心軸との偏芯量を一定に保ち、基板
107を公転し、さらに自転させる。よって、ターゲッ
ト101に対向して配置された、基板107の表面に粒
子が堆積し、膜が形成される。
First, inside the vacuum chamber 110, a rotary pump,
Vacuum pump 10 such as oil diffusion pump, cryopump, etc.
8 to evacuate to a vacuum level of 10''6 Torr. Thereafter, a sputtering gas such as Ar is introduced into the vacuum chamber 110 by the gas supply system 112, and the degree of vacuum is set to about 5×10 Torr. Here, the magnet pair 104 and the target 101 are connected to the cooling water pipe 1
It is cooled by cooling water from 03. Next, a DC or RF voltage is applied to the cathode body 106 by the power supply 109. As a result, plasma is generated within the vacuum chamber 110. Therefore, Ar ions are generated. Furthermore, the magnetic field of the magnet pair 104 generates a portion with high plasma density, and the amount of Ar ions colliding with the target 101 increases. Particles are mainly scattered from that part, but in order to improve the utilization efficiency and lifespan of the target 101, the magnet pair 104 is rotated eccentrically with respect to the central axis of the target 101. 1010 Particles are scattered uniformly over the entire surface. At this time, the substrate rotation mechanism 108 always rotates the magnet pair 104 and the substrate 1 at the same rotation radius as the eccentricity of the magnet pair 104 from the center axis of the target 101 and at the same rotation speed as the eccentric rotation speed of the magnet pair 104.
07, that is, the amount of eccentricity between the central axis of the plasma ring and the central axis of the substrate 107, is kept constant, and the substrate 107 is revolved and further rotated. Therefore, particles are deposited on the surface of the substrate 107, which is placed facing the target 101, and a film is formed.

以上のように本実施例によれば、スパッタリングの際プ
ラズマリングの中心軸と、基板107の中心軸との偏芯
量が常に一定に保たれるため、磁石対104が固定の場
合の、膜厚均一性と常に同等となる。例えば、φ200
簡の基板内での膜厚 4均一性が、磁石対104が固定
の場合、±3俤以内であったものが、磁石対1o4を偏
芯回転させても、±3チ以内となった。また、光ディス
クの記録膜等の、反射率、特性の均一性も向上すること
ができた。
As described above, according to this embodiment, since the amount of eccentricity between the central axis of the plasma ring and the central axis of the substrate 107 is always kept constant during sputtering, the amount of eccentricity between the central axis of the plasma ring and the central axis of the substrate 107 is always kept constant. It is always equivalent to thickness uniformity. For example, φ200
The film thickness uniformity within the simple substrate was within ±3 degrees when the magnet pair 104 was fixed, but it became within ±3 degrees even when the magnet pair 104 was eccentrically rotated. Furthermore, it was also possible to improve the reflectance and uniformity of characteristics of the recording film of the optical disc.

なお、本実施例によれば、第1図において、ターゲラ)
101の中心軸と、基板107の公転中心軸が、同軸上
になっているが、同軸上になくてもよい。
According to this embodiment, in FIG.
Although the central axis of the substrate 101 and the revolution center axis of the substrate 107 are coaxial, they do not have to be coaxial.

発明の効果 以上のように本発明は、基板を保持し、磁石対のターゲ
ット中心軸からの偏心量と同じ回転半径で、磁石対の偏
芯回転速度と同じ回転速度で、常時、磁石対と基板との
位置関係が同じKなるように基板を公転し、さらに自転
させることが可能な基板回転機構を設けることにより、
磁石対が偏芯回転可能なマグネトロンスパッタ装置にお
いて、磁石対回転による膜厚均一性の低下を防ぎ、膜の
特性の均一性を向上することができた。
Effects of the Invention As described above, the present invention holds a substrate and constantly rotates the magnet pair at the same rotation radius as the eccentricity of the magnet pair from the target center axis and at the same rotational speed as the eccentric rotation speed of the magnet pair. By providing a substrate rotation mechanism that can revolve the substrate so that the positional relationship with the substrate is the same K, and further rotate the substrate,
In a magnetron sputtering device in which the magnet pair can rotate eccentrically, it was possible to prevent a decrease in film thickness uniformity due to the rotation of the magnet pair and improve the uniformity of film characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるマグネトロンスパッタ
装置の概略断面図、第2図は従来のマグネトロンスパッ
タ装置の概略断面図である。 101・・・・・・ターゲット、104・・・・・・磁
石対、106・・・・・・カソード本体、107・・・
・・・基板、108・・・・・・基板回転機構、109
・・・・・・電源。
FIG. 1 is a schematic sectional view of a magnetron sputtering apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic sectional view of a conventional magnetron sputtering apparatus. 101... Target, 104... Magnet pair, 106... Cathode body, 107...
...Substrate, 108...Substrate rotation mechanism, 109
······power supply.

Claims (1)

【特許請求の範囲】[Claims] 真空状態の維持が可能な真空チャンバーと、真空チャン
バー内を減圧雰囲気にするための真空ポンプと、真空チ
ャンバー内にガスを供給するためのガス供給系と、少な
くとも1個のマグネトロン型カソードと、少なくとも1
個の基板と、カソードに電圧を印加する電源とをもつマ
グネトロンスパッタ装置において、ターゲットと、それ
を固定するバッキングプレートと、磁石対とヨークをも
ち、かつ、上記磁石対が、ターゲットの中心軸より偏芯
1回転することが可能なカソード本体と、基板を保持し
磁石対のターゲット中心軸からの偏芯量と同じ回転半径
で、磁石対の偏芯回転速度と同じ回転速度で、常時、磁
石対と基板との位置関係が同じになるように基板を公転
し、さらに自転させることが可能な基板回転機構を備え
たことを特徴とするマグネトロンスパッタ装置。
A vacuum chamber capable of maintaining a vacuum state, a vacuum pump for creating a reduced pressure atmosphere in the vacuum chamber, a gas supply system for supplying gas into the vacuum chamber, at least one magnetron type cathode, and at least 1
A magnetron sputtering device has a target, a backing plate that fixes the target, a pair of magnets, and a yoke, and the pair of magnets is located from the central axis of the target. The cathode body, which can rotate once eccentrically, holds the substrate, and the magnet is constantly rotated at the same rotational radius as the eccentricity of the magnet pair from the target center axis, and at the same rotational speed as the eccentric rotation speed of the magnet pair. A magnetron sputtering apparatus characterized by comprising a substrate rotation mechanism capable of revolving the substrate so that the positional relationship between the pair and the substrate is the same and further rotating the substrate.
JP14108388A 1988-06-08 1988-06-08 Magnetron sputtering device Pending JPH01309965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14108388A JPH01309965A (en) 1988-06-08 1988-06-08 Magnetron sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14108388A JPH01309965A (en) 1988-06-08 1988-06-08 Magnetron sputtering device

Publications (1)

Publication Number Publication Date
JPH01309965A true JPH01309965A (en) 1989-12-14

Family

ID=15283813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14108388A Pending JPH01309965A (en) 1988-06-08 1988-06-08 Magnetron sputtering device

Country Status (1)

Country Link
JP (1) JPH01309965A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211761A (en) * 1988-06-28 1990-01-16 Tokuda Seisakusho Ltd Sputtering device
US5345207A (en) * 1991-01-25 1994-09-06 Leybold Aktiengesellschaft Magnet configuration with permanent magnets
US5409590A (en) * 1989-04-17 1995-04-25 Materials Research Corporation Target cooling and support for magnetron sputter coating apparatus
EP0716161A1 (en) * 1994-12-05 1996-06-12 Satis Vacuum Industries AG Apparatus for coating of optical substrate
EP1882051A2 (en) * 2005-05-20 2008-01-30 Applied Materials, Inc. Module for a coating system and associated technology
US7804040B2 (en) 2005-02-03 2010-09-28 Applied Materials, Inc. Physical vapor deposition plasma reactor with arcing suppression
WO2011123399A3 (en) * 2010-03-31 2012-01-26 Applied Materials, Inc. Apparatus for physical vapor deposition having centrally fed rf energy
WO2011139439A3 (en) * 2010-04-28 2012-01-26 Applied Materials, Inc. Physical vapor deposition chamber with rotating magnet assembly and centrally fed rf power
US8182662B2 (en) 2009-03-27 2012-05-22 Sputtering Components, Inc. Rotary cathode for magnetron sputtering apparatus
US8778144B2 (en) * 2004-09-28 2014-07-15 Oerlikon Advanced Technologies Ag Method for manufacturing magnetron coated substrates and magnetron sputter source

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211761A (en) * 1988-06-28 1990-01-16 Tokuda Seisakusho Ltd Sputtering device
US5409590A (en) * 1989-04-17 1995-04-25 Materials Research Corporation Target cooling and support for magnetron sputter coating apparatus
US5345207A (en) * 1991-01-25 1994-09-06 Leybold Aktiengesellschaft Magnet configuration with permanent magnets
EP0716161A1 (en) * 1994-12-05 1996-06-12 Satis Vacuum Industries AG Apparatus for coating of optical substrate
US8778144B2 (en) * 2004-09-28 2014-07-15 Oerlikon Advanced Technologies Ag Method for manufacturing magnetron coated substrates and magnetron sputter source
US8562798B2 (en) * 2005-02-03 2013-10-22 Applied Materials, Inc. Physical vapor deposition plasma reactor with RF source power applied to the target and having a magnetron
US7804040B2 (en) 2005-02-03 2010-09-28 Applied Materials, Inc. Physical vapor deposition plasma reactor with arcing suppression
EP1882051A2 (en) * 2005-05-20 2008-01-30 Applied Materials, Inc. Module for a coating system and associated technology
EP1882051A4 (en) * 2005-05-20 2012-01-04 Applied Materials Inc Module for a coating system and associated technology
US8182662B2 (en) 2009-03-27 2012-05-22 Sputtering Components, Inc. Rotary cathode for magnetron sputtering apparatus
CN102859029A (en) * 2010-03-31 2013-01-02 应用材料公司 Apparatus for physical vapor deposition having centrally fed RF energy
WO2011123399A3 (en) * 2010-03-31 2012-01-26 Applied Materials, Inc. Apparatus for physical vapor deposition having centrally fed rf energy
US8795488B2 (en) 2010-03-31 2014-08-05 Applied Materials, Inc. Apparatus for physical vapor deposition having centrally fed RF energy
US8795487B2 (en) 2010-03-31 2014-08-05 Applied Materials, Inc. Physical vapor deposition chamber with rotating magnet assembly and centrally fed RF power
WO2011139439A3 (en) * 2010-04-28 2012-01-26 Applied Materials, Inc. Physical vapor deposition chamber with rotating magnet assembly and centrally fed rf power
JP2013525609A (en) * 2010-04-28 2013-06-20 アプライド マテリアルズ インコーポレイテッド Physical vapor deposition chamber with rotating magnet assembly and RF power supplied to the center

Similar Documents

Publication Publication Date Title
JP4516199B2 (en) Sputtering apparatus and electronic device manufacturing method
JP2000144399A (en) Sputtering device
JP2002069634A (en) Thin film forming method and equipment for the same
JPH06504092A (en) Apparatus and method for multiple ring sputtering from one target
US5126029A (en) Apparatus and method for achieving via step coverage symmetry
JPH01309965A (en) Magnetron sputtering device
JP2912864B2 (en) Magnetron unit for sputtering equipment
JP3398452B2 (en) Sputtering equipment
JP3056222B2 (en) Sputtering apparatus and sputtering method
JPH06505051A (en) Equipment with magnetron sputter coating method and rotating magnet cathode
JPH04221061A (en) Thin film forming device
JPH0878333A (en) Plasma apparatus for formation of film
JP4274452B2 (en) Sputtering source and film forming apparatus
JP2003073825A (en) Apparatus for forming thin film
JPS63109163A (en) Sputtering device
JP2895506B2 (en) Sputtering equipment
JPS63247366A (en) Magnetron sputtering device
JPH04371575A (en) Sputtering device
JP3038287B2 (en) Thin film production equipment
WO2022244443A1 (en) Cathode unit for magnetron sputtering device, and magnetron sputtering device
JP3343819B2 (en) Ion etching method and apparatus
JP2001207258A (en) Rotating magnet, and inline type sputtering system
JPH0826453B2 (en) Sputtering equipment
JPS63149375A (en) Magnetron sputtering device
JP2023049164A (en) Magnetron sputtering apparatus cathode unit and magnetron sputtering apparatus