JPH0130565B2 - - Google Patents

Info

Publication number
JPH0130565B2
JPH0130565B2 JP55148925A JP14892580A JPH0130565B2 JP H0130565 B2 JPH0130565 B2 JP H0130565B2 JP 55148925 A JP55148925 A JP 55148925A JP 14892580 A JP14892580 A JP 14892580A JP H0130565 B2 JPH0130565 B2 JP H0130565B2
Authority
JP
Japan
Prior art keywords
shape
amount
plate thickness
change
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55148925A
Other languages
Japanese (ja)
Other versions
JPS5772713A (en
Inventor
Yoshikazu Kodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55148925A priority Critical patent/JPS5772713A/en
Publication of JPS5772713A publication Critical patent/JPS5772713A/en
Publication of JPH0130565B2 publication Critical patent/JPH0130565B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は鋼板圧延機における板厚制御機能お
よび板形状制御機能の高速化安定化のための圧延
機形状制御装置に関するものである。 圧延機における出側板形状修正効果をもたらす
圧延操作量変更として、ロールベンダ力、圧下位
置修正による負荷配分変更がよく知られている。
すでにいくつかの実施の例も発表されている。さ
らに圧延機上下ロールの周速度に比率を与える異
周速圧延技術が広い範囲での形状修正効果を有す
ることが良く知られている。 これらの操作量変更により形状修正を行うと
き、形状修正効果とともに成品板厚値にも影響を
及ぼすことがまた明らかである。通常は圧延現象
から検出までに時間を要すること、さらに操作量
変更にも時間を要するものであり、このため形状
修正操作が一定時間後に形状検出器・形状認識装
置により確認され、形状修正動作の板厚値への影
響も一定時間後に検出され、この検出された板厚
偏差に対する補正操作量はさらに板形状に影響す
るものと考えられる。この板形状を検出し修正す
るために、ふたたび形状修正のための操作量変更
を必要とし、板形状修正動作の収束に時間を要
し、制御動作そのものの安定性を阻害することは
きわめて不都合なことである。とくに形状修正の
ための操作量変更と板厚修正のための操作量変更
が同一の効果を有するときには、形状制御そのも
のの動作が不可能となる場合もある。 板形状制御あるいは板厚制御に有効とされる操
作量変更とその効果について表1にまとめてい
る。FWはロールベンデイング力修正のうちワー
クロールベンデイング力の増減を意味し、その形
状出力への効果のうち、eω欄は端のび量変化を
示し、cb欄は中のび量変化を表わしている。ま
たロールベンデイング力変更が板中央部板厚に及
ぼす効果をh欄に示している。kは注目する圧延
スタンドでの上下ワークロール周速の比率を意味
し、通常圧延ではk=1.0である。またPは主と
してスクリユ圧下位置修正により得られる圧下力
変更を意味し、その形状・板厚への効果を示して
いる。
The present invention relates to a rolling mill shape control device for speeding up and stabilizing the plate thickness control function and plate shape control function in a steel plate rolling mill. As a rolling operation amount change that brings about the effect of modifying the exit plate shape in a rolling mill, changing the load distribution by modifying the roll bender force and the rolling position is well known.
Some implementation examples have already been announced. Furthermore, it is well known that a different circumferential speed rolling technique that provides a ratio between the circumferential speeds of the upper and lower rolls of a rolling mill has a shape modification effect over a wide range. It is also clear that when modifying the shape by changing these operating amounts, it affects not only the shape modification effect but also the thickness value of the finished product. Normally, it takes time to detect the rolling phenomenon, and it also takes time to change the operation amount. Therefore, the shape correction operation is confirmed by the shape detector/shape recognition device after a certain period of time, and the shape correction operation is confirmed by the shape detector/shape recognition device after a certain period of time. The influence on the plate thickness value is also detected after a certain period of time, and it is considered that the correction operation amount for the detected plate thickness deviation further influences the plate shape. In order to detect and correct this plate shape, it is necessary to change the operation amount again to correct the shape, and it takes time for the plate shape correction operation to converge, which is extremely inconvenient as it impairs the stability of the control operation itself. That's true. In particular, when changing the operating amount for shape correction and changing the operating amount for sheet thickness correction have the same effect, the shape control itself may become impossible. Table 1 summarizes the operation amount changes that are effective for plate shape control or plate thickness control and their effects. F W means an increase or decrease in the work roll bending force in the roll bending force correction, and among its effects on the shape output, the eω column shows the change in the end extension amount, and the cb column shows the change in the middle extension amount. There is. In addition, the effect of changing the roll bending force on the thickness of the central part of the plate is shown in column h. k means the ratio of the circumferential speed of the upper and lower work rolls in the rolling stand of interest, and in normal rolling, k = 1.0. Further, P mainly means a change in the rolling force obtained by correcting the screw rolling position, and indicates its effect on the shape and plate thickness.

【表】 この表より明らかなように、形状修正のための
操作量変更のいずれについても形状修正効果とと
もに板厚出力(ここでは板幅中央部での板厚値)
にも影響を及ぼすこと、さらにまた板厚制御のた
めの操作量修正が板厚修正効果とともに、板形状
にも少なからぬ影響を及ぼすことが明らかであ
る。 従来よりこのように他機能に及ぼす影響を考慮
して形状制御機能、板厚制御機能を共に最大限に
効果させることは困難とされ、板形状制御、板厚
制御の双方あるいは一方の効果を限定した範囲で
動作させているのが現状である。 本発明は、このように板厚制御・形状制御の機
能間に存在する他への影響について充分に相殺補
償し、板厚制御系へ及ぼす影響を補償した形状制
御機能と、板形状へ及ぼす影響を補償した板厚制
御機能を合わせて有する圧延機形状制御装置を提
供することを目的とするものである。 上記の圧延操作量のうち、圧延力変化Pについ
ては、操作可能な制御入力としてスクリユ圧下位
置Sで代表させても効果の本質は変らないもので
ある。板形状・板厚値を決定する圧延動作の特性
式として、基準点近傍の微小変動について、次の
線形式で表現できる。 ここで〔A〕,〔B〕は3×3行列であり、要素
としては 上式において、∂h/∂F,∂h/∂k,∂h/∂Sは出側
板厚変 化Δhに及ぼすベンデイング力変化ΔFW、ロール
異周速比変化Δk、スクリユ圧下位置変更ΔSの効
果を示すものであり、∂e/∂F,∂e/∂k,∂e/∂Sは
形状変 化のうち端のび量変化Δeωに及ぼすΔFW,Δk,
ΔSの反を示すものであり、∂c/∂F,∂c/∂k,∂c/
∂Sは形 状変化のうち中のび量変化Δcbに及ぼすΔFW
Δk,ΔSの効果を示すものである。またτH,τE,
τCは入側板厚変化ΔH、入側板形状ΔEW及び
ΔCBが各々のその出側での値Δh,Δeω,Δcbに
及ぼす影響を表わすものとしている。 これらの値はいずれも板材の鋼種・寸法・温
度・圧延速度その他の圧延条件と圧延機能力によ
り決定するものであり、モデル式解析、実験によ
りその値を決定することができるものである。 (1)式における影響系数行列〔A〕は互に独立な
操作量変化に対する出力値変化を意味するもので
あり、その逆行列は存在する。検出値偏差量に対
する操作量変更決定の係数行列〔B〕として次の
ように選べば、 〔A〕〔B〕=〔I〕 (4) ここで〔I〕は単位行列、このとき圧延中のあ
る時点における出側板厚修正目標量をΔh*、形状
修正目標量をΔeω*、Δcb*とするとき、この修正
効果を得るべきベンデイング力修正量、ロール異
周速比、スクリユ圧下位置修正量を次式により求
めることを本発明の特徴としている。 この操作量変更の区間内で入側板厚、入側板形
状について変化がないとすれば、(5)式を(1)式に代
入すれば 上式のように(5)式に示す操作量変更により、出
側板厚、板形状をともにその修正目標量に一致し
て変化を得ることができる。 また圧延中のある時点で、形状値だけをΔeω*
だけ修正する必要のあるとき、前記の係数行列
〔B〕を用いて に従つて操作量修正を実施する場合には(7)式を(1)
式に代入すれば明らかなように このように、この区間で入側板厚・入側板形状
に新たな変化がないとするとき、板形状変化
Δeωのみがその修正目標値に一致して得られ、
その他の変数(ここでは板厚値、中のび量)には
何らの影響を与えない。これにより形状制御機能
の応答性を高め、他の機能への外乱を生ずること
もない。またある時点での板厚値検出の結果、板
厚値のみをΔh*量修正する必要のあるとき、次式
により各操作量を決定すれば、 この操作量変更の区間において入側板厚と入側
板形状に有意な変化がないとして 上式に示すように出側板厚値のみがその修正目
標値に一致して変化し、他の形状について一切の
影響はない、これにより板厚制御の応答性を向上
させ、効果の範囲を広くすることも可能ならしめ
る、今仮りに(9)式に示す操作量変更によらず、板
厚修正を実施する場合には、板厚値Δhとともに
形状変化Δeω,Δcbをも発生し、この形状変化を
修正する第二の操作量変更が必要となり、板厚値
が変化する。このようにして板厚制御と形状制御
の応答性が低下し、甚しい場合には希望する板厚
値に収束させることが不可能となる。 本発明実施の例を図に従つて説明する。 図には板材1が圧延機2に於いて圧延されてい
る。装置3,4は圧延材の板形状及び板厚値の検
出器を示し、形状検出器3の出力は形状認識装置
5により処理され、たとえば本明細書における端
のび量eω、中のび量cb等に変換され、形状制御
装置6に出力される。形状制御装置6では現在お
よび過去の形状認識装置出力とその設定基準値と
により形状修正目標量Δeω*,Δcbを算出する。
また板厚制御装置7では板厚検出器4よりの信号
hの現在値およびその累積値に従がい板厚修正目
標量Δh*を算出する。これらの修正目標量は操作
量変更演算装置8に出力され、この演算装置8に
おいては、たとえば本文中(5)式に示される演算を
へて圧延機ベンデイング力変更ΔFW、スクリユ圧
下位置変更ΔS、ロール異周速比変更量Δkとし
て、おのおのロールベンデイング力制御装置9、
スクリユ圧下位置制御装置11、ロール周速比制
御装置12に出力される。ロールベンデイング力
制御装置9ではロールベンデイング機構10に対
してセルベンデイング力を上の変更指令ΔFW *
一致して変更するよう動作がなされる。またスク
リユ圧下位置制御装置9は上の指令ΔS*に従がい
圧下位置を制御する機能と装置を含んだものとし
ている。ロール周速比制御装置12は減速機構1
3に対しその上下ロール周速比の比を前記変更指
令Δk*に従つて変更を実施するものであり装置1
4はロール駆動用モータを示している。 なお、上述の実施例の構成において、ロールベ
ンデイング力修正をワークロールベンデイング機
構によつて行うとしているがバツクアツプロール
付属のロールベンド機構によつて行うことも可能
であり有効である。また板厚検出器、形状検出器
を圧延機出側に設けるとしているが他の位置に設
置することについても、また検出原理方式につい
てどのようなものでもこの発明を実施することは
可能である。また、形状認識装置において、板の
中のび量、端のび量を出力するとしているが、板
幅方向伸び率に注目することも板幅1/4点での板
形状、複合のびに注目した形状制御機能と併用す
ることも同様に可能であり同じ効果を期待でき
る。 以上に示したように本発明によれば板形状制御
のための操作量変更と板厚制御のための操作量変
更について互いに他方への干渉外乱を最小となる
ように操作することが可能となり、板形状制御に
おいては板厚値への影響を発生せずに板形状のみ
を修正することができ、また板厚制御においては
その板形状への何らかの影響をも与えることなく
板厚値修正を実現できる。このため、両制御機能
を大幅に高速応答性を改善できる効果があり、ま
た両者を併用する場合についてもその高速応答性
を維持したまま同時に機能を実施し得る点は製品
の品質向上に大きく貢献し得るものである。
[Table] As is clear from this table, both the shape correction effect and the plate thickness output (here, the plate thickness value at the center of the plate width) for any change in the operation amount for shape correction.
Furthermore, it is clear that the modification of the operation amount for plate thickness control has a considerable influence on the plate shape as well as the plate thickness correction effect. Conventionally, it has been difficult to maximize the effectiveness of both the shape control function and plate thickness control function by considering the effects on other functions, and it has been difficult to maximize the effectiveness of both the plate shape control function and plate thickness control function. Currently, the system is operating within the specified range. In this way, the present invention provides a shape control function that sufficiently compensates for the effects on other functions that exist between the plate thickness control and shape control functions, and a shape control function that compensates for the influence on the plate thickness control system, and the influence on the plate shape. It is an object of the present invention to provide a rolling mill shape control device that also has a plate thickness control function that compensates for this. Among the above-mentioned rolling operation amounts, the rolling force change P does not change the essence of the effect even if it is represented by the screw reduction position S as an operable control input. As a characteristic equation of the rolling operation that determines the plate shape and plate thickness value, minute fluctuations near the reference point can be expressed in the following linear form. Here, [A] and [B] are 3×3 matrices, and the elements are In the above equation, ∂h/∂F, ∂h/∂k, ∂h/∂S are the effects of bending force change ΔF W , roll different circumferential speed ratio change Δk, and screw reduction position change ΔS on exit side plate thickness change Δh. ∂e/∂F, ∂e/∂k, ∂e/∂S are the effects of ΔF W , Δk,
It shows the inverse of ΔS, and ∂c/∂F, ∂c/∂k, ∂c/
∂S is the effect of ΔF W on the expansion amount change Δcb among the shape changes,
This shows the effects of Δk and ΔS. Also, τH, τE,
τC represents the influence of the inlet side plate thickness change ΔH, the inlet side plate shapes ΔEW and ΔCB on the respective values Δh, Δeω, and Δcb on the outlet side. All of these values are determined by the steel type, dimensions, temperature, rolling speed, and other rolling conditions of the plate material, as well as by the rolling function, and these values can be determined by model equation analysis and experiments. The influence system matrix [A] in equation (1) means changes in output values in response to mutually independent changes in manipulated variables, and its inverse matrix exists. If the coefficient matrix [B] for determining the manipulated variable change for the detected value deviation is selected as follows, [A] [B] = [I] (4) Here, [I] is the unit matrix, and in this case, When the target amount of thickness correction on the exit side at a certain point is Δh * , the target amount of shape correction is Δeω * , Δcb * , the amount of bending force correction, roll different circumferential speed ratio, and screw reduction position correction amount that should obtain this correction effect are A feature of the present invention is that it is determined by the following equation. Assuming that there is no change in the entrance side plate thickness and entrance side plate shape within this interval of changing the manipulated variable, substituting equation (5) into equation (1), By changing the operation amount shown in equation (5) as in the above equation, it is possible to obtain a change in both the outlet side plate thickness and the plate shape in accordance with the correction target amount. Also, at a certain point during rolling, only the shape value is changed to Δeω *
When it is necessary to correct only When modifying the manipulated variable according to
As can be seen by substituting into the formula In this way, when it is assumed that there is no new change in the entrance side plate thickness and entrance side plate shape in this section, only the plate shape change Δeω is obtained in accordance with the corrected target value,
Other variables (here, the plate thickness value and the amount of elongation) are not affected in any way. This increases the responsiveness of the shape control function and does not cause any disturbance to other functions. Also, as a result of detecting the plate thickness value at a certain point, when it is necessary to correct only the plate thickness value by the amount Δh * , if each manipulated variable is determined by the following formula, Assuming that there is no significant change in the entrance side plate thickness and entrance side plate shape in this area of changing the manipulated variable. As shown in the above formula, only the exit plate thickness value changes in accordance with the corrected target value, and other shapes are not affected at all. This improves the responsiveness of plate thickness control and widens the range of effectiveness. If the plate thickness is corrected without changing the manipulated variable shown in equation (9), shape changes Δeω and Δcb will occur along with the plate thickness value Δh, and this shape A second manipulated variable change is required to correct the change, and the plate thickness value changes. In this way, the responsiveness of plate thickness control and shape control decreases, and in severe cases, it becomes impossible to converge to a desired plate thickness value. An example of implementing the present invention will be described with reference to the drawings. In the figure, a plate material 1 is being rolled in a rolling mill 2. Devices 3 and 4 indicate detectors for the plate shape and plate thickness value of the rolled material, and the output of the shape detector 3 is processed by the shape recognition device 5, for example, the edge extension amount eω, the middle extension amount cb, etc. in this specification. and output to the shape control device 6. The shape control device 6 calculates shape correction target amounts Δeω * and Δcb based on the current and past outputs of the shape recognition device and their set reference values.
Further, the plate thickness control device 7 calculates a target plate thickness correction amount Δh * according to the current value of the signal h from the plate thickness detector 4 and its cumulative value. These correction target amounts are output to the operation amount change calculation device 8, and in this calculation device 8, for example, the rolling mill bending force change ΔF W and the screw rolling position change ΔS are calculated through the calculation shown in equation (5) in the main text. , each roll bending force control device 9 as the roll different circumferential speed ratio change amount Δk,
It is output to the screw reduction position control device 11 and the roll circumferential speed ratio control device 12. The roll bending force control device 9 operates to change the cell bending force of the roll bending mechanism 10 in accordance with the above change command ΔF W * . Further, the screw lowering position control device 9 includes a function and a device for controlling the screw lowering position according to the above command ΔS * . The roll circumferential speed ratio control device 12 is the reduction mechanism 1
3, the ratio of the circumferential speed ratio of the upper and lower rolls is changed according to the change command Δk * , and the device 1
4 indicates a roll drive motor. In the configuration of the above embodiment, the roll bending force is corrected by the work roll bending mechanism, but it is also possible and effective to use the roll bending mechanism attached to the backup roll. Further, although the plate thickness detector and the shape detector are provided on the exit side of the rolling mill, the present invention can be implemented by installing them at other positions and using any detection principle. In addition, the shape recognition device is said to output the amount of elongation inside the plate and the amount of elongation at the edge, but it is also possible to focus on the elongation rate in the width direction of the plate, the shape of the plate at 1/4 point of the plate width, and the shape that focuses on composite elongation. It is also possible to use it in combination with the control function, and the same effect can be expected. As described above, according to the present invention, it is possible to change the operation amount for plate shape control and to change the operation amount for plate thickness control in such a way that interference disturbance to each other is minimized. In plate shape control, only the plate shape can be modified without affecting the plate thickness value, and in plate thickness control, the plate thickness value can be corrected without any effect on the plate shape. can. This has the effect of greatly improving the high-speed response of both control functions, and when both are used together, the ability to perform the functions at the same time while maintaining high-speed response greatly contributes to improving product quality. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の一実施例の概略的な構成を示す
構成図である。 図において、1は圧延材、2は圧延機、3は板
形状検出器、4は板厚検出器、5は板形状認識装
置、6は形状制御装置、7は板厚制御装置、8は
操作量変更演算装置、9はロールベンデイング制
御装置、10はロールベンド機構、11はスクリ
ユ圧下位置制御装置、12はロール周束比制御装
置、13は差動減速機構、14はロール駆動モー
タを示すものである。
The figure is a configuration diagram showing a schematic configuration of an embodiment of the present invention. In the figure, 1 is a rolled material, 2 is a rolling machine, 3 is a plate shape detector, 4 is a plate thickness detector, 5 is a plate shape recognition device, 6 is a shape control device, 7 is a plate thickness control device, and 8 is an operation 9 is a roll bending control device, 10 is a roll bending mechanism, 11 is a screw reduction position control device, 12 is a roll circumference ratio control device, 13 is a differential reduction mechanism, and 14 is a roll drive motor. It is something.

Claims (1)

【特許請求の範囲】 1 圧延板材の板形状を検出する形状検出器と、
上記圧延板材の板厚値を検出する板厚検出器と、
上記形状検出器の出力信号を入力し、上記圧延板
材の端のび量eω、中のび量cbを算出する形状認
識装置と、この形状認識装置の現在および過去の
出力とその設定基準値とにより端のび量形状修正
目標量Δeω*及び中のび量形状修正目標量Δcb*
算出する形状制御装置と、上記板厚検出器の出力
信号の現在値及びその累積値により板厚修正目標
量Δh*を算出する板厚制御装置と、上記形状修正
目標量と上記板厚修正目標量とによりロールベン
デイング力変更量ΔF、スクリウ圧下位置変更量
ΔS、ロール異周速比変更量ΔKを演算して出力す
る操作量変更演算装置とを備え、この操作量変更
演算装置よりのロールベンデイング力変更量、ス
クリウ圧下位置変更量及びロール異周速比変更量
により板厚制御及び板形状制御を行う圧延機形状
制御装置において、上記操作量変更演算装置は板
形状、板厚値を決定する圧延動作の特性式として
基準動作点近傍の微小変動について表現し、影響
係数行列A、係数行列B、出側板厚値Δh、入側
板厚変化ΔH、入側板形状ΔE,ΔCを有する関係
に上記形状修正目標量と上記板厚修正目標量とに
より上記ロールベンデイング力変更量、上記スク
リウ圧下位置変更量及び上記ロール異周速比変更
量を求める次式 を代入し、板厚・板形状のうち修正の必要のある
ものについて操作量修正する演算を行うことを特
徴とする圧延機形状制御装置。
[Claims] 1. A shape detector that detects the shape of a rolled plate;
a plate thickness detector that detects the plate thickness value of the rolled plate material;
A shape recognition device inputs the output signal of the shape detector and calculates the edge elongation amount eω and the middle elongation amount cb of the rolled plate material, and the shape recognition device uses the current and past outputs of the shape recognition device and its set reference value to A shape control device that calculates the target elongation shape correction amount Δeω * and the target elongation shape correction amount Δcb * , and the current value of the output signal of the plate thickness detector and its cumulative value to calculate the target plate thickness correction amount Δh * . The roll bending force change amount ΔF, the screw reduction position change amount ΔS, and the roll different circumferential speed ratio change amount ΔK are calculated and output using the plate thickness control device to be calculated, the shape correction target amount, and the plate thickness correction target amount. A rolling mill that controls plate thickness and plate shape based on the amount of change in roll bending force, the amount of change in screw rolling position, and the amount of change in roll different circumferential speed ratio from this operation amount change calculation device. In the shape control device, the operation amount change calculation device expresses minute fluctuations in the vicinity of the reference operating point as a characteristic equation of the rolling operation that determines the plate shape and plate thickness value, and calculates the influence coefficient matrix A, coefficient matrix B, and exit side plate thickness. Relational expression with value Δh, entrance side plate thickness change ΔH, entrance side plate shape ΔE, ΔC The following formula is used to calculate the roll bending force change amount, the screw reduction position change amount, and the roll different circumferential speed ratio change amount using the shape correction target amount and the plate thickness correction target amount. A rolling mill shape control device characterized in that the rolling mill shape control device performs calculations to correct the manipulated variables for those that need to be corrected among plate thickness and plate shape.
JP55148925A 1980-10-23 1980-10-23 Shape controlling device for rolling mill Granted JPS5772713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55148925A JPS5772713A (en) 1980-10-23 1980-10-23 Shape controlling device for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55148925A JPS5772713A (en) 1980-10-23 1980-10-23 Shape controlling device for rolling mill

Publications (2)

Publication Number Publication Date
JPS5772713A JPS5772713A (en) 1982-05-07
JPH0130565B2 true JPH0130565B2 (en) 1989-06-21

Family

ID=15463723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55148925A Granted JPS5772713A (en) 1980-10-23 1980-10-23 Shape controlling device for rolling mill

Country Status (1)

Country Link
JP (1) JPS5772713A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3476742D1 (en) * 1983-03-14 1989-03-23 Schloemann Siemag Ag Method of making hot rolled strip with a high quality section and flatness

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497562A (en) * 1978-01-20 1979-08-01 Ishikawajima Harima Heavy Ind Co Ltd Control of shape in rolling mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497562A (en) * 1978-01-20 1979-08-01 Ishikawajima Harima Heavy Ind Co Ltd Control of shape in rolling mill

Also Published As

Publication number Publication date
JPS5772713A (en) 1982-05-07

Similar Documents

Publication Publication Date Title
JPH0130565B2 (en)
JPH04182019A (en) Device for controlling sheet thickness on rolling mill
JPS6028566B2 (en) Plate crown control method
JPH0112566B2 (en)
JPH0687011A (en) Method for rolling thick plate
JPS637846B2 (en)
JPS6343164B2 (en)
JPS6134881B2 (en)
JPS6240081B2 (en)
JPH048122B2 (en)
JPS6125443B2 (en)
JPH0347613A (en) Thickness control device for cold tandem mill
JP2680252B2 (en) Shape control method for multi-high rolling mill
JPH0736923B2 (en) Non-interference control method of strip thickness and shape in multi-high rolling mill
JPH0227046B2 (en)
JPS6028565B2 (en) Plate crown control method in rolling mill
JPH0246284B2 (en)
JP3389903B2 (en) Metal strip rolling control method
JP2719212B2 (en) Strip shape and strip crown control method in strip rolling
JPH0144403B2 (en)
JP3910264B2 (en) Rolling control device
JPS63260614A (en) Device for controlling shape in cluster mill
JP2503327B2 (en) Tension looper angle controller between stands of continuous rolling mill
JPS6059046B2 (en) Gaugemeter type automatic plate thickness control method
JPS587364B2 (en) Plate thickness control method for continuous rolling mill