JPH01309380A - Insulated-gate type semiconductor device - Google Patents

Insulated-gate type semiconductor device

Info

Publication number
JPH01309380A
JPH01309380A JP63139264A JP13926488A JPH01309380A JP H01309380 A JPH01309380 A JP H01309380A JP 63139264 A JP63139264 A JP 63139264A JP 13926488 A JP13926488 A JP 13926488A JP H01309380 A JPH01309380 A JP H01309380A
Authority
JP
Japan
Prior art keywords
film
insulated gate
gate insulating
insulating film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63139264A
Other languages
Japanese (ja)
Inventor
Isao Yoshida
功 吉田
Masatoshi Morikawa
正敏 森川
Yuzuru Oji
譲 大路
Hiroshi Jinriki
博 神力
Kiichiro Mukai
向 喜一郎
Kenji Akeyama
明山 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63139264A priority Critical patent/JPH01309380A/en
Publication of JPH01309380A publication Critical patent/JPH01309380A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance a gate breakdown-strength yield and the reliability of a vertical type MOSFET by a method wherein a composite film of a different dielectric constant such as a composite film of a tantalum oxide film and a silicon oxide film is used as a gate insulating film of the vertical type MOSFET. CONSTITUTION:A gate insulating film is constituted of a composite film composed of a silicon oxide film 5, a tantalum oxide film 6 and a silicon nitride film 7; a low-concentration drain region 2 is formed under the gate insulating film. A p-type base region 3 and an n-type base region 4 are formed; after that, the gate insulating films 5, 6, 7 are formed. Accordingly, it is not required to execute a high-temperature heat-treatment process such as, e.g., a base diffusion process or the like after the gate insulating film has been formed. In addition, when a gate region is formed to be a U-shaped groove, it is difficult to keep the gate insulating film in a uniform thickness; when the insulating film is thin, a pinhole or the like is produced easily; accordingly, it is necessary to make s film thickness large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電力用絶縁ゲート形半導体装置に係り特に低損
失でかつ高信頼性を得るのに好適な絶縁ゲート形半導体
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulated gate type semiconductor device for power use, and particularly to an insulated gate type semiconductor device suitable for achieving low loss and high reliability.

〔従来の技術〕[Conventional technology]

一般にMOSFETのゲート絶縁膜材料としては、シリ
コン酸化膜が用いられている。縦形構造を有する電力用
(以下パワーと称する) MOSFETの場合にも、特
公昭60−41876号に記載のように、ゲート絶縁膜
にはシリコン酸化膜が用いられていた。−方、特願昭6
1−269659号に記載のように、半導体装置のキャ
パシタ用絶縁膜として高誘電体膜たとえば酸化タンタル
膜が使用れていた。また、特開昭53−11348号に
記載のように、横形構造の微細MO8FETに酸化タン
タル膜が用いられた例がある。
Generally, a silicon oxide film is used as a gate insulating film material of a MOSFET. Even in the case of a power MOSFET having a vertical structure (hereinafter referred to as "power"), a silicon oxide film has been used as the gate insulating film, as described in Japanese Patent Publication No. 41876/1983. - way, special request 6th year
As described in No. 1-269659, a high dielectric constant film such as a tantalum oxide film has been used as an insulating film for a capacitor of a semiconductor device. Furthermore, as described in JP-A-53-11348, there is an example in which a tantalum oxide film is used in a fine MO8FET having a horizontal structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、縦形パワーMO5FETのゲート絶縁
膜材料として、キャパシタ用として高信頼性を有する酸
化タンタルのような高誘電体膜を用いる点について配慮
されておらず、特にゲート面積の大きな場合、ゲート耐
圧の歩留り及び信頼性が低下するという問題があった。
The above conventional technology does not consider the use of a high dielectric constant film such as tantalum oxide, which has high reliability for capacitors, as the gate insulating film material of the vertical power MO5FET. There was a problem in that the yield and reliability of withstand voltage decreased.

なお、横形構造の微細MO3FETに酸化タンタル膜が
用いられた例はあるが、この構造ではゲート面積が小さ
く、ゲート耐圧の歩留り及び信頼性に関して配慮されて
いなかった。
Although there is an example of using a tantalum oxide film in a horizontally structured fine MO3FET, this structure has a small gate area and no consideration has been given to the yield and reliability of the gate breakdown voltage.

本発明の目的は、縦形パワーMO3FETのゲート耐圧
歩留り及び信頼性を向上することにある。
An object of the present invention is to improve the gate breakdown voltage yield and reliability of a vertical power MO3FET.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、縦形パワーMO5FETのゲート絶縁膜と
して、例えば酸化タンタル膜とシリコン酸化膜との複合
膜のような誘電率の異なる複合膜を用いることにより達
成される。
The above object is achieved by using a composite film having different dielectric constants, such as a composite film of a tantalum oxide film and a silicon oxide film, as the gate insulating film of the vertical power MO5FET.

〔作用〕[Effect]

縦形パワーMO3FETのゲート面積が大きいので、ゲ
ート絶縁膜の欠陥が、ゲート耐圧歩留り及び信頼性に対
して大きな影響を及ぼす。
Since the gate area of the vertical power MO3FET is large, defects in the gate insulating film have a large effect on the gate breakdown voltage yield and reliability.

ゲート絶縁膜として用いた酸化タンタル膜とシリコン酸
化膜との複合膜は、従来のシリコン酸化膜の単層膜に比
べて、等測的に誘電率が高くとれるので、電気的時性を
低下させないで厚膜化でき、欠陥の発生確率の低減に著
しい効果を有する。それによって、ゲート耐圧歩留り及
び信頼性が著しく向上する。
The composite film of tantalum oxide and silicon oxide used as the gate insulating film has an isometrically higher dielectric constant than the conventional single-layer silicon oxide film, so it does not reduce the electrical time characteristic. The film can be made thicker, and has a remarkable effect on reducing the probability of defect occurrence. This significantly improves gate breakdown voltage yield and reliability.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は、縦形パワーMO5FETの主要部セル部の断面構
造図である。1は抵抗率が0.01Ω・■のn形高濃度
半墓体基板、2は抵抗率が、0.8Ω・国、厚さが10
μmのn形エピタキシャル層からなるドレイン領域、3
はシート抵抗が500Ω/口、深さが2.5μmのp形
ベース領域、4は、シート抵抗が20Ω/口、深さが0
.5μmのn形高濃度ソース領域、5は厚さが25Ωm
のシリコン酸化膜、6は厚さが35Ωmの酸化タンタル
膜、7は厚さが5Ωmの窒化シリコン膜、8は厚さが0
.3μmの多結晶シリコンからなるゲート電極、9は厚
さが0.6μmのリンガラスからなる安定化保護膜、1
0は厚さが3μmのアルミニウム膜、11は樹脂系絶縁
膜、そして12は厚さが2μmの金J7ft膜からなる
ドレイン電極である。本構造の特徴は、ゲート絶縁膜が
、シリコン酸化膜、酸化タンタル膜および窒化シリコン
膜から成る複合膜で構成されていることであり、またそ
のゲート絶縁膜の下に低濃度ドレイン領域を有すること
である。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a cross-sectional structural diagram of the main cell part of a vertical power MO5FET. 1 is an n-type high-concentration semicircular substrate with a resistivity of 0.01Ω・■, 2 is a resistivity of 0.8Ω・2, and a thickness of 10
Drain region consisting of an n-type epitaxial layer of μm, 3
4 has a p-type base region with a sheet resistance of 500 Ω/hole and a depth of 2.5 μm, and 4 has a sheet resistance of 20 Ω/hole and a depth of 0.
.. 5μm n-type high concentration source region, 5 has a thickness of 25Ωm
6 is a tantalum oxide film with a thickness of 35 Ωm, 7 is a silicon nitride film with a thickness of 5 Ωm, 8 is a thickness of 0
.. A gate electrode made of polycrystalline silicon with a thickness of 3 μm, 9 a stabilizing protective film made of phosphorus glass with a thickness of 0.6 μm, 1
0 is a drain electrode made of an aluminum film with a thickness of 3 μm, 11 is a resin-based insulating film, and 12 is a gold J7ft film with a thickness of 2 μm. The feature of this structure is that the gate insulating film is composed of a composite film consisting of a silicon oxide film, a tantalum oxide film, and a silicon nitride film, and that it has a low concentration drain region under the gate insulating film. It is.

本実施例によれば、3.5m角チップパワーMO3FE
Tにおいて、ドレイン耐圧60V、オン抵抗30mΩ、
ゲート耐圧30Vが得られた。このデバイスは、従来の
厚さ35Ωmのシリコン酸化膜からなるゲート絶g膜を
有するパワーMO8FETに比べてゲート耐圧の歩留り
が約20%向上でき、また、ゲート電界加速試験におい
ても不良発生率が格段に減少した。
According to this embodiment, the 3.5m square chip power MO3FE
At T, drain breakdown voltage 60V, on resistance 30mΩ,
A gate breakdown voltage of 30V was obtained. This device can improve the gate breakdown voltage yield by about 20% compared to the conventional power MO8FET with a gate isolation film made of a silicon oxide film with a thickness of 35 Ωm, and also has a significantly lower failure rate in gate electric field acceleration tests. decreased to

次に、本発明の他の実施例を第2図により説明する。第
2図は、U溝を有する縦形パワーMO3FETの主要部
の断面構造図である。本構造では、p形ベース領域3お
よびn形ベース領域4を形成後に、ゲート絶縁膜5,6
.7を形成している。従って、ゲート絶縁膜形成後に、
例えばベース拡散などの高温熱処理工程を入れる必要が
ない。また、図に示したように、ゲート領域がU溝をし
ている場合には、ゲート絶縁膜を均一な厚さに保つこと
は難しく、その絶′R膜が薄い場合には、ピンホールな
どを生じやすいので、その面からも膜厚を大とする必要
がある6本構造ではシリコン酸化膜5の厚さを15nm
、酸化タンタル膜6の厚さを35nm、窒化シリコン膜
7の厚さを5nmとした。またU溝の幅を3μmとした
。他のパラメータは、第1図とほぼ同一の条件に設定し
た。
Next, another embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional structural diagram of the main part of a vertical power MO3FET having a U-groove. In this structure, after forming the p-type base region 3 and the n-type base region 4, the gate insulating films 5 and 6 are
.. 7 is formed. Therefore, after forming the gate insulating film,
For example, there is no need to include a high temperature heat treatment process such as base diffusion. In addition, as shown in the figure, if the gate region has a U-groove, it is difficult to maintain a uniform thickness of the gate insulating film, and if the insulating film is thin, pinholes may occur. In the six-layer structure, the thickness of the silicon oxide film 5 is set to 15 nm.
The thickness of the tantalum oxide film 6 was 35 nm, and the thickness of the silicon nitride film 7 was 5 nm. Further, the width of the U groove was set to 3 μm. Other parameters were set to almost the same conditions as in FIG.

本実施例によれば、3.5mm角チツプのパワーMO5
FETにおいて、ドレイン耐圧45V、オン抵抗20m
Ω、ゲート耐圧25Vが得られた。このデバイスは、従
来の厚さ30nmのシリコン酸化膜とゲート絶縁膜とす
るパワーMO3FETに比べて、ゲート耐圧歩留りが3
0%も向上できた。
According to this embodiment, the power MO5 of the 3.5 mm square chip is
In FET, drain breakdown voltage 45V, on resistance 20m
Ω, and a gate breakdown voltage of 25V was obtained. This device has a gate breakdown voltage yield of 3% compared to a conventional power MO3FET that uses a 30 nm thick silicon oxide film and a gate insulating film.
I was able to improve by 0%.

次に、本発明の他の実施例を第3図および第4図により
説明する。第3図は、パワーICの平面配置図、第4図
はそのICの主要部の断面構造図である。ここで、10
1はパワーMO8FIETが配置されている領域、10
2,103は、MOSFETや抵抗やキャパシタから成
るドライブIC,論理ICが配置されている領域である
。さらに、ドライブIC102には、過電圧、低電圧、
過電流及び温度上昇に対する保護回路が含まれている。
Next, another embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is a plan layout diagram of the power IC, and FIG. 4 is a sectional structural diagram of the main parts of the IC. Here, 10
1 is the area where the power MO8FIET is placed, 10
Reference numeral 2 and 103 are areas in which drive ICs and logic ICs made up of MOSFETs, resistors, and capacitors are arranged. Furthermore, the drive IC 102 has overvoltage, undervoltage,
Contains protection circuits against overcurrent and temperature rise.

本構造の特徴は、パワーMO3FET部とMOSFET
部のゲート絶縁膜及びキャパシタの絶縁膜が5のシリコ
ン酸化膜、6の酸化タンタル膜、7の窒化シリコン膜よ
り成っていることである。これにより、MOSFETの
ゲート絶縁膜とキャパシタの絶、I?1′膜とを別々に
製作する従来の構造に比べて工程の簡略化が図れる。
The features of this structure are the power MO3FET section and MOSFET
The gate insulating film of the part and the insulating film of the capacitor are made of a silicon oxide film (5), a tantalum oxide film (6), and a silicon nitride film (7). As a result, the gate insulating film of the MOSFET and the capacitor are disconnected, I? Compared to the conventional structure in which the 1' film and the 1' film are manufactured separately, the process can be simplified.

以上の実施例では、ゲート電極として、多結晶シリコン
について述べたが、他の材料、例えば、アルミニウム、
アルミニウム合金、タングステン。
In the above embodiments, polycrystalline silicon was used as the gate electrode, but other materials such as aluminum,
Aluminum alloy, tungsten.

モリブデン、タングステン・トリサイド、モリブデン・
シリサイドおよびチタン・シリサイドでも同様な効果が
認められた。
molybdenum, tungsten triside, molybdenum
Similar effects were observed with silicide and titanium silicide.

さらに、高誘電体膜として、酸化タンタルの実施例を示
したが、他の材料である酸化チタン、酸化ハフニウム、
酸化ネオビウムおよび酸化ジルコニウムでも本発明の思
想を逸脱しない限りにおいて変更可能である。
Furthermore, although an example of tantalum oxide was shown as a high dielectric film, other materials such as titanium oxide, hafnium oxide,
Changes can also be made to neobium oxide and zirconium oxide without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦形パワーMO3FETの
主要部の縦断面図、第2図は本発明の他の実施例の溝碑
造縦形パワーMO5FETの主要部の縦断面図。 第3図は本発明の他の実施例のパワーMO3ICの\V
面配置図、第4図は第3図の主要部の縦断面図である。 1・・・高濃度半導体基板、2・・・n形ドレイン領域
。 3・・・p形ベース領域、4・・・n形ソース領域、5
・・・シリコン酸化膜、6・・・酸化タンタル膜、7・
・・窒化シリコン膜、8・・・ゲート電極、1o・・・
ソース電極。 AO7− I7・・ヤヤlずシタt′弔ν
FIG. 1 is a longitudinal sectional view of the main part of a vertical power MO3FET according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of the main part of a groove-shaped vertical power MO5FET according to another embodiment of the invention. Figure 3 shows \V of a power MO3IC according to another embodiment of the present invention.
4 is a vertical sectional view of the main part of FIG. 3. 1... High concentration semiconductor substrate, 2... N-type drain region. 3...p-type base region, 4...n-type source region, 5
... silicon oxide film, 6... tantalum oxide film, 7.
...Silicon nitride film, 8...Gate electrode, 1o...
source electrode. AO7- I7... Yayalzu Shitat'condolenceν

Claims (1)

【特許請求の範囲】 1、電力用絶縁ゲート形電界効果トランジスタもしくは
、それを含む集積回路装置において、上記絶縁ゲート膜
の材料が、シリコン酸化膜よりも誘電率の大きな高誘電
体膜とシリコン酸化膜とを含むことを特徴とする絶縁ゲ
ート形半導体装置。 2、特許請求の範囲第1項において、電力用絶縁ゲート
形電界効果トランジスタの構造が、低濃度ドレイン領域
を表面に有する縦形であることを特徴とする絶縁ゲート
形半導体装置。 3、特許請求の範囲第1項において、電力用絶縁ゲート
形電界効果トランジスタのチャネル部が溝領域内に形成
されていることを特徴とする絶縁ゲート形半導体装置。 4、特許請求の範囲第1項において、絶縁ゲート膜とキ
ャパシタ膜とが同一の断面組成をしていることを特徴と
する絶縁ゲート形半導体装置。 5、特許請求の範囲第1項において、ゲート電極が多結
晶シリコン、アルミニウム、アルミニウム合金、タング
ステン、モリブデン、タングステン・シリサイド、モリ
ブデン・シリサイドおよびチタン・トリサイドなる群か
ら選ばれた材料の膜であることを特徴とする絶縁ゲート
形半導体装置。 6、特許請求の範囲第1項において、高誘電体膜が酸化
タンタル、酸化チタン、酸化ハフニウム、酸化ネオビウ
ムおよび酸化ジルコニウムからなる群から選ばれた材料
の膜であることを特徴とする絶縁ゲート形半導体装置。
[Claims] 1. In an insulated gate field effect transistor for power use or an integrated circuit device including the same, the material of the insulated gate film is a high dielectric constant film having a higher dielectric constant than a silicon oxide film, and a silicon oxide film. An insulated gate type semiconductor device comprising a film. 2. An insulated gate semiconductor device according to claim 1, wherein the power insulated gate field effect transistor has a vertical structure having a lightly doped drain region on its surface. 3. An insulated gate type semiconductor device according to claim 1, wherein a channel portion of a power insulated gate field effect transistor is formed within a trench region. 4. The insulated gate type semiconductor device according to claim 1, wherein the insulated gate film and the capacitor film have the same cross-sectional composition. 5. In claim 1, the gate electrode is a film of a material selected from the group consisting of polycrystalline silicon, aluminum, aluminum alloy, tungsten, molybdenum, tungsten silicide, molybdenum silicide, and titanium tricide. An insulated gate semiconductor device characterized by: 6. The insulated gate type according to claim 1, characterized in that the high dielectric film is a film made of a material selected from the group consisting of tantalum oxide, titanium oxide, hafnium oxide, neobium oxide, and zirconium oxide. Semiconductor equipment.
JP63139264A 1988-06-08 1988-06-08 Insulated-gate type semiconductor device Pending JPH01309380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139264A JPH01309380A (en) 1988-06-08 1988-06-08 Insulated-gate type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139264A JPH01309380A (en) 1988-06-08 1988-06-08 Insulated-gate type semiconductor device

Publications (1)

Publication Number Publication Date
JPH01309380A true JPH01309380A (en) 1989-12-13

Family

ID=15241235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139264A Pending JPH01309380A (en) 1988-06-08 1988-06-08 Insulated-gate type semiconductor device

Country Status (1)

Country Link
JP (1) JPH01309380A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594177A1 (en) * 1992-10-22 1994-04-27 Kabushiki Kaisha Toshiba Vertical MOSFET having trench covered with multilayer gate film
KR100304717B1 (en) * 1998-08-18 2001-11-15 김덕중 Semiconductor device having a trench type gate and method for fabricating therefor
JP2008187147A (en) * 2007-01-31 2008-08-14 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method of the same
US8383490B2 (en) 2011-07-27 2013-02-26 International Business Machines Corporation Borderless contact for ultra-thin body devices
JP2013055349A (en) * 2012-11-12 2013-03-21 Fuji Electric Co Ltd Semiconductor device and method of manufacturing the same
CN106033776A (en) * 2015-03-18 2016-10-19 北大方正集团有限公司 Manufacturing method of VDMOS device and the VDMOS device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594177A1 (en) * 1992-10-22 1994-04-27 Kabushiki Kaisha Toshiba Vertical MOSFET having trench covered with multilayer gate film
CN1035142C (en) * 1992-10-22 1997-06-11 株式会社东芝 Semiconductor unit
KR100304717B1 (en) * 1998-08-18 2001-11-15 김덕중 Semiconductor device having a trench type gate and method for fabricating therefor
JP2008187147A (en) * 2007-01-31 2008-08-14 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method of the same
US8383490B2 (en) 2011-07-27 2013-02-26 International Business Machines Corporation Borderless contact for ultra-thin body devices
US9024389B2 (en) 2011-07-27 2015-05-05 International Business Machines Corporation Borderless contact for ultra-thin body devices
JP2013055349A (en) * 2012-11-12 2013-03-21 Fuji Electric Co Ltd Semiconductor device and method of manufacturing the same
CN106033776A (en) * 2015-03-18 2016-10-19 北大方正集团有限公司 Manufacturing method of VDMOS device and the VDMOS device

Similar Documents

Publication Publication Date Title
JP3191747B2 (en) MOS type semiconductor device
US7936065B2 (en) Semiconductor devices and method of manufacturing them
WO2018038133A1 (en) Silicon carbide semiconductor device
DE112017002530T5 (en) SEMICONDUCTOR UNIT AND METHOD FOR THE PRODUCTION THEREOF
DE112018007915T5 (en) SEMICONDUCTOR UNIT AND POWER CONVERTER
JPH01309380A (en) Insulated-gate type semiconductor device
JPS6234155B2 (en)
JPS6263472A (en) Power mos-fet
RU2361318C2 (en) Method of making power insulated-gate field-effect transistors
US4488349A (en) Method of repairing shorts in parallel connected vertical semiconductor devices by selective anodization
JPH04323851A (en) Method of manufacture of semiconductor device
JPS61214576A (en) Semiconductor device
JP3424146B2 (en) Semiconductor device and manufacturing method thereof
JP3007429B2 (en) Semiconductor device and manufacturing method thereof
JPS6370553A (en) Semiconductor integrated circuit device and manufacture thereof
JP2509173B2 (en) Method of manufacturing semiconductor integrated circuit device having complementary MISFET
JP3095912B2 (en) Semiconductor integrated circuit device
JP3016162B2 (en) Semiconductor device and manufacturing method
JPS59151469A (en) Protective circuit element
JP2633092B2 (en) Method for manufacturing semiconductor device
JPS6132563A (en) Semiconductor integrated circuit device
JPS62214667A (en) Semiconductor device
RU2043677C1 (en) Process of manufacture of structures of p-channel mis lsic
JPH021135A (en) Vertical mos field-effect transistor
JPS63236366A (en) Vertical field-effect transistor