JPH01306529A - Continuous refining method of metal - Google Patents

Continuous refining method of metal

Info

Publication number
JPH01306529A
JPH01306529A JP13865388A JP13865388A JPH01306529A JP H01306529 A JPH01306529 A JP H01306529A JP 13865388 A JP13865388 A JP 13865388A JP 13865388 A JP13865388 A JP 13865388A JP H01306529 A JPH01306529 A JP H01306529A
Authority
JP
Japan
Prior art keywords
primary crystal
molten metal
roll
crystal nuclei
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13865388A
Other languages
Japanese (ja)
Inventor
Yukio Tsukuya
津久家 幸雄
Akira Hideno
秀野 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13865388A priority Critical patent/JPH01306529A/en
Publication of JPH01306529A publication Critical patent/JPH01306529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To continuously recover a high-purity metal by immersing a part of an internally cooled revolving roll in a molten metal contg. impurities to form the primary crystal nuclei of the molten metal and squeezing out the melt concd. with the impurities sticking to the primary crystal nuclei. CONSTITUTION:The molten metal 4A contg. the impurities in a metal melting furnace 1 is transferred into a high purifying treatment vessel 2A where the molten metal is held at a prescribed temp. The revolving roll 3A which is internally cooled with air is partly immersed into this molten metal 4A and the high-purity primary crystal nuclei 5A are crystallized on the roll surface and are gradually grown by rotation of the roll 3A. The melt 6A concd. with the impurities discharged from the primary crystal nuclei 5A is included in the dendrite spacings of the primary crystal nuclei 5A and the primary crystal nuclei 5A are rolled by the cooled roll 3A and a rolling roll 7A to squeeze out the melt 6A captured in the spacings of the primary crystal nuclei 5A. The melt is discharged to the outside of the system via a trough 9A and only the high-purity primary crystal nuclei 5A are recovered. This operation is executed by continuously transferring the molten metal 4A from the melting furnace 1, by which the high-purity metal is efficiently recovered.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は金属の連続精製法に関するものであり、不純物
を含む金属を連続的に精製して、ボンディングワイヤー
、メモリーディスク等の電子機器材料等に用いられる高
純度金属を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for continuously refining metals, in which metals containing impurities are continuously refined to produce electronic device materials such as bonding wires and memory disks. The present invention relates to a method for producing high-purity metals used in

〔従来の技術〕[Conventional technology]

近年、電子機器の超小型化、精密化等に伴い、そこに使
用される金属材料には導電性、柔軟性、表面特性等の一
層の向上が求められており、高純度金属をヘースとする
材料開発が年々拡大してきている。
In recent years, with the miniaturization and precision of electronic devices, the metal materials used there are required to further improve conductivity, flexibility, surface properties, etc. Material development is expanding year by year.

金属を精製する方法としては、電解法と偏析凝固法とが
あるが、微量不純物を除去するには偏析凝固法が適して
いる。この偏析凝固法は溶質の分配法則、即ち溶湯から
固相が形成される際、溶質は固相から液相側へ排出され
、初期濃度C0に対して、形成された固相濃度C1と固
相周辺の残留融液濃度C,との関係が、C,>C,>C
,となる法則を利用したものである。即ち不純物を含む
溶融金属を冷却凝固させると、初めに純度の高い初晶核
が晶出し、不純物は残った溶融金属中に排出されるが、
この純度の高い初晶核のみを選択的に回収する事によっ
て金属を精製する方法である。
Methods for refining metals include electrolytic methods and segregation solidification methods, and segregation solidification methods are suitable for removing trace impurities. This segregation solidification method is based on the distribution law of solutes, that is, when a solid phase is formed from the molten metal, the solute is discharged from the solid phase to the liquid phase side. The relationship with the surrounding residual melt concentration C, is C,>C,>C
, which makes use of the law that . In other words, when a molten metal containing impurities is cooled and solidified, highly pure primary crystal nuclei crystallize first, and the impurities are discharged into the remaining molten metal.
This is a method of refining metals by selectively collecting only these highly pure primary crystal nuclei.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の偏析凝固法においては、例えばANを精製しよう
とする場合、溶融Al中に冷却体を浸漬し、該冷却体の
表面に純度の高いAn初晶核を晶出させるが、この際S
 i、F e、Cu、Mg等のA2と共晶を生成する不
純物が溶融/l中に放出されて、初晶核の樹枝状高量の
不純物4度が高くなり、純化された初晶A2を再度汚染
し、精製効率を低下させる。これを防ぐ為に前記冷却体
を回転させて、溶融へ2中に放出された不純物を初晶核
との界面近傍から溶融Al中に拡散させなからAp、を
晶出させて、高純度A2を回収する方法が知られている
In the conventional segregation solidification method, when purifying AN, for example, a cooling body is immersed in molten Al, and highly pure An primary crystal nuclei are crystallized on the surface of the cooling body.
Impurities that form eutectic with A2, such as i, Fe, Cu, Mg, etc., are released into the melt/l, and the dendritic high impurity 4 degree of the primary crystal nucleus becomes high, and the purified primary crystal A2 re-contaminate and reduce purification efficiency. In order to prevent this, the cooling body is rotated to prevent the impurities released into the melt from diffusing into the molten Al from near the interface with the primary crystal nucleus, and to crystallize Ap, resulting in high purity A2. There are known methods to recover.

而して冷却体表面に晶出した高純炭金属の回収方法とし
ては、溶融金属中で晶出金属を間欠的にかき落として処
理槽の底部に沈澱させ、上部の融液を排出後に前記晶出
金属を回収する方法と、冷却体を溶融金属中から取り出
して晶出金属を回収する方法とがあるが、いずれもバッ
チ処理となる為効率が悪く、又回収後に残った溶融金属
中には不純物が濃縮されており、前記高純度金属の回収
操作を繰り返し行なうと、回収される金属の純度が次第
に層下する為、純度の高い金属を連続的に得る事は不可
能であった。
As a method for recovering high-purity carbon metal crystallized on the surface of the cooling body, the crystallized metal is intermittently scraped off in the molten metal and deposited at the bottom of the treatment tank, and after the upper melt is discharged, the crystallized metal is collected. There is a method of recovering the extracted metal and a method of removing the cooling body from the molten metal and recovering the crystallized metal, but both are inefficient because they are batch processes, and the molten metal remaining after recovery is Impurities are concentrated, and when the above-mentioned high-purity metal recovery operation is repeated, the purity of the recovered metal gradually decreases, making it impossible to continuously obtain high-purity metal.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、不純物を含む溶融金属
を連続的に精製して、高純度金属を得る方法を提供する
事である。
The present invention was made as a result of intensive studies in view of the above points, and its purpose is to provide a method for continuously refining molten metal containing impurities to obtain high-purity metal. .

即ち本発明は、不純物を含む溶融金属中に、その表面温
度が溶融金属の固相線温度以上で液相線温度以下の温度
範囲内に内部冷却によりコントロールされたロールの一
部を回転させながら浸漬して、前記浸漬されたロール表
面上に溶融金属の初晶核を生成させ、該初晶核並びに初
晶核の間隙に捕捉された融液をロールの回転により、連
続的に溶融金属外に搬送し、前記冷却ロールとこれに相
対する様に配置された圧延ロールとで、初晶核からなる
固相を圧延し、咳初晶核の間隙に捕捉された融液を絞り
出して系外に排出する操作を少なく共1回行なう事を特
徴とする金属の連続精製法である6 本発明において、冷却ロールの表面温度が溶融金属の固
相線温度以下であると、初晶核から排出された不純物が
a縮された融液も冷却されて凝固し、固相として回収さ
れる為得られた固相の純度が低下するので、前記冷却ロ
ールの表面温度は溶融金属の固相線温度以上に保持する
必要がある。
That is, the present invention provides a method for rotating a part of the roll that is controlled by internal cooling so that the surface temperature of the molten metal containing impurities is within a temperature range of not less than the solidus temperature of the molten metal and not more than the liquidus temperature of the molten metal. The primary crystal nuclei of the molten metal are generated on the surface of the immersed roll, and the primary crystal nuclei and the melt trapped in the gaps between the primary crystal nuclei are continuously removed from the molten metal by rotation of the roll. The solid phase consisting of primary crystal nuclei is rolled by the cooling roll and a rolling roll placed opposite to the cooling roll, and the melt trapped in the gaps between the primary crystal nuclei is squeezed out of the system. 6. In the present invention, when the surface temperature of the cooling roll is below the solidus temperature of the molten metal, the primary crystal nuclei are discharged. Since the melt in which the impurities are condensed is also cooled and solidified and recovered as a solid phase, the purity of the obtained solid phase decreases, so the surface temperature of the cooling roll is set to the solidus temperature of the molten metal. It is necessary to maintain more than that.

〔作用〕[Effect]

本発明方法においては溶融金属中に浸漬した回転ロール
の表面温度を、該溶融金属の固相線温度以上で液相線温
度以下の温度範囲内にコントロールしているので、前記
浸漬された冷却ロール表面上に溶融金属の初晶核が晶出
する。この際排出される不純物がfA縮された融液は、
初晶核のP4技状品間隙に存在するが、ロール表面温度
が固相線温度以上に保たれている為、凝固する事なく初
晶核の間隙に捕捉されたままロールの回転により溶融金
属外に搬送される。しかる後この初晶核は前記冷却ロー
ルとこれに相対する様に配置された圧延ロールとで圧延
されるので、前記初晶核の間隙に捕捉された融液は絞り
出されて連続的に系外に排出される。従って母液である
溶融金属の不純物濃度を高める事なく、高純度金属を連
続して得る事が可能である。
In the method of the present invention, the surface temperature of the rotating roll immersed in the molten metal is controlled within a temperature range of above the solidus temperature of the molten metal and below the liquidus temperature of the molten metal. Primary nuclei of molten metal crystallize on the surface. The melt in which the impurities discharged at this time are reduced to fA is
They exist in the gaps between the P4 grains of primary crystal nuclei, but since the roll surface temperature is maintained above the solidus temperature, the molten metal remains trapped in the gaps of the primary crystal nuclei without solidifying as the roll rotates. transported outside. Thereafter, the primary crystal nuclei are rolled by the cooling roll and a rolling roll placed opposite to the cooling roll, so that the melt trapped in the gaps between the primary crystal nuclei is squeezed out and continuously rolled into a system. is discharged outside. Therefore, it is possible to continuously obtain high purity metal without increasing the impurity concentration of the molten metal that is the mother liquor.

〔実施例1〕 次に本発明を実施例により更に具体的に説明する。[Example 1] Next, the present invention will be explained in more detail with reference to Examples.

第1図は本発明の実施に使用した金属の連続精製装置の
一例を示す概略断面図であって、lは溶湯を連続的に出
湯可能な金属溶解炉、2Aは溶湯の温度調整装置を具備
した高純化処理槽、3Aは内部冷却された回転ロール、
4.4Aは不純物を含む溶融金属、5Aは精製された高
純度の初晶核、6Aは初品の樹技状品間隙に排出された
不純物が濃縮された融液、7Aは圧延ロール、8Aは固
相から絞り出された不純物が濃縮された融液、9Aは樋
、IOAは隔壁である。
FIG. 1 is a schematic cross-sectional view showing an example of a continuous metal refining apparatus used in the implementation of the present invention, in which 1 is a metal melting furnace capable of continuously tapping molten metal, and 2A is equipped with a molten metal temperature adjustment device. 3A is an internally cooled rotating roll,
4.4A is a molten metal containing impurities, 5A is a refined high-purity primary crystal nucleus, 6A is a melt with concentrated impurities discharged into the gaps of the initial wood product, 7A is a rolling roll, 8A 9A is a gutter, and IOA is a partition wall.

溶融金属4としてCu−8wt%Sn合金(液相線温度
: 1032℃、固相線温度:875°C)を金属溶解
炉1で溶解した後、高純化処理槽2Aに転湯し、該高純
化処理槽2A内での溶融金属4Aの温度を1070°C
に保持した。次に内部を空冷した外径450mmφの回
転ロール3Aを、その円周の約1/4が溶融金属4Aに
つかる様にセントシた。前記回転ロール3Aにより溶融
金属4Aが冷却されて、ロール表面に高純度の初晶核5
Aが晶出し、ロールの回転により溶融金属中を移動する
間に次第に成長して、帯状の初晶核(固相)5Aが得ら
れた。この初晶核5Aの樹枝状晶間隙には、初晶核5A
から排出されたSnf:A度の高い融液6Aが含まれて
おり、ロール3Aの回転によって初晶核5Aと共に溶湯
外に排出される。
After melting a Cu-8wt%Sn alloy (liquidus temperature: 1032°C, solidus temperature: 875°C) as the molten metal 4 in the metal melting furnace 1, it was transferred to the high purification treatment tank 2A, and the high purity The temperature of molten metal 4A in purification treatment tank 2A is set to 1070°C.
was held at Next, a rotary roll 3A having an outer diameter of 450 mm and whose inside was air-cooled was centrifuged so that about 1/4 of its circumference was covered with the molten metal 4A. The molten metal 4A is cooled by the rotating roll 3A, and highly pure primary crystal nuclei 5 are formed on the roll surface.
A crystallized and gradually grew while moving in the molten metal due to the rotation of the roll, to obtain a band-shaped primary crystal nucleus (solid phase) 5A. In the dendrite gap of this primary crystal nucleus 5A, the primary crystal nucleus 5A
The melt 6A with a high Snf:A degree discharged from the melt is contained, and is discharged out of the molten metal along with the primary crystal nuclei 5A by the rotation of the roll 3A.

次に前記冷却ロール3Aとこれに相対する様に配置され
た圧延ロール7Aとで、初晶核からなる固相5Aを圧延
し、該初晶核5Aの間隙に捕捉されたSn1度の高い融
液6Aを絞り出して、高純度Cuだけを回収する。
Next, the solid phase 5A consisting of primary crystal nuclei is rolled by the cooling roll 3A and a rolling roll 7A disposed opposite thereto, and the Sn1 degree high fusion captured in the gaps of the primary crystal nuclei 5A is rolled. Squeeze out liquid 6A to collect only high-purity Cu.

この際、絞り出されたSn濃度の高い融液8Aは自由落
下するので、圧延ロール7Aの下に設けた樋9Aに受け
て系外に排出し、母液である溶融金属4Aの汚染を防止
した。
At this time, the squeezed melt 8A with high Sn concentration fell freely, so it was received by a gutter 9A provided under the rolling roll 7A and discharged out of the system to prevent contamination of the molten metal 4A, which is the mother liquor. .

ここで高純度処理槽2A内の湯面高さが一定となる様に
、金属溶解炉lから連続的に転湯する事によって、高純
度金属を連続的に得る事が可能となる。この転湯により
生じる高純度処理槽2A内の場面の波動により、冷却ロ
ール3Aの表面に生成した初晶核5Aの隙間に含まれる
高濃度Snの融液6Aが拡散して、溶融金属4A中の5
nfi度を高める事を防ぐ為、隔壁10Aを設けて、前
記場面の波動が冷却ロール3Aの部分まで伝わらない様
にした。
Here, by continuously turning the melt from the metal melting furnace 1 so that the height of the hot water level in the high purity treatment tank 2A is constant, it becomes possible to continuously obtain high purity metal. Due to the wave motion inside the high-purity treatment tank 2A caused by this turning, the high-concentration Sn melt 6A contained in the gaps between the primary crystal nuclei 5A generated on the surface of the cooling roll 3A is diffused into the molten metal 4A. 5
In order to prevent the degree of nfi from increasing, a partition wall 10A was provided to prevent the wave motion in the above-mentioned scene from being transmitted to the cooling roll 3A.

前記連続精製装置により得られる高純度金属(Cu)中
のSnlは、溶融金属4Aの温度を一定とした場合には
、冷却ロール3Aの表面温度及び回転速度に依存する。
Snl in the high purity metal (Cu) obtained by the continuous refining device depends on the surface temperature and rotation speed of the cooling roll 3A when the temperature of the molten metal 4A is constant.

そこでこれらの量を変化させて、Cu−8wt%Sn合
金の純化実験を行い、得られた高純度金属(Cu)中の
5nliを第1表に示した。
Therefore, an experiment was conducted to purify a Cu-8wt%Sn alloy by changing these amounts, and Table 1 shows 5nli in the obtained high-purity metal (Cu).

第1表から明らかな様に、ロール表面温度が800℃と
同相線温度よりも低い場合は、回収される金属中のSn
濃度が高く、純化の効率が悪い。
As is clear from Table 1, when the roll surface temperature is 800°C, which is lower than the in-phase line temperature, Sn in the recovered metal is
High concentration and poor purification efficiency.

この原因は、初晶核から排出された高4度Sn融液も冷
却されて凝固し、固相として回収される為であり、ロー
ル速度が遅い場合にはこの凝固がより進行する為、純化
の効率が一層低下する。
The reason for this is that the high 4 degree Sn melt discharged from the primary crystal nucleus is also cooled and solidified, and is recovered as a solid phase.If the roll speed is slow, this solidification will progress further, resulting in purification. efficiency is further reduced.

一方ロール表面温度を1000 ′Cと高くした場合に
は、ロール周速が0.2m/minと遅い時は、初晶核
が再溶解して回収不能となる。又前記ロール周速が1.
2m/minと速い時は、固相が連続して帯状となるま
で生成されず、やはり回収不能であった。ロール温度が
900〜950°Cの場合も、ロール周速が速い程回収
された金属中のSn濃度が低くなっており、固相が連続
して生成される範囲内で冷却ロールの回転速度をなるべ
く速くする事により、高純度金属を効率良く回収する事
が可能である。
On the other hand, when the roll surface temperature is as high as 1000'C and the roll circumferential speed is as slow as 0.2 m/min, the primary crystal nuclei are redissolved and cannot be recovered. Further, the roll circumferential speed is 1.
When the speed was as fast as 2 m/min, the solid phase was not produced until it became a continuous band, and it was also impossible to recover it. Even when the roll temperature is 900 to 950°C, the faster the roll circumferential speed is, the lower the Sn concentration in the recovered metal is. By making the process as fast as possible, it is possible to efficiently recover high-purity metals.

〔実施例2〕 本実施例は前記実施例1と同じ構造の高純化処Fl!l
rを2個連結した場合のものであり、第2図に装置の概
略断面図を示す。
[Example 2] This example uses a high purification process Fl! having the same structure as the above-mentioned Example 1. l
Fig. 2 shows a schematic cross-sectional view of the device.

本実施例では、A/!−5wL%Si合金(液相線温度
: 628 ’C1固相線温度=577°C)を金属溶
解炉lで溶解した後、第一高純化処理装置20Aの高純
化処理槽2Aに転湯し、該高純化処理槽2A内での溶融
金属4Aの温度を670 ’Cに保持した。これに表面
温度620°C1周速0.7 m /minとした冷却
ロール3Aをセットして、前記実施例1と同様にして高
純度金属を回収した。日記回収された高純度金属中の3
i1は1.4 w L%であった。
In this example, A/! -5wL%Si alloy (liquidus temperature: 628' C1 solidus temperature = 577°C) was melted in metal melting furnace 1, and then transferred to high purification treatment tank 2A of first high purification treatment equipment 20A. The temperature of the molten metal 4A in the high purification treatment tank 2A was maintained at 670'C. A cooling roll 3A with a surface temperature of 620° C. and a circumferential speed of 0.7 m 2 /min was set thereon, and high-purity metal was recovered in the same manner as in Example 1. 3 of the high purity metals recovered in the diary
i1 was 1.4 wL%.

ここで回収された直後の固相の温度は、約560°Cと
高温であり、少ないエネルギーで再溶解可能な事に注目
して、第二高純化処理装置20)3の設置を行なった。
The temperature of the solid phase immediately after recovery is as high as about 560° C., and the second high purification treatment device 20) 3 was installed, noting that it can be remelted with little energy.

即ち第一高純化処理装置2OAから連続的に製出される
高純度金属をそのまま第二高純化処理装置20Bに入れ
て再溶解させ、高純化処理槽2B内の溶湯4Bの温度を
680°Cにコントロールした。これに表、頂温度64
0 ”C2周速0.6m/m:nとした冷却ロール3B
をセットして、[111記と同様の高純化処理を行ない
、Si星が0.4 w t%と高純度化されたA2を回
収出来た。
That is, the high-purity metal continuously produced from the first high-purification treatment apparatus 2OA is directly put into the second high-purification treatment apparatus 20B and remelted, and the temperature of the molten metal 4B in the high-purification treatment tank 2B is raised to 680°C. I controlled it. On this table, the top temperature is 64
0”C2 peripheral speed 0.6m/m:n cooling roll 3B
was set, and the same purification treatment as in Section 111 was performed, and A2 with a highly purified Si star content of 0.4 wt% was recovered.

ここで冷却ロール3Bの表面に生成した初晶核5Bの間
隙に含まれる不純物が濃縮された融液6Bは圧延ロール
3Bにより絞り出したが、前記絞り出された融fi8B
はSiを2.2w t%含んでいるlrから樋9Bに受
けて第一高純化処理装置20Aに戻し、回収効率の向上
をはかった。
Here, the melt 6B in which the impurities contained in the gaps of the primary crystal nuclei 5B generated on the surface of the cooling roll 3B are concentrated is squeezed out by the rolling roll 3B.
was received from lr containing 2.2 wt % Si in the gutter 9B and returned to the first high purification treatment device 20A, in order to improve the recovery efficiency.

又第一高純化処理装置20Aと第二高純化処理装置20
Bとでは製出量が必ずしも一敗しない事から、第二高純
化処理装置20Bにオーバーフロー樋llを設け、オー
バーフローした溶湯を第一1高純化処理装置20Aに戻
した。
Also, the first high purification treatment device 20A and the second high purification treatment device 20
Since the production volume is not necessarily the same with B, an overflow gutter was provided in the second high purification treatment apparatus 20B, and the overflowing molten metal was returned to the first high purification treatment apparatus 20A.

以上に述べた様に、本実施例ではAN−5wL%Si合
金から第一高純化処理装置2OAによって1.4 w 
t%Siに、第二高純化処理装置20Bによって0.4
 w t%Siに高純度化されたA2を回収する事が出
来た。
As mentioned above, in this example, 1.4w
t%Si to 0.4% by the second high purification processing device 20B.
A2 highly purified to wt% Si could be recovered.

即ち本実施例から明らかな様に、複数個の高純化処理装
置を連続して設置する事により、各処理装置で回収され
る高純度金属中の不純物間を漸減させる事が出来、多量
の不純物を含む金属から高純度金属を連続して回収する
事が可能である。
In other words, as is clear from this example, by installing a plurality of high-purification treatment devices in succession, it is possible to gradually reduce the amount of impurities in the high-purity metal recovered by each treatment device. It is possible to continuously recover high-purity metals from metals containing

この場合、高温状態で回収された固相を、次の高純化処
理槽で再溶解するので、従来のハツチ処理による高純化
処理を繰り返していた場合に比べて、エネルギーコスト
が大幅に低減する。
In this case, the solid phase recovered at high temperature is redissolved in the next high-purification treatment tank, so energy costs are significantly reduced compared to the case where high-purification treatment using conventional hatch processing is repeated.

又第二高純化処理装置以降においては、高純度金属を回
収する際に生じる不純物が濃縮した融液を一つ前の高純
化処理装置に戻して、再度高純度金属の回収を行なう事
が出来るので、高純度金属の回収効率が大幅に向上する
In addition, after the second high-purification processing equipment, the melt containing concentrated impurities generated when recovering high-purity metals can be returned to the previous high-purification processing equipment to recover high-purity metals again. Therefore, the recovery efficiency of high-purity metals is greatly improved.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、不純物を含む溶融金属を連続的
に精製して、高純度金属を得る事が可能である。しかも
高純化処理装置を複数個連続させる事により多量の不純
物を含む金属から高純度金属を連続して回収する事が出
来ると共に、エネルギーコストの大幅な低減と、高純度
金属の回収効・卜の大幅な向−ヒを図れる等工業上顕著
な効果を奏するものである。
According to the method of the present invention, it is possible to continuously refine molten metal containing impurities to obtain high purity metal. Furthermore, by connecting multiple high-purification treatment devices in series, high-purity metals can be continuously recovered from metals containing a large amount of impurities, and energy costs can be significantly reduced and the recovery efficiency and performance of high-purity metals can be increased. This has significant industrial effects, such as the ability to significantly improve energy efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の実施に使用する高純化処
理装置の一例を示す概略断面図である。 l−金属溶解炉、2A、2B−高純化処理槽、3A、3
B−内部冷却ロール、4.4 A、 4 B−溶融金属
、5A、5B〜高純度の初晶核、6A、6B−不純物が
濃縮された融液、7A、7B−圧延ロール、8A、8B
−固相から絞り出された不純物が濃縮された融液、9A
、9B−樋、IOA、10 B−m−隔壁、ll−オー
バーフロー樋、20高純化処理装置、20A〜第一高純
化処理装置、20B  第二高純化処理装置。 特許出願人 古河電気工業株式会社 手続補正書(自発) 平成 元年1月19日 1、事件の表示  特願昭63−138653号2、発
明の名称  金属の連続精製法 3、補正をする者 事件との関係  特許出願人 住 所  〒100東京都千代田区丸の内2丁目6番1
号4、補正の対象  明細書の「発明の詳細な説明」の
欄。 −)、 ′t・て・゛ j、−−”、、   。(, 5、補正の内容 (1)明細書の第9頁第1表を別紙のとおり訂正する。 (2)明細書の第12頁第6行にr圧延ロール3BJと
あるをr圧延ロール7BJと訂正する。
FIG. 1 and FIG. 2 are schematic cross-sectional views showing an example of a high purification processing apparatus used in carrying out the present invention. l-Metal melting furnace, 2A, 2B-High purification treatment tank, 3A, 3
B- Internal cooling roll, 4.4 A, 4 B- Molten metal, 5A, 5B ~ High purity primary crystal nucleus, 6A, 6B- Melt with concentrated impurities, 7A, 7B- Rolling roll, 8A, 8B
- Melt liquid with concentrated impurities squeezed out from the solid phase, 9A
, 9B-gutter, IOA, 10 B-m-partition, ll-overflow gutter, 20 high-purification processing device, 20A-first high-purification processing device, 20B second high-purification processing device. Patent applicant: Furukawa Electric Co., Ltd. Procedural amendment (voluntary) January 19, 1989 1. Case description: Japanese Patent Application No. 63-138653 2. Title of invention: Continuous metal refining method 3. Case made by the person making the amendment Relationship with Patent applicant address 2-6-1 Marunouchi, Chiyoda-ku, Tokyo 100
Item 4: Subject of amendment: “Detailed Description of the Invention” column of the specification. -), 't・te・゛j,--'',, (, 5. Contents of amendment (1) Table 1 on page 9 of the specification is corrected as shown in the attached sheet. (2) Section 1 of the specification In the 6th line of page 12, "r rolling roll 3BJ" is corrected to "r rolling roll 7BJ."

Claims (1)

【特許請求の範囲】[Claims] 不純物を含む溶融金属中に、その表面温度が溶融金属の
固相線温度以上で液相線温度以下の温度範囲内に内部冷
却によりコントロールされたロールの一部を回転させな
がら浸漬して、前記浸漬されたロール表面上に溶融金属
の初晶核を生成させ、該初晶核並びに初晶核の間隙に捕
捉された融液をロールの回転により、連続的に溶融金属
外に搬送し、前記冷却ロールとこれに相対する様に配置
された圧延ロールとで、初晶核からなる固相を圧延し、
該初晶核の間隙に捕捉された融液を絞り出して系外に排
出する操作を少なく共1回行なう事を特徴とする金属の
連続精製法。
A part of the roll whose surface temperature is controlled by internal cooling within a temperature range of above the solidus temperature of the molten metal and below the liquidus temperature of the molten metal is immersed in the molten metal containing impurities while rotating. Primary crystal nuclei of the molten metal are generated on the surface of the immersed roll, and the primary crystal nuclei and the melt trapped in the gaps between the primary crystal nuclei are continuously conveyed out of the molten metal by the rotation of the roll. A solid phase consisting of primary crystal nuclei is rolled by a cooling roll and a rolling roll placed opposite to the cooling roll,
A continuous metal refining method characterized in that an operation of squeezing out the melt trapped in the gaps between the primary crystal nuclei and discharging it out of the system is performed at least once.
JP13865388A 1988-06-06 1988-06-06 Continuous refining method of metal Pending JPH01306529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13865388A JPH01306529A (en) 1988-06-06 1988-06-06 Continuous refining method of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13865388A JPH01306529A (en) 1988-06-06 1988-06-06 Continuous refining method of metal

Publications (1)

Publication Number Publication Date
JPH01306529A true JPH01306529A (en) 1989-12-11

Family

ID=15227012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13865388A Pending JPH01306529A (en) 1988-06-06 1988-06-06 Continuous refining method of metal

Country Status (1)

Country Link
JP (1) JPH01306529A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062054A (en) * 1992-06-24 1994-01-11 Showa Alum Corp Production of high purity aluminum
JP2008163418A (en) * 2006-12-28 2008-07-17 Showa Denko Kk Metal-refining method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP2009167526A (en) * 2007-12-20 2009-07-30 Showa Denko Kk Method of purifying substance and apparatus for purifying substance
ES2736727A1 (en) * 2018-06-28 2020-01-07 Cobre Las Cruces S A U Metal cementing apparatus and continuous cementing process by means of it (Machine-translation by Google Translate, not legally binding)
US11603577B2 (en) 2019-07-08 2023-03-14 Cobre Las Cruces, S.A.U. Metal cementing apparatus and continuous cementation method by means of same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062054A (en) * 1992-06-24 1994-01-11 Showa Alum Corp Production of high purity aluminum
JP2008163418A (en) * 2006-12-28 2008-07-17 Showa Denko Kk Metal-refining method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP2009167526A (en) * 2007-12-20 2009-07-30 Showa Denko Kk Method of purifying substance and apparatus for purifying substance
ES2736727A1 (en) * 2018-06-28 2020-01-07 Cobre Las Cruces S A U Metal cementing apparatus and continuous cementing process by means of it (Machine-translation by Google Translate, not legally binding)
US11603577B2 (en) 2019-07-08 2023-03-14 Cobre Las Cruces, S.A.U. Metal cementing apparatus and continuous cementation method by means of same

Similar Documents

Publication Publication Date Title
OHNO et al. Origin of the equiaxed crystals in castings
JP2002529047A (en) Method and apparatus for separating metals and / or metal alloys having different melting points
JPH07206420A (en) Production of high-purity silicon
KR900006378B1 (en) Process for the continuous parification fo metals by fractional crystalliztion on a rotary drum
JPH01306529A (en) Continuous refining method of metal
JPH0273929A (en) Purification of gallium by partial solidification
CN111549233B (en) Method for recovering lead and bismuth from copper anode mud smelting slag
CN1083396C (en) Process for producing high-purity silicon
JP3646234B2 (en) Method and apparatus for producing high purity silver
FR2599019A1 (en) PROCESS FOR THE BORON PURIFICATION OF LITHIUM CARBONATE
GB2146257A (en) Apparatus for purifying crystals
US5110352A (en) Method of producing aluminum material for use as electronic material
JP2916645B2 (en) Metal purification method
WO1997003922A1 (en) Process for producing high-purity silicon
JP2714684B2 (en) Purification method of metallic gallium
US4529444A (en) Method for separating solutions
JP3263104B2 (en) Purification method of metallic silicon
CN118006916B (en) In-situ online copper removal process for crude lead
JP3784331B2 (en) Method for purifying gold-containing gallium and method for collecting gold from gallium containing gold
CN115650239B (en) Method for efficiently removing impurities in metallurgical-grade silicon
JPH068471B2 (en) Metal refining method
JP2575465B2 (en) Continuous metal purification method
JPS5941499B2 (en) Aluminum refining method
JP2023018761A (en) Continuous refining system and continuous refining method of high purity metal
AU594784B2 (en) Recovery of copper from copper/lead alloys