JPH01306701A - Main steam pressure controller for pulverized coal burning boiler - Google Patents

Main steam pressure controller for pulverized coal burning boiler

Info

Publication number
JPH01306701A
JPH01306701A JP13741988A JP13741988A JPH01306701A JP H01306701 A JPH01306701 A JP H01306701A JP 13741988 A JP13741988 A JP 13741988A JP 13741988 A JP13741988 A JP 13741988A JP H01306701 A JPH01306701 A JP H01306701A
Authority
JP
Japan
Prior art keywords
coal
dead time
pulverized coal
main steam
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13741988A
Other languages
Japanese (ja)
Other versions
JP2647437B2 (en
Inventor
Masaya Tanuma
田沼 正也
Kenichi Kamiyama
神山 憲一
Hiroyasu Enomoto
博康 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP13741988A priority Critical patent/JP2647437B2/en
Publication of JPH01306701A publication Critical patent/JPH01306701A/en
Application granted granted Critical
Publication of JP2647437B2 publication Critical patent/JP2647437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To improve safety and response characteristics of a boiler by compensating a dead time in the operation of a crusher under control. CONSTITUTION:A deviation P from the desired value P of a main steam pressure P is obtained by a PID operating device 3, and a (proportion + integra tion + differentiation) operation is effected to P to determine a coal charge quantity Fc'. Operating devices 4 and 5 realize compensation for a dead time. A lag until the time when the coal charged into a coal crusher is crushed and fed is approximated in terms of a dead time, and a dead time simulator capable of simulating the distribution condition of the quantity of pulverized coal within the dead time is equipped to calculate the restrained quantity of coal excessive charge in accordance with an added value with the weight of the pulverized coal quantity existing in 1/N, 2/N,---,N/N (N: the approximate value of the dead time) of the dead time. The restrained quantity thus calculated is deducted from Fc', whereby a coal quantity Fc to be charged is determined. Said Fc is obtained by a coal feeder controller 7 and a coal feeder 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微粉炭焚きボイラに係り、特に主蒸気圧力変
動の抑制に最適な圧力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pulverized coal-fired boiler, and particularly to a pressure control device optimal for suppressing main steam pressure fluctuations.

〔従来の技術〕[Conventional technology]

微粉炭焚きボイラの概要を第4図に示す。図において、
lは主蒸気管、10は火炉、11は石炭粉砕用ミル、1
2は石炭バンカ、13は給炭器、14は降水管、15は
蒸発管、16は蒸気ドラム、17.18は過熱器、19
は減温器、20は節炭 ′器である。
Figure 4 shows an overview of the pulverized coal-fired boiler. In the figure,
l is the main steam pipe, 10 is the furnace, 11 is the coal crushing mill, 1
2 is a coal bunker, 13 is a coal feeder, 14 is a downcomer pipe, 15 is an evaporator pipe, 16 is a steam drum, 17.18 is a superheater, 19
is a desuperheater, and 20 is a carbon saver.

また第6図は従来例に係る主蒸気圧力制御系を示す図で
ある。図において、21は圧力計、22は流量計、23
は先行値制御部、24は〔比例十積分十微分〕の演算制
御部である。
Further, FIG. 6 is a diagram showing a main steam pressure control system according to a conventional example. In the figure, 21 is a pressure gauge, 22 is a flow meter, 23
Reference numeral 24 indicates an advance value control section, and 24 indicates a calculation control section for [proportional, integral, and sufficient derivatives].

第6図に示すように、従来、主蒸気圧力制御は、圧力と
その目標値の偏差を[比例+積分十微分〕演算し、燃料
を調整する方法が用いられていたく計測技術Voj!1
4.No14,77頁〜78頁)。しかし、この方法を
微粉炭ボイラに用いると、第5図に示すように、大きな
圧力偏差が生じる。この圧力偏差を除去しようとして、
制御ゲインの値を大きくすると、制御は発散する。これ
は、石炭の粉砕機(ミル)の正答が遅く、石炭を投入し
てから、微粉炭になって出てくるまで2〜3分遅れるた
めである。
As shown in Fig. 6, conventional main steam pressure control has used a method of calculating the deviation between the pressure and its target value [proportional + integral plus differential] and adjusting the fuel. 1
4. No. 14, pages 77-78). However, when this method is used in a pulverized coal boiler, a large pressure deviation occurs as shown in FIG. In an attempt to remove this pressure deviation,
When the value of the control gain is increased, the control diverges. This is because the coal pulverizer (mill) is slow to respond correctly, and there is a delay of 2 to 3 minutes from when the coal is put in until it comes out as pulverized coal.

第5図において、破線aは上述した従来例の特性を示し
、実線すは後述する本発明による特性を示す。
In FIG. 5, the broken line a shows the characteristics of the conventional example described above, and the solid line a shows the characteristics according to the present invention, which will be described later.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の主蒸気圧力制御系では、ミルの遅れによる制御性
能の劣化に対応するため、主蒸気流量の変化を予め予測
して制御系に入力する先行値制御が行われていた。これ
は、火力発電所の事業用ボイラでは可能であるが、自家
用ボイラのように、蒸気量負荷が予測できない場合には
、このような先行値制御は難しく、制御系の応答自体を
改善する必要がある。
In conventional main steam pressure control systems, in order to cope with deterioration of control performance due to mill delays, advance value control was performed in which changes in main steam flow rate were predicted in advance and inputted into the control system. This is possible in commercial boilers at thermal power plants, but in private boilers where the steam load cannot be predicted, such advance value control is difficult, and the response of the control system itself needs to be improved. There is.

本発明の目的は、ミルの無駄時間を制御的に補償して、
安定でかつ連応性のある主蒸気圧力制御系を実現するこ
とにある。
It is an object of the present invention to controllably compensate for dead time in a mill,
The objective is to realize a stable and interconnected main steam pressure control system.

〔課題を解決するための手段〕[Means to solve the problem]

微粉炭焚きボイラにおいて主蒸気圧力のフィードバック
制御が不安定になり易いのは、第2図に示すように、ミ
ルの応答遅れ、つまり制御的には、無駄時間のためであ
る。無駄時間が存在すると、圧力偏差が生じる、例えば
圧力が目標値より下がると、〔比例+積分十微分〕演算
により石炭投入量が増加するが、実際の燃料となるミル
からの微粉量は無駄時間TL後まで全く変化しないため
圧力は上昇しない。このため、フィードバック制御によ
りますます石炭量の指令値が増加し、その結果、石炭量
は過剰となる。無駄時間後に火炉への微粉炭量が増加し
、圧力は増加するが必要量以上が投入されるため、圧力
は目標値以上になり、いわゆるオーバシュートしてしま
う。これを繰り返すと制御は不安定になってしまう。
As shown in FIG. 2, feedback control of the main steam pressure tends to become unstable in a pulverized coal-fired boiler because of a delay in the response of the mill, that is, a dead time in terms of control. If there is dead time, a pressure deviation will occur. For example, if the pressure falls below the target value, the amount of coal input will increase by [proportional + integral plus differential] calculation, but the amount of fine powder from the mill that becomes the actual fuel will increase due to the dead time. The pressure does not increase because it does not change at all until after TL. Therefore, the command value for the amount of coal increases due to feedback control, and as a result, the amount of coal becomes excessive. After the dead time, the amount of pulverized coal to the furnace increases and the pressure increases, but since more than the required amount is injected, the pressure exceeds the target value, resulting in a so-called overshoot. If this is repeated, the control will become unstable.

第3図において、P (t)は主蒸気圧力、FC(1)
は給炭量、F (t)は出炭量を表す。またF (t)
は、 F(t) ”Fc (t  Tt )但しFc (t 
 Tt ) : TL待時間前、石炭投入量 である。また破線のループは従来の制御系を示す。
In Figure 3, P (t) is the main steam pressure, FC (1)
is the amount of coal fed, and F (t) is the amount of coal output. Also F (t)
is F(t) ”Fc (t Tt )where Fc (t
Tt): The amount of coal input before the TL waiting time. Furthermore, the broken line loop indicates a conventional control system.

このようなミルの無駄時間に対応するための方法を第3
図(al、 (b)に示す。これは、各時点の圧力偏差
のみでなく、無駄時間後の圧力偏差を考慮して石炭投入
量を決定するところに特徴がある。
The third method for dealing with such wasted time of the mill is
This is shown in Figures (al and b).This is characterized in that the amount of coal input is determined by taking into consideration not only the pressure deviation at each point in time but also the pressure deviation after dead time.

を時点の圧力偏差ΔP (t)に対して、ミルの無駄時
間TL後つまり(t+Tt)時点の圧力は過去の石炭量
つまり無駄時間内の石炭量に依存し、次のように表され
る。
With respect to the pressure deviation ΔP (t) at the time, the pressure after the dead time TL of the mill, that is, at the time (t+Tt), depends on the past amount of coal, that is, the amount of coal within the dead time, and is expressed as follows.

AP(t+ TL )=ΔP(t)+5. K(τ)Δ
Fc (t−τ)dr(1)但し、AP(t) : を
時点の圧力偏差’  (kgf/cm”)TL :無駄
時間      (s) AP(t+TL ):TL待時間後圧力偏差(kgf/
cab2)K(τ):重み関数 ΔFC(f−r’): r時間前の石炭投入量(kg/
win)(1)式は、を時点で石炭投入量を一定にして
も、APは第2項の量(過去の石炭投入量の影響分)だ
け変化してしまうことを示している。このため、制御に
あたっては、圧力の偏差はΔp (t)でなく、AP 
(t)から今後の変化量を差し引いたΔp’  (t)
を用いれば、無駄時間の影響を除去できる。
AP(t+TL)=ΔP(t)+5. K(τ)Δ
Fc (t-τ)dr(1) However, AP(t): Pressure deviation at the time (kgf/cm") TL: Dead time (s) AP(t+TL): Pressure deviation after TL waiting time (kgf/cm")
cab2) K(τ): Weight function ΔFC(f-r'): Coal input amount (kg/
(win) Equation (1) shows that even if the coal input amount is constant at the time point, AP changes by the amount of the second term (the influence of the past coal input amount). Therefore, in control, the pressure deviation is not Δp (t) but AP
Δp' (t), which is obtained by subtracting the amount of change in the future from (t)
can be used to eliminate the effects of wasted time.

AP ’ (t) = AP(t)−s:K(r)ΔF
c(t  r)dr(2)ΔFcをAP ’ (t)に
比例させて変化させれば、ΔPcは次式により計算でき
る。
AP'(t) = AP(t)-s:K(r)ΔF
c(t r)dr(2) If ΔFc is changed in proportion to AP'(t), ΔPc can be calculated using the following equation.

ΔPc(t)  =KcΔP(t)−KcS、 K(τ
)ΔFc(t−τ)dτ=ΔFc’ (t)−SンKc
’ (r)ΔFc(t−T )d r (3)   ′
但し、ΔFc’(t):AP(t)から求めた石炭投入
量(kg/S)上式は通常のフィードバック制御系で計
算される石炭投入量から、過去の石炭投入量により生じ
る分後、Tc秒間に生じる圧力変化分に対応する分だけ
石炭投入量を差し引けば良いことを示している。
ΔPc(t) = KcΔP(t)−KcS, K(τ
)ΔFc(t-τ)dτ=ΔFc' (t)-SnKc
'(r)ΔFc(t-T)d r (3)'
However, ΔFc'(t): Coal input amount (kg/S) calculated from AP(t) The above formula is calculated from the coal input amount calculated by the normal feedback control system, after the minute generated by the past coal input amount, This shows that it is sufficient to subtract the coal input amount by the amount corresponding to the pressure change occurring in Tc seconds.

同図山)において、aは過去の給炭量による圧力変化予
測値に対する補正量を示す。
In the figure, a indicates the amount of correction for the predicted value of pressure change based on the past coal supply amount.

〔発明の実施例〕[Embodiments of the invention]

本発明の1実施例を第1図に示す。本システムは、主蒸
気圧力検出器2、PID演算装置3、無駄時間発生装置
4、演算装置5.6およびミルへの石炭フィーダ制御装
置7およびミルへの石炭フィーダ8より構成される。
One embodiment of the invention is shown in FIG. This system is composed of a main steam pressure detector 2, a PID calculation device 3, a dead time generator 4, a calculation device 5.6, a coal feeder control device 7 to the mill, and a coal feeder 8 to the mill.

PID演算装置3では主蒸気圧力Pの目標値Pからの偏
差ΔPを求め、ΔPに(比例+積分十微分)演算を施し
、石炭投入IFC’を求める。
The PID calculation device 3 calculates the deviation ΔP of the main steam pressure P from the target value P, performs (proportional + integral plus differential) calculation on ΔP, and calculates the coal input IFC'.

演算装置4.5は無駄時間に対する補償つまり(3)式
の第2項を実現するものである。(3)式の第2項S。
The arithmetic unit 4.5 compensates for dead time, that is, realizes the second term of equation (3). The second term S in equation (3).

Kc(T)ΔFc(t−r )d rは、無駄時間の内
部の状態情報をすべて必要とするため、厳密には実現で
きない。このため、次のように差分近似する。
Kc(T)ΔFc(tr)dr cannot be realized strictly because it requires all internal state information of dead time. Therefore, differential approximation is performed as follows.

S、Kc’(r)ΔFc(t−r)  さi  Kc 
’ (iΔτ)Δτ・ΔFc(t−iΔτ) =Ik、  ΔFc(t−iΔr)(41但し、N:近
似次数 Δτ: T L / N k=  :  Kc’(iΔτ)Δτ TLは120〜180秒であり、Nを10とすれば充分
な性能が得られる。ΔFc(t−iΔτ)はΔFcの(
TL / N−i )無駄時間要素の出力であり、無駄
時間発生装置4のように(TL/N)無駄時間要素を1
個カスケードに結ぶことにより実現できる。つまり無駄
時間発生装置4は(4)式のΔPc(t−iΔτ)(i
−1〜N)を求めていることになる。
S, Kc'(r)ΔFc(t-r) Sai Kc
'(iΔτ)Δτ・ΔFc(t-iΔτ) = Ik, ΔFc(t-iΔr) (41 However, N: Approximate order Δτ: T L / N k= : Kc'(iΔτ)Δτ TL is 120 to 180 seconds , and sufficient performance can be obtained by setting N to 10. ΔFc (tiΔτ) is the ( of ΔFc)
TL/N-i) is the output of the dead time element, and like the dead time generator 4, (TL/N) is the output of the dead time element.
This can be achieved by tying them together in a cascade. In other words, the dead time generating device 4 uses ΔPc(t−iΔτ)(i
-1 to N).

演算装置5は、(4)式の加算部分を実現したもので、
無駄時間発生装置4の各無駄時間の出力に制御ゲインk
、を乗じ、その和を求める。
The arithmetic device 5 realizes the addition part of equation (4),
A control gain k is applied to each dead time output of the dead time generator 4.
, and find the sum.

このようにして計算された亀に、ΔPc(t−iΔτ)
を、Fc’から差し引くことにより投入石炭量ΔFcが
求められる。ΔFcは、石炭フィーダ制御装置7、石炭
フィーダ8により実現される。
For the turtle calculated in this way, ΔPc(t−iΔτ)
By subtracting from Fc', the input coal amount ΔFc is obtained. ΔFc is realized by the coal feeder control device 7 and the coal feeder 8.

実際上は、制御ゲイン時にに、の決定が重要となるが、
これは制御理論を用いて計算可能である。
In practice, it is important to determine the control gain, but
This can be calculated using control theory.

その1つとして、火炉および蒸気系統は(1次遅れ十積
分)系で近似できるので、その近似モデルに最適サーボ
理論を適用することにより、k。
One of them is that the furnace and steam system can be approximated by a (first-order delayed ten-integral) system, so by applying the optimal servo theory to that approximate model, k can be calculated.

を計算する方法がある。There is a way to calculate.

〔発明の効果〕〔Effect of the invention〕

第5図の実線すは本発明の制御結果の特性を示す。第5
図↓よ主蒸気流量が2分で10%変化した場合の、主蒸
気圧力の変化を示している。破線aに示す従来制御系で
は、圧力の変動は一12kgf/cm”生じてしまうの
に対して、実線すに示す本発明では、1/3の一4kg
f/cm”に抑制できており、本発明の効果が大きいこ
とが明らかである。
The solid line in FIG. 5 shows the characteristics of the control results of the present invention. Fifth
The figure below shows the change in main steam pressure when the main steam flow rate changes by 10% in 2 minutes. In the conventional control system shown by the broken line a, the pressure fluctuation occurs by 12 kgf/cm, whereas in the present invention shown by the solid line, the pressure fluctuation occurs by 1/3 by 4 kgf/cm.
It is clear that the effect of the present invention is great.

逆にある一定の許容圧力変化を設定すれば、本発明の負
荷追従制御性能は従来の3倍に向上させることができ、
ボイラ性能を改善できる。
On the contrary, by setting a certain allowable pressure change, the load following control performance of the present invention can be improved three times compared to the conventional one.
Boiler performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るボイラの主蒸気圧力制
御系のブロック線図、第2図は微粉炭焚きボイラ圧力系
のブロック線図、第3図(a)、 (blは無駄時間を
考慮した圧力制御系の基本的考え方を説明するための特
性図およびブロック線図、第4図は微粉炭焚きボイラの
概要を示す図、第5図は本発明と従来例の制御特性を比
較する図、第6図は従来方式のブロック線図である。 1・・・主蒸気管、2・・・主蒸気圧力検出器、3・・
・P■D演算器、4・・・無駄時間発生装置、5.6・
・・演算装置、7・・・石炭フィーダ制御装置、8・・
・石炭フィーダ。 第1図 鵬3図 (a) (b) ΔP  (kg/cm  ) C)
Fig. 1 is a block diagram of the main steam pressure control system of a boiler according to an embodiment of the present invention, Fig. 2 is a block diagram of the pulverized coal-fired boiler pressure system, Fig. 3 (a), (bl is waste) A characteristic diagram and a block diagram to explain the basic concept of a pressure control system that takes time into account. Figure 4 shows an overview of a pulverized coal-fired boiler. Figure 5 shows the control characteristics of the present invention and a conventional example. The figure for comparison, Figure 6, is a block diagram of the conventional system. 1... Main steam pipe, 2... Main steam pressure detector, 3...
・P■D calculator, 4...dead time generator, 5.6・
...Arithmetic device, 7...Coal feeder control device, 8...
・Coal feeder. Figure 1 Peng Figure 3 (a) (b) ΔP (kg/cm) C)

Claims (1)

【特許請求の範囲】[Claims] 微粉炭ボイラの主蒸気圧力と目標値との偏差の比例積分
演算により石炭粉砕機への投入石炭量を計算する演算装
置1と、石炭粉砕機へ投入した石炭が粉砕されて出て来
るまでの遅れを無駄時間で近似し、無駄時間内の微粉炭
量の分布状態を模擬できる無駄時間シミュレータを備え
、無駄時間の1/N,2/N,………,N/N(N:無
駄時間の近似数)に存在する微粉炭量の重み付き加算値
による石炭過剰投入の抑止量を計算する演算装置2を備
えたことを特徴とする微粉炭焚きボイラの主蒸気圧力制
御装置。
A computing device 1 that calculates the amount of coal fed into a coal crusher by proportional-integral calculation of the deviation between the main steam pressure of the pulverized coal boiler and a target value; Equipped with a dead time simulator that can approximate delay by dead time and simulate the distribution state of pulverized coal amount within the dead time, 1/N, 2/N, ......, N/N (N: dead time 1. A main steam pressure control device for a pulverized coal-fired boiler, characterized in that it is equipped with an arithmetic device 2 that calculates an amount of suppression of excessive coal injection based on a weighted addition value of the amount of pulverized coal existing in the approximate number of pulverized coal.
JP13741988A 1988-06-06 1988-06-06 Main steam pressure control device for pulverized coal-fired boiler Expired - Fee Related JP2647437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13741988A JP2647437B2 (en) 1988-06-06 1988-06-06 Main steam pressure control device for pulverized coal-fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13741988A JP2647437B2 (en) 1988-06-06 1988-06-06 Main steam pressure control device for pulverized coal-fired boiler

Publications (2)

Publication Number Publication Date
JPH01306701A true JPH01306701A (en) 1989-12-11
JP2647437B2 JP2647437B2 (en) 1997-08-27

Family

ID=15198191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13741988A Expired - Fee Related JP2647437B2 (en) 1988-06-06 1988-06-06 Main steam pressure control device for pulverized coal-fired boiler

Country Status (1)

Country Link
JP (1) JP2647437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676574A (en) * 2014-12-31 2015-06-03 清华大学 Energy balance-based control method of main steam pressure of supercritical CFB (circulating fluidized bed) boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676574A (en) * 2014-12-31 2015-06-03 清华大学 Energy balance-based control method of main steam pressure of supercritical CFB (circulating fluidized bed) boiler
CN104676574B (en) * 2014-12-31 2017-01-04 清华大学 Supercritical CFB Boiler main steam pressure control method based on the energy balance

Also Published As

Publication number Publication date
JP2647437B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
CN100498060C (en) Method for controlling optimized burning in circulating fluid bed boiler
Gao et al. Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units
CN108386829B (en) A kind of temprature control method of boiler overheating steam, device and system
CN102654751A (en) Coordination control method based on nonlinear control and fuzzy control
CN101338892A (en) Thermal power unit reheated steam temperature control method
CN205842637U (en) A kind of Directed Energy Balance Coordinated Control control system for large-size circulating fluidized bed unit
JPS63243602A (en) Improved steam-temperature control
CN103343961A (en) Dynamic compensation method of attemperation water impact leading steam temperature measuring point in boiler steam temperature control system
CN104132367A (en) Method for controlling amount of coal conveyed into furnace of thermal generator set on basis of virtual fuel quantity
CN104676574A (en) Energy balance-based control method of main steam pressure of supercritical CFB (circulating fluidized bed) boiler
CN109407545B (en) Non-embedded simulation method for cooperative control of ultra-supercritical secondary reheating thermal power generating unit
CN105202519B (en) Thermal power plant unit frequency modulation peak regulation full working scope control method for coordinating
CN104864385A (en) Method and device for calculating feed water flow instruction of supercritical unit
CN105927976A (en) Direct energy balance coordinated control system used for large circulating fluid bed unit
JPH01306701A (en) Main steam pressure controller for pulverized coal burning boiler
RU2361092C1 (en) System of automatic control of steam-gas plant capacity with action at control elements of gas turbine set and steam turbine
JPS58179702A (en) Drum type boiler load follow-up controller
JPS6133362Y2 (en)
CN111522253A (en) Simulation method and device for water spraying temperature reduction system of boiler-steam turbine system
CN108443871B (en) Method and device for controlling opening of external bed ash control valve
JPS59164820A (en) Fuel system control of coal-fired power plant
CN104214792B (en) Realize the compensation method of direct current cooker feedwater flow and fuel quantity dynamically accurate proportioning
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
SU861836A1 (en) Method of controlling steam pressure in common main pipeline
JPH0335922Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees