JPH01307426A - Pressure-swinging adsorber - Google Patents

Pressure-swinging adsorber

Info

Publication number
JPH01307426A
JPH01307426A JP63140142A JP14014288A JPH01307426A JP H01307426 A JPH01307426 A JP H01307426A JP 63140142 A JP63140142 A JP 63140142A JP 14014288 A JP14014288 A JP 14014288A JP H01307426 A JPH01307426 A JP H01307426A
Authority
JP
Japan
Prior art keywords
gas
adsorption
towers
adsorption towers
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63140142A
Other languages
Japanese (ja)
Other versions
JPH0331487B2 (en
Inventor
Ichiro Funada
一郎 船田
Nobuyuki Imanishi
今西 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63140142A priority Critical patent/JPH01307426A/en
Publication of JPH01307426A publication Critical patent/JPH01307426A/en
Publication of JPH0331487B2 publication Critical patent/JPH0331487B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To enhance the purity of the product gas by connecting two adsorption towers in series with a connecting pipeline, and arranging a couple of vacuum solenoid valves in series in the vicinity of both ends of the connecting pipeline so that the inlets sides of the valves face in opposite directions. CONSTITUTION:Raw air is compressed by a compressor 9, and sent to one between pretreating towers 2a and 2b. The H2O and CO2 in the air are adsorbed in the tower, and the remainder is sent to one among pressure-swinging adsorption towers 3a-3c to adsorb N2. The waste gas consisting essentially of O2 is sent to the pretreating towers 2a and 2b through a pipe 4a, and utilized as the purge gas. The adsorption towers 3a-3c are respectively connected by connecting pipelines 10a-10c, and the vacuum solenoid valves X1-X3 and Y1-Y3 are provided to the pipelines so that the inlet sides face in the opposite directions to prevent the infiltration of O2 from other adsorption towers.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高純度ガスの製造に利用される圧力スイング吸
着装置(以下単にPSA装置という)に関し、詳細には
製品ガスを高純度で吸着回収することのできるPSA装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pressure swing adsorption device (hereinafter simply referred to as a PSA device) used in the production of high-purity gas, and more specifically, the present invention relates to a pressure swing adsorption device (hereinafter simply referred to as a PSA device) used in the production of high-purity gas. The present invention relates to a PSA device that can perform

以下にはその代表例として原料空気からN2ガスを高純
度に回収するPSA装置について説明するが、本発明装
置の適用対象はこれによって限定解釈されてはならない
A PSA device for recovering N2 gas with high purity from feed air will be described below as a representative example, but this should not be construed as limiting the scope of application of the device of the present invention.

[従来の技術] 加圧空気をPSA装置に導入してN2ガスを濃縮回収す
る方法を大別すると、02ガスを吸着剤に吸着して除去
する方法、及びN、ガスを吸着剤に吸着させ更に脱着さ
せて回収する方法の2つに分類される。このうち後者は
N2ガス吸着用合成ゼオライト系の吸着剤を使用し、N
、ガス吸着後の吸着塔を減圧することにより高純度のN
、ガスを脱着回収する方法であり、以下これに利用され
るPSA装置について説明する。
[Prior art] Methods for concentrating and recovering N2 gas by introducing pressurized air into a PSA device can be roughly divided into two methods: a method in which 02 gas is removed by adsorption to an adsorbent, and a method in which N and gas are adsorbed to an adsorbent. It is further classified into two methods: desorption and recovery. The latter uses a synthetic zeolite-based adsorbent for N2 gas adsorption, and
, high purity N is produced by reducing the pressure in the adsorption tower after gas adsorption.
This is a method for desorbing and recovering gas, and the PSA device used for this will be explained below.

第2図は前処理塔2a、2bにおいてN20とCO2を
除去した後のOz/Nz混合ガスを3塔式PSA装置に
供給してN2ガスを選択的に回収する装置の概略説明図
である。
FIG. 2 is a schematic explanatory diagram of an apparatus for selectively recovering N2 gas by supplying the Oz/Nz mixed gas from which N20 and CO2 have been removed in the pretreatment towers 2a and 2b to a three-column PSA apparatus.

圧縮機9によって加圧された空気は前処理塔2a、2b
のいずれかに送給され、該塔内に収納された吸着剤にN
20及びCO2成分を吸着させ、ここを通過した02/
N2混合ガスを3塔式PSA装置の原料ガス供給管1a
へ送り込む、原料ガス供給管1aは自動開閉弁(以下単
に弁という)V+NVsを介して吸着塔3a、3b、3
cに接続され、多塔の底部には弁v4〜v6を介して排
ガス廃棄管4aが連結される。該排ガス廃棄管4aは前
処理塔2a、2bに連結され、吸着塔3a、3b、3c
を通過した02ガスを主成分とする排ガスは前処理塔内
に吸着されたN20゜CO3の脱着用パージガスとして
利用される。また弁v4〜v6の介設点より上流側番吸
着塔3a、3b、3cの底部には脱着用管5a。
The air pressurized by the compressor 9 is sent to the pretreatment towers 2a and 2b.
The adsorbent stored in the tower is supplied with N
02/ which adsorbed 20 and CO2 components and passed through here.
N2 mixed gas is supplied to the raw material gas supply pipe 1a of the three-column PSA device.
The raw material gas supply pipe 1a is fed to the adsorption towers 3a, 3b, 3 via automatic on-off valves (hereinafter simply referred to as valves) V+NVs.
c, and an exhaust gas waste pipe 4a is connected to the bottom of the multi-column via valves v4 to v6. The exhaust gas waste pipe 4a is connected to pretreatment towers 2a, 2b, and adsorption towers 3a, 3b, 3c.
The exhaust gas mainly composed of 02 gas that has passed through is used as a purge gas for desorption of N20°CO3 adsorbed in the pretreatment tower. Further, a desorption pipe 5a is provided at the bottom of each adsorption tower 3a, 3b, 3c on the upstream side from the intervening point of the valves v4 to v6.

5b、5cが配設され、夫々弁V、〜v9を介してそれ
より下流側で合流される0合流された脱着用管5には真
空ポンプ6が設けられて製品ガスホルダ20に連結され
、脱着回収された高純度N。
5b and 5c are disposed, and are merged on the downstream side via valves V, to v9, respectively.A vacuum pump 6 is provided in the merged desorption pipe 5, which is connected to the product gas holder 20, and is connected to the product gas holder 20, and is connected to the product gas holder 20 to Recovered high purity N.

ガスを貯留する。製品ガスホルダ20には、洗浄用管8
が配設され、該洗浄用管8は分岐された抜弁v13〜v
lsを介して吸着塔3a、3b、3cの各頂部に連結さ
れる。また吸着塔3a、3b。
Store gas. The product gas holder 20 has a cleaning pipe 8
are arranged, and the cleaning pipe 8 has branched vent valves v13 to v.
It is connected to the tops of adsorption towers 3a, 3b, and 3c via ls. Also, adsorption towers 3a and 3b.

3cは連結配管10a、10b、10cによって夫々直
列的に連結され、各々に弁VIO〜VI2が設けられる
3c are connected in series by connecting pipes 10a, 10b, and 10c, and each is provided with valves VIO to VI2.

第3図は、吸着塔3a、3b、3cの作動工程を示すタ
イムスケジェール(時間は左から右方向に進む)の例で
あり、吸着工程開始時から脱着工程終了時までの作動工
程を1工程サイクルとしている。この1工程サイクルは
図示の如く吸着工程、回収工程、洗浄工程及び脱着工程
より構成される。まず吸着工程では脱着された吸着塔内
を加圧すると共に、02/N2混合ガスを供給管1aか
ら加圧供給し、回収目的成分のN2ガスを吸着剤に吸着
させ不純成分ガス(主に02ガス)を排ガス廃棄管4a
を介して放出させる。又脱着工程では吸着塔を真空ポン
プ6によって減圧し、吸着塔内の吸着剤に吸着されたN
2を脱着し、脱着用管5を通して製品ガスホルダ20に
回収貯留する。次に回収工程及び洗浄工程を、吸着塔3
aの場合を例に挙げて説明すると第5図(a)及び(b
)によって示される。即ち第5図(a)の状態において
は、製品ガスホルダ20側から供給される高純度N2ガ
スは洗浄用管8を通って吸着塔3C内の残留02を追放
し、吸着工程の終了した吸着塔3aへ連結配管10cを
介して送り込まれる。このとき吸着塔3aでは回収工程
が行なわれ、吸着塔3Cでは洗浄工程が行なわれる。ま
た第5図(b)の状態では、吸着塔3aは洗浄工程を行
ない、吸着塔3bは回収工程を行なっている状態を示す
Figure 3 is an example of a time schedule (time progresses from left to right) showing the operating steps of the adsorption towers 3a, 3b, and 3c. It is a cycle. As shown in the figure, this one-step cycle consists of an adsorption step, a recovery step, a washing step, and a desorption step. First, in the adsorption step, the interior of the desorbed adsorption tower is pressurized, and the 02/N2 mixed gas is supplied under pressure from the supply pipe 1a, so that the target N2 gas to be recovered is adsorbed onto the adsorbent and the impure component gas (mainly the 02 gas ) to exhaust gas waste pipe 4a
released through. In addition, in the desorption process, the adsorption tower is depressurized by the vacuum pump 6, and the N adsorbed by the adsorbent in the adsorption tower is removed.
2 is removed, and collected and stored in the product gas holder 20 through the removal and removal tube 5. Next, a recovery step and a washing step are performed in the adsorption tower 3.
To explain case a as an example, Fig. 5 (a) and (b)
). That is, in the state shown in FIG. 5(a), the high-purity N2 gas supplied from the product gas holder 20 passes through the cleaning pipe 8 to expel the residual 02 in the adsorption tower 3C, and the adsorption tower after the adsorption process is removed. 3a via the connecting pipe 10c. At this time, a recovery process is performed in the adsorption tower 3a, and a cleaning process is performed in the adsorption tower 3C. Further, in the state shown in FIG. 5(b), the adsorption tower 3a is performing a cleaning process, and the adsorption tower 3b is performing a recovery process.

[発明が解決しようとする課題] 上記のPSA装置は小規模の産業分野でも自家生産型で
利用できる様にするため小型化が進められつつあり、吸
着塔等を小型化すると共に、自動開閉弁も小型で安価な
真空用電磁弁が用いられる様になってきた。
[Problem to be solved by the invention] The above-mentioned PSA equipment is being miniaturized so that it can be used in home production even in small-scale industrial fields. However, small and inexpensive vacuum solenoid valves have come into use.

第6図は真空用電磁弁の一例を示す断面説明図であり、
電磁コイル21の励起によって摺動するプランジャ23
の先端に弁体24を設け、弁座27に対して当接・離反
できる様に構成されている。第4図は上記構成の真空用
電磁弁2..22を連結配管10a、10bに設けたP
SA装置による吸着塔3bの脱着工程時の状態を示す説
明図である。このとき吸着塔3b内は真空ポンプ6によ
って100 Torr程度まで減圧され、この減圧域は
上記の真空用電磁弁2..2.により遮断されている。
FIG. 6 is a cross-sectional explanatory diagram showing an example of a vacuum solenoid valve,
A plunger 23 that slides due to the excitation of the electromagnetic coil 21
A valve body 24 is provided at the tip of the valve body 24, and is configured to be able to come into contact with and separate from a valve seat 27. FIG. 4 shows the vacuum solenoid valve 2 with the above configuration. .. P 22 provided in the connecting pipes 10a and 10b
FIG. 3 is an explanatory diagram showing the state of the adsorption tower 3b during the desorption process using the SA device. At this time, the pressure inside the adsorption tower 3b is reduced to about 100 Torr by the vacuum pump 6, and this reduced pressure area is controlled by the vacuum solenoid valve 2. .. 2. It is blocked by.

ところが上記の真空用電磁弁21.22は第6図に示す
白抜き矢印F、→F2方向のガス流に対しては有効な遮
断性能を発揮するが、破線矢印りに示す様な逆方向のガ
ス流れに対しては、弁体24がスプリング22の反発力
によって押え付けられているだけなので、弁座27から
押し戻されてガスリークを生じ易い、即ち第4図に示す
例においては矢印P方向にリークを生じ易く吸着塔3C
中の02 / N 2ガスが脱着ガス中に混入し、回収
製品ガスの純度低下を引き起こす。
However, although the above-mentioned vacuum solenoid valves 21 and 22 exhibit effective blocking performance against gas flows in the directions of the white arrows F and →F2 shown in Fig. 6, they do not work effectively against gas flows in the directions shown by the dashed arrows. With respect to the gas flow, since the valve body 24 is only held down by the repulsive force of the spring 22, it is likely to be pushed back from the valve seat 27 and cause a gas leak. In other words, in the example shown in FIG. Adsorption tower 3C tends to cause leaks
The 02/N2 gas inside will mix into the desorption gas, causing a decrease in the purity of the recovered product gas.

そこで本発明者らは小型で安価な真空用電磁弁を使用す
るPSA装置であっても、高純度の製品ガスを回収でき
るようにする目的で種々研究を重ね、本発明を完成した
Therefore, the present inventors conducted various studies and completed the present invention with the aim of making it possible to recover highly purified product gas even with a PSA device that uses a small and inexpensive vacuum electromagnetic valve.

[課題を解決するための手段] 上記の目的を達成し得た本発明PSA装置は、1対の真
空用電磁弁を、互いに入口側が背中合わせどなる様に、
前記連結配管の両端部近傍に直列配設する点を要旨とす
るものである。
[Means for Solving the Problems] The PSA device of the present invention which has achieved the above object has a pair of vacuum solenoid valves arranged so that their inlet sides are back to back to each other.
The gist is that the connecting pipes are arranged in series near both ends.

[作用及び実施例] 第1図は本発明の代表的な実施例を示す概略説明図であ
り、各連結配管10a、10b、10cには夫々2つの
真空用電磁弁X+””Xs及びY、〜Y、が配設される
。上記の真空用電磁弁Y1〜Y、は吸着塔3a、3b、
3cの底部側へできるだけ接近して設けられ、該弁Y1
〜Y3の出口部26(第6図)を吸着塔3a、3b、3
cの底部に向けて配設される。一方弁X、〜X、は上記
の弁Y1〜Y3とは逆向きに配設される。即ち連結配管
10aにおいて真空用電磁弁xIとYlは人口部25を
互いに背中合わせとなる様に設けられ、その開閉作動は
同一タイミングで同一の開閉制御がなされる。従って吸
着塔3aの脱着工程時に電磁弁X、において矢印り方向
のガスリーク(第6図参照)が生じても吸着塔3a側の
電磁弁Y1においてこのガス流が完全に遮断され、吸着
塔3aの脱着工程中に吸着塔3b、3c内の02混入ガ
スが混り込むことは全くなくなる。
[Operations and Embodiments] FIG. 1 is a schematic explanatory diagram showing a typical embodiment of the present invention, in which two vacuum solenoid valves X+""Xs and Y, ~Y, are arranged. The vacuum solenoid valves Y1 to Y above are the adsorption towers 3a, 3b,
3c as close as possible to the bottom side of the valve Y1.
~Y3 outlet section 26 (Fig. 6) is connected to adsorption towers 3a, 3b, 3
It is placed toward the bottom of c. One-way valves X, -X, are disposed in the opposite direction to the above-mentioned valves Y1-Y3. That is, in the connecting pipe 10a, the vacuum electromagnetic valves xI and Yl are provided so that the artificial part 25 is placed back to back with respect to the other, and their opening and closing operations are controlled in the same manner at the same timing. Therefore, even if gas leaks in the direction of the arrow (see Fig. 6) from the solenoid valve X during the desorption process of the adsorption tower 3a, this gas flow is completely blocked by the solenoid valve Y1 on the adsorption tower 3a side. During the desorption process, the 02 gas in the adsorption towers 3b and 3c will not be mixed in at all.

(実験例) 第1図及び第2図に示す構成の小型PSA装置において
、原料空気供給量を320ONlbとして5.5kg/
cm2Gで供給し、80ONj2/hのN、ガスを回収
する実験を下記のPSA装置によって行なった。
(Experiment example) In a small PSA device configured as shown in Figs.
An experiment in which N and gas were supplied at cm2G and recovered at 80 ONj2/h was conducted using the following PSA apparatus.

吸着塔内径:80+am 吸着塔高さ:1000mm 吸着剤  二合成ゼオライト13X型(改良型) 脱着圧力 : 100Torr この結果従来のPSA装置(第2図に示す)においては
、回収N2ガスの純度は99.9%が限界であったが、
本発明のPSA装置においては、99.997%の高純
度を達成した。
Adsorption tower inner diameter: 80+am Adsorption tower height: 1000mm Adsorbent Bisynthetic zeolite 13X type (improved type) Desorption pressure: 100Torr As a result, in the conventional PSA device (shown in Figure 2), the purity of recovered N2 gas is 99. 9% was the limit, but
In the PSA device of the present invention, a high purity of 99.997% was achieved.

上記の様に2つの真空用電磁弁を直列して配設する箇所
は上記の実施例に限らず、排ガス廃棄管4aに設けられ
る自動開閉弁v4〜v6その他の自動開閉弁配設箇所に
適用しても良い、また回収ガス分離用のPSA装置のみ
に限らず、その前段に設けられる前処理装置において適
用しても構わない。さらに上記のN2ガス回収の例に限
らず、02ガス回収やH2ガスの精製等のPSA装置に
も適用できる。
The location where two vacuum solenoid valves are arranged in series as described above is not limited to the above embodiment, but is applicable to other automatic on-off valves v4 to v6 installed in the exhaust gas waste pipe 4a. Furthermore, the present invention may be applied not only to a PSA device for separating recovered gas, but also to a pre-processing device provided upstream of the PSA device. Furthermore, the invention is not limited to the above example of N2 gas recovery, but can also be applied to PSA devices for O2 gas recovery, H2 gas purification, and the like.

[発明の効果] 本発明により、小型の真空用電磁弁を適用するPSA装
置においても、製品ガスを高純度で回収できる様になっ
た。
[Effects of the Invention] According to the present invention, product gas can now be recovered with high purity even in a PSA device that uses a small vacuum solenoid valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の代表的な実施例を示す概略説明図、第
2図は従来例を示す概略説明図、第3図は工程説明図、
第4図は吸着塔3bの脱着工程状態を示す説明図、第5
図(a) 、 (b)は洗浄工程及び回収工程を示すた
めの説明図、第6図は真空用電磁弁の例を示す断面説明
図である。 1a・・・原料ガス供給管 2a、2b・・・前IA理
塔3a、3b、3c・・・吸着塔  4a・・・排ガス
廃棄管5・・・脱着用管    6・・・真空ポンプ8
・・・洗浄用管    9・・・圧縮機lea、lOb
、10c ・−・連結配管20・・・ケーシング   
21・・・コイル2z・・・スプリング   23−・
・プランジャ24・・・弁体      25・・・入
口部26・・・出口部     27・・・弁座第3図 第4図
Fig. 1 is a schematic explanatory diagram showing a typical embodiment of the present invention, Fig. 2 is a schematic explanatory diagram showing a conventional example, Fig. 3 is a process explanatory diagram,
FIG. 4 is an explanatory diagram showing the desorption process state of the adsorption tower 3b;
Figures (a) and (b) are explanatory diagrams showing the cleaning process and the recovery process, and Fig. 6 is a cross-sectional explanatory diagram showing an example of a vacuum electromagnetic valve. 1a... Raw material gas supply pipe 2a, 2b... Pre-IA control tower 3a, 3b, 3c... Adsorption tower 4a... Exhaust gas waste pipe 5... Desorption pipe 6... Vacuum pump 8
...Cleaning pipe 9...Compressor lea, lOb
, 10c...Connecting pipe 20...Casing
21...Coil 2z...Spring 23-...
・Plunger 24... Valve body 25... Inlet section 26... Outlet section 27... Valve seat Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 複数の吸着塔に各々原料ガス供給管、脱着用管及び洗浄
用管を接続すると共に、2つの吸着塔同士を連結配管に
よって直列接続する様に構成してなる圧力スイング吸着
装置において、1対の真空用電磁弁を、互いに入口側が
背中合わせとなる様に、前記連結配管の両端部近傍に直
列配設されてなることを特徴とする圧力スイング吸着装
置。
In a pressure swing adsorption apparatus configured such that a raw material gas supply pipe, a desorption pipe, and a cleaning pipe are connected to each of a plurality of adsorption towers, and two adsorption towers are connected in series by a connecting pipe, a pair of adsorption towers is used. A pressure swing adsorption device characterized in that vacuum electromagnetic valves are arranged in series near both ends of the connecting pipe so that the inlets are back to back.
JP63140142A 1988-06-06 1988-06-06 Pressure-swinging adsorber Granted JPH01307426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140142A JPH01307426A (en) 1988-06-06 1988-06-06 Pressure-swinging adsorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140142A JPH01307426A (en) 1988-06-06 1988-06-06 Pressure-swinging adsorber

Publications (2)

Publication Number Publication Date
JPH01307426A true JPH01307426A (en) 1989-12-12
JPH0331487B2 JPH0331487B2 (en) 1991-05-07

Family

ID=15261851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140142A Granted JPH01307426A (en) 1988-06-06 1988-06-06 Pressure-swinging adsorber

Country Status (1)

Country Link
JP (1) JPH01307426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141759A (en) * 2018-02-16 2019-08-29 大陽日酸株式会社 Gas refining apparatus, gas refining method, propene producing apparatus and propane producing apparatus
JP2019177314A (en) * 2018-03-30 2019-10-17 大陽日酸株式会社 Gas refining apparatus and gas refining method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607920A (en) * 1983-06-29 1985-01-16 Hitachi Ltd Separation of mixed gas and its apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607920A (en) * 1983-06-29 1985-01-16 Hitachi Ltd Separation of mixed gas and its apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141759A (en) * 2018-02-16 2019-08-29 大陽日酸株式会社 Gas refining apparatus, gas refining method, propene producing apparatus and propane producing apparatus
US11471819B2 (en) 2018-02-16 2022-10-18 Taiyo Nippon Sanso Corporation Gas refining apparatus, gas refining method, propene manufacturing apparatus, and propane manufacturing apparatus
JP2019177314A (en) * 2018-03-30 2019-10-17 大陽日酸株式会社 Gas refining apparatus and gas refining method

Also Published As

Publication number Publication date
JPH0331487B2 (en) 1991-05-07

Similar Documents

Publication Publication Date Title
CA2189232C (en) Method of recovering oxygen-rich gas
CA1174182A (en) Rpsa process
US5620501A (en) Recovery of trace gases from gas streams
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JPH01307426A (en) Pressure-swinging adsorber
WO2020105242A1 (en) Gas separation device and gas separation method
JPH11267439A (en) Gas separation and gas separator for performing same
KR100228239B1 (en) Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product
JPS63182206A (en) Process and apparatus for producing nitrogen having high purity
JPH0312307A (en) Method for enriching oxygen
JPH01307425A (en) Pressure-swinging adsorber
JPH0264004A (en) Pressure swing adsorption type production of high-purity nitrogen and apparatus therefor
RU2760134C1 (en) Method for obtaining oxygen from air
JPS63100914A (en) Adsorption method for pressure swing
JPH0938443A (en) Gas separator
JP3764370B2 (en) Gas concentrator
SU386649A1 (en) KNOW
JPS6365929A (en) Pressure swing adsorbing apparatus
JPS6362521A (en) Pressure swing adsorption apparatus
JPH048086B2 (en)
JPH0691925B2 (en) Pressure swing adsorption method and device
JPH0352615A (en) Gas separation
JPS6365928A (en) Pressure swing adsorbing method
JPH01151920A (en) Pressure-swing absorption method
JPH03288512A (en) Separation of nitrogen gas