JPH01304609A - Superconductive wire rod with high critical current density - Google Patents

Superconductive wire rod with high critical current density

Info

Publication number
JPH01304609A
JPH01304609A JP63133690A JP13369088A JPH01304609A JP H01304609 A JPH01304609 A JP H01304609A JP 63133690 A JP63133690 A JP 63133690A JP 13369088 A JP13369088 A JP 13369088A JP H01304609 A JPH01304609 A JP H01304609A
Authority
JP
Japan
Prior art keywords
sintered body
powder
tube
superconducting
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63133690A
Other languages
Japanese (ja)
Inventor
Sadaaki Hagino
萩野 貞明
Genichi Suzuki
鈴木 元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63133690A priority Critical patent/JPH01304609A/en
Publication of JPH01304609A publication Critical patent/JPH01304609A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enable to secure stable high critical current density in a simple structure by including a specific metallic powder sintered layer between a tube and a powder sintered body in the superconductive wire rod with a superconductive ceramic powder sintered body of a specific compound coated with Ag tube. CONSTITUTION:A superconductive ceramic powder sintered body 3 with a composition composed of rare earth elements including Y, alkaline earth metal, copper and oxygen and of a compound of perovskite structure is coated with a Ag tube 1. Ag powder sintered bodies 2 are charged between the sintered body 3 and the tube 1, processed for stretching and heat treated; a superconductive wire rod is thus formed. The inclusion of the sintered body 2 prevents the generation of gaps in processing and heat treatment as well as the generation of splits in the sintered body 3, and the superconductive wire rod that can secure stable high critical current density is formed in a simple structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、安定した高臨界電流密度を有する超電導線
材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a superconducting wire having a stable and high critical current density.

〔従来の技術〕[Conventional technology]

一般に、Yを含む希土類元素(以下、この元素をRで示
す)、アルカリ土類金属、Cuおよび酸素からなるペロ
ブスカイト構造を有する化合物(以下、この化合物を超
電導セラミックスという)は、液体窒素で冷却可能な7
7°Kにおいて超電導現象を示すことが知られている。
In general, compounds with a perovskite structure consisting of rare earth elements (hereinafter referred to as R) including Y, alkaline earth metals, Cu, and oxygen (hereinafter referred to as superconducting ceramics) can be cooled with liquid nitrogen. 7
It is known that superconductivity occurs at 7°K.

上記超電導セラミックスの粉末を用いて超電導線材を製
造する方法としては、原料粉末として、いずれも平均粒
径: 10閘以下のR203粉末、アルカリ土類金属の
炭酸塩粉末、およびCuO粉末を用意し、これら原料粉
末を所定の配合組成に配合し、混合し、大気中または酸
素雰囲気中で、温度二850〜950℃にて焼成し、ペ
ロブスカイト構造を有する超電導セラミックスを製造し
、これを平均粒径:10訊以下に粉砕して超電導セラミ
ックス粉末とし、この超電導セラミックス粉末をAgチ
ューブに充填し、このチューブの両端を封じたのち、ス
ェージング加工、溝ロール加工、またはダイス加工等の
伸線加工を施して、直径:5mm以下のAg複合ワイヤ
とし、最終的に上記伸線加工されたAg複合ワイヤを大
気中または酸素雰囲気中で、温度=900〜950℃で
熱処理して超電導線材を製造していた。
As a method for manufacturing a superconducting wire using the above superconducting ceramic powder, R203 powder, an alkaline earth metal carbonate powder, and a CuO powder, all of which have an average particle size of 10 or less, are prepared as raw material powders, These raw material powders are blended into a predetermined composition, mixed, and fired at a temperature of 2,850 to 950°C in the air or oxygen atmosphere to produce superconducting ceramics having a perovskite structure, which has an average particle size of: The superconducting ceramic powder is crushed to 10 centimeters or less, and the superconducting ceramic powder is filled into an Ag tube. After sealing both ends of the tube, it is subjected to wire drawing processing such as swaging, groove roll processing, or die processing. A superconducting wire was manufactured by preparing an Ag composite wire with a diameter of 5 mm or less, and finally heat-treating the drawn Ag composite wire at a temperature of 900 to 950° C. in the air or oxygen atmosphere.

このようにして得られた超電導線材はAgチューブの内
部に超電導セラミックス粉末の焼結体が充填されている
構造となっている。
The superconducting wire thus obtained has a structure in which the inside of an Ag tube is filled with a sintered body of superconducting ceramic powder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記従来の超電導線材は、伸線加工して得ら
れたAg複合ワイヤを大気中または酸素雰囲気中、温度
:900〜950℃で熱処理する工程において、上記A
g複合ワイヤ内に充填されている超電導セラミックス粉
末は焼結収縮し、超電導線材の外被のAgチューブと上
記焼結収縮した超電導セラミックス粉末焼結体との間に
間隙が生じ、さらに、上記超電導セラミックス粉末焼結
体自体にも亀裂が発生することがあった。
However, in the above-mentioned conventional superconducting wire, the above-mentioned A
g The superconducting ceramic powder filled in the composite wire is sintered and shrunk, and a gap is created between the Ag tube of the outer sheath of the superconducting wire and the sintered superconducting ceramic powder sintered body, and the superconducting Cracks also occurred in the ceramic powder sintered body itself.

このような間隙または亀裂の有する超電導線材は、Ag
チューブから超電導セラミックスへの電気の流れが安定
せず、超電導セラミックスに流れる臨界電流密度も低く
なり、不安定となる等の問題点が生じていた。
A superconducting wire having such gaps or cracks is Ag
Problems have arisen in that the flow of electricity from the tube to the superconducting ceramics is not stable, and the critical current density flowing through the superconducting ceramics is also low and unstable.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、かかる問題点を解決すべく研究
を行なった結果、 Agチューブの中心に超電導セラミックスの有形体を装
入するとともに、上記超電導セラミックス粉末有形体と
Agチューブの間に、Ag粉末またはAg粉末と超電導
セラミックス粉末との混合粉末(以下、Ag混合粉末と
いう)を充填してなるAg複合チューブを作成し、上記
Ag複合チューブを伸線加工してAg複合ワイヤとし、
ついで上記Ag複合ワイヤを大気中または酸素雰囲気中
で熱処理して得られた超電導線材は、Agチューブと、
Ag粉末焼結体層またはAg混合粉末焼結体層と、超電
導セラミックス焼結体とからなる断面構造を有しており
、安定した高臨界電流密度を有することを知見したので
ある。この発明はかかる知見に基づくものであって、以
下この発明の高臨界電流密度を有する超電導線材の断面
構造を図面を用いて説明する。
Therefore, the present inventors conducted research to solve such problems, and as a result, they inserted a superconducting ceramic material into the center of an Ag tube, and inserted a material between the superconducting ceramic powder material and the Ag tube. Create an Ag composite tube filled with Ag powder or a mixed powder of Ag powder and superconducting ceramic powder (hereinafter referred to as Ag mixed powder), wire-draw the Ag composite tube to make an Ag composite wire,
Next, the superconducting wire obtained by heat-treating the Ag composite wire in air or oxygen atmosphere has an Ag tube,
They found that it has a cross-sectional structure consisting of an Ag powder sintered body layer or an Ag mixed powder sintered body layer and a superconducting ceramic sintered body, and has a stable high critical current density. The present invention is based on this knowledge, and the cross-sectional structure of the superconducting wire having a high critical current density of the present invention will be explained below with reference to the drawings.

第1図は、この発明の高臨界電流密度を有する超電導線
材の断面説明図であり、第1図において1はAgチュー
ブ、2はAg粉末焼結体層、3は超電導セラミックス粉
末焼結体である。第1図に示されるように、Agチュー
ブ1と超電導セラミックス粉末焼結体3の間にAg粉末
焼結体層2を介在せしめることにより、 (1)上記Ag複合ワイヤを大気中または酸素雰囲気中
で熱処理するときに、Ag粉末および超電導セラミック
ス粉末は共に焼結収縮すると同時にAgチューブ1とA
g粉末焼結体層2の間に間隙4が発生するが、Agチュ
ーブ1とAg粉末焼結体層2とは同一組成の金属である
ために、上記Agチューブ1とAg粉末焼結体層2とは
少なくとも1個所において強固な冶金的接合がなされて
おり、上記間隙4の発生による電流の不安定な流れは起
らない。
FIG. 1 is an explanatory cross-sectional view of a superconducting wire having a high critical current density according to the present invention. In FIG. 1, 1 is an Ag tube, 2 is an Ag powder sintered body layer, and 3 is a superconducting ceramic powder sintered body. be. As shown in FIG. 1, by interposing the Ag powder sintered body layer 2 between the Ag tube 1 and the superconducting ceramic powder sintered body 3, (1) the Ag composite wire is placed in the air or oxygen atmosphere; During the heat treatment, the Ag powder and superconducting ceramic powder both sinter and shrink, and at the same time
A gap 4 is generated between the Ag powder sintered body layer 2, but since the Ag tube 1 and the Ag powder sintered body layer 2 are made of metals with the same composition, the Ag tube 1 and the Ag powder sintered body layer are A strong metallurgical connection is made to the electrode 2 at at least one location, and unstable current flow due to the generation of the gap 4 does not occur.

(2)上記超電導セラミックス粉末焼結体3とAg粉末
焼結体層2とは、その境界において、2種類の粉末どう
しが混合接触して焼結されているためにアンカー効果が
働き、電気的接触がきわめて良好である。
(2) At the boundary between the superconducting ceramic powder sintered body 3 and the Ag powder sintered body layer 2, two types of powder are mixed and sintered in contact with each other, so an anchor effect works, and electrical Very good contact.

(3)上記熱処理中に超電導セラミックス粉末が焼結収
縮しても、超電導セラミックス粉末の外周に存在するA
g粉末も同時に焼結収縮し、上記Ag粉末の焼結収縮量
を上記超電導セラミックス粉末の焼結収縮量よりも大と
なるようにしておけば、上記超電導セラミックス粉末は
、外周に存在するAg粉末の収縮により圧縮力を受けな
がら焼結収縮することになり、超電導セラミックス粉末
焼結体に亀裂が発生することはない。
(3) Even if the superconducting ceramic powder undergoes sintering shrinkage during the above heat treatment, A that exists on the outer periphery of the superconducting ceramic powder
The g powder also undergoes sintering shrinkage at the same time, and if the amount of sintering shrinkage of the Ag powder is set to be larger than the amount of sintering shrinkage of the superconducting ceramic powder, the superconducting ceramic powder will shrink due to the Ag powder existing on the outer periphery. The superconducting ceramic powder sintered body undergoes sintering contraction while being subjected to compressive force due to the contraction of the superconducting ceramic powder, and no cracks occur in the superconducting ceramic powder sintered body.

などのすぐれた効果を発揮するものである。It has excellent effects such as:

第1図では、Ag粉末焼結体層2を有する超電導線材に
ついて述べたが、第2図に示されるように、Ag粉末と
超電導セラミックス粉末の混合粉末の焼結体からなる層
、すなわちAg混合粉末焼結体層2′を介在させてもよ
い。Ag混合粉末は、Ag粉末よりも超電導セラミック
ス粉末に近い焼結収縮性を示すので、熱処理して得られ
た上記Ag混合粉末焼結体層2′は、Ag粉末焼結体層
2よりも超電導セラミックス粉末焼結体3に対する接合
性がすぐれている。上記Ag混合粉末焼結体層2′を形
成するAg混合粉末は、Ag粉末に対して超電導セラミ
ックス粉末を75重量%以下混合してなる粉末であって
、上記超電導セラミックス粉末が75重量%を越えて添
加されるとAgチューブとの十分な冶金的結合が得られ
ないので好ましくない。
In Fig. 1, a superconducting wire having a Ag powder sintered body layer 2 was described, but as shown in Fig. 2, a layer consisting of a sintered body of a mixed powder of Ag powder and superconducting ceramic powder, that is, an Ag mixed A powder sintered body layer 2' may be interposed. Since the Ag mixed powder exhibits sintering shrinkage properties closer to those of superconducting ceramic powder than Ag powder, the Ag mixed powder sintered body layer 2' obtained by heat treatment has a higher superconductivity than the Ag powder sintered body layer 2. The bondability to the ceramic powder sintered body 3 is excellent. The Ag mixed powder forming the Ag mixed powder sintered body layer 2' is a powder obtained by mixing 75% by weight or less of superconducting ceramic powder with Ag powder, and the superconducting ceramic powder exceeds 75% by weight. If it is added, sufficient metallurgical bonding with the Ag tube cannot be obtained, which is not preferable.

上記Ag粉末は、平均粒径:1〜200μsの範囲の粉
末を使用し、また上記超電導セラミックス粉末は、平均
粒径:2〜1o−の範囲内のものを使用するとよい結果
が得られる。
Good results can be obtained by using the Ag powder with an average particle size in the range of 1 to 200 μs, and using the superconducting ceramic powder with the average particle size in the range of 2 to 1°.

この発明の高臨界電流密度を有する超電導線材の超電導
セラミックス粉末焼結体3の断面形状は円形に限らず四
角形、五角形、六角形等の多角形、その他任意の形状を
有するものであってもよい。
The cross-sectional shape of the superconducting ceramic powder sintered body 3 of the superconducting wire having a high critical current density according to the present invention is not limited to a circle, but may be a polygon such as a quadrangle, a pentagon, a hexagon, or any other shape. .

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

実施例 1 原料粉末として、いずれも平均粒径:6unのY2O3
粉末、B a COa粉末、およびCuO粉末を用意し
、これら原料粉末を、Y2O3:15.13%、B a
 CO3: 52 、89%、Cu O:31.98%
(以上重量%)の割合で配合し、混合し、この混合粉末
を、大気中、温度、900’C110時間保持の条件で
焼成し、平均粒径:2.8umに粉砕してYBa2Cu
3O7の組成を有するペロブスカイト構造の超電導セラ
ミックス粉末を製造し、これを直径:4.5m+eX長
さ+100mmの円柱状圧粉体にプレス成形した。
Example 1 As raw material powder, Y2O3 with average particle size: 6un was used in all cases.
Prepare powder, B a COa powder, and CuO powder, and mix these raw powders with Y2O3: 15.13%, B a
CO3: 52, 89%, CuO: 31.98%
The mixed powder was fired in the air at a temperature of 900'C for 110 hours and ground to an average particle size of 2.8 um.
A superconducting ceramic powder with a perovskite structure having a composition of 3O7 was produced, and this was press-molded into a cylindrical compact having a diameter of 4.5 m + length + 100 mm.

一方、内径:6.5mmX肉厚:0.3mmX長さ+1
20mmのAgチューブおよび平均粒径:110μsの
Ag粉末を用意し、上記円柱状圧粉体をAgチューブの
中央に配置し、上記円柱状圧粉体とAgチューブの間に
上記Ag粉末を充填した。
On the other hand, inner diameter: 6.5mm x wall thickness: 0.3mm x length + 1
A 20 mm Ag tube and Ag powder with an average particle size of 110 μs were prepared, the cylindrical compact was placed in the center of the Ag tube, and the Ag powder was filled between the cylindrical compact and the Ag tube. .

このようにして得られたAg複合チューブの両端をプレ
ス加工により封じたのち、上記Ag複合チューブを伸線
加工し、外径=2龍のAg複合ワイヤとした。
After sealing both ends of the Ag composite tube thus obtained by press working, the Ag composite tube was wire drawn to obtain an Ag composite wire having an outer diameter of 2 mm.

上記Ag複合ワイヤを、酸素雰囲気中、温度:920℃
、24時間保持の条件で熱処理し、この発明の高臨界電
流密度を有する超電導線材を作成した。
The above Ag composite wire was heated in an oxygen atmosphere at a temperature of 920°C.
A superconducting wire having a high critical current density according to the present invention was produced by heat treatment under conditions of holding the wire for 24 hours.

上記この発明の超電導線材を5本作成し、それらの臨界
電流密度を測定し、それらの結果を第1表に示した。
Five superconducting wires of the present invention were prepared, and their critical current densities were measured. The results are shown in Table 1.

実施例 2 平均粒径:50茄のAg粉末に、平均粒径:8郁の超電
導セラミックス粉末を30重量%配合し、混合してAg
混合粉末を作成し、上記Ag混合粉末を実施例1で作成
した円柱状圧粉体とAgチューブの間に充填し、Ag複
合チューブを作成した。
Example 2 30% by weight of superconducting ceramic powder with an average particle size of 8 mm was added to Ag powder with an average particle size of 50 mm, and the mixture was mixed to form Ag powder.
A mixed powder was prepared, and the above Ag mixed powder was filled between the cylindrical green compact prepared in Example 1 and an Ag tube to prepare an Ag composite tube.

上記Ag複合チューブを実施例1と全く同様に伸線加工
および熱処理を施してこの発明の高臨界電流密度を有す
る超電導線材を5本作成し、それらの臨界電流密度を測
定して、その結果を第1表に示した。
Five superconducting wires having a high critical current density of the present invention were prepared by subjecting the Ag composite tube to wire drawing and heat treatment in exactly the same manner as in Example 1, and their critical current densities were measured. It is shown in Table 1.

一方、比較のために、従来例として上記実施例1で用い
た平均粒径:2.8tlraのYBa2Cu3O7の組
成を存するペロブスカイト構造を有する超電導セラミッ
クス粉末を、上記実施例1で用いたAgチューブに充填
してAg粉末またはAg混合粉末を充填することなくA
g複合チューブを作成し、このAg複合チューブの両端
をプレス加工により封じたのち伸線加工し、外径:2m
mのAg複合ワイヤとし、ついて上記Ag複合ワイヤを
上記実施例1と同じ条件(酸素雰囲気中、温度: 92
0”C124時間保持)で熱処理して従来法による超電
導線材を5本作成し、これらの臨界電流密度を測定し、
その結果を第1表に示した。
On the other hand, for comparison, a superconducting ceramic powder having a perovskite structure having an average particle size of 2.8 tlra and a composition of YBa2Cu3O7 used in the above Example 1 as a conventional example was filled into the Ag tube used in the above Example 1. A without filling Ag powder or Ag mixed powder
g A composite tube was created, both ends of this Ag composite tube were sealed by press working, and then wire drawn to give an outer diameter of 2 m.
m Ag composite wire, and the Ag composite wire was then heated under the same conditions as in Example 1 (in oxygen atmosphere, temperature: 92
Five superconducting wires were prepared by the conventional method by heat treatment at 0"C (held for 124 hours), and their critical current densities were measured.
The results are shown in Table 1.

上記第1表の結果から、従来例の超電導線材の臨界電流
密度(A/cJ)は低く、しかもバラツキがあり、安定
した超電導特性を示さないのに対し、この発明の実施例
1および2の超電導線材の臨界電流密度(A/c+t)
は、はぼ一定の安定した高臨界電流密度を示すことがわ
かる。
From the results in Table 1 above, it is clear that the critical current density (A/cJ) of the conventional superconducting wire is low and has variations, and does not exhibit stable superconducting properties, while that of Examples 1 and 2 of the present invention Critical current density of superconducting wire (A/c+t)
It can be seen that this shows a stable high critical current density that is almost constant.

〔発明の効果〕〔Effect of the invention〕

この発明は、Ag粉末焼結体層またはAg混合粉末焼結
体層を、Agチューブと超電導セラミックス粉末焼結体
の間に介在させるという簡単な構造により安定した高臨
界電流密度を有する超電導線材を得ることができるので
産業上すぐれた効果をもたらすものである。
The present invention provides a superconducting wire having a stable high critical current density through a simple structure in which an Ag powder sintered body layer or an Ag mixed powder sintered body layer is interposed between an Ag tube and a superconducting ceramic powder sintered body. It has excellent industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の高臨界電流密度を有する超電導線
材の断面概略図、 第2図は、この発明の高臨界電流密度を有するもう1つ
の超電導線材の断面概略図、 1:Agチューブ 2 : Ag粉末焼結体層 2’:Ag混合粉末焼結体層 3:超電導セラミックス粉末焼結体 4:間隙
FIG. 1 is a schematic cross-sectional view of a superconducting wire having a high critical current density of the present invention. FIG. 2 is a schematic cross-sectional view of another superconducting wire having a high critical current density of the present invention. 1: Ag tube 2 : Ag powder sintered body layer 2': Ag mixed powder sintered body layer 3: Superconducting ceramic powder sintered body 4: Gap

Claims (3)

【特許請求の範囲】[Claims] (1)Yを含む希土類元素、アルカリ土類金属、銅およ
び酸素からなる組成を有しペロブスカイト構造を有する
化合物(以下、超電導セラミックスという)粉末焼結体
をAgチューブで被覆してなる高臨界電流密度を有する
超電導線材において、上記Agチューブと上記超電導セ
ラミックス粉末焼結体の間にAg粉末焼結体層を介在さ
せたことを特徴とする高臨界電流密度を有する超電導線
材。
(1) High critical current obtained by coating a powder sintered body of a compound (hereinafter referred to as superconducting ceramics) with a perovskite structure with a composition consisting of rare earth elements including Y, alkaline earth metals, copper, and oxygen with an Ag tube. A superconducting wire having a high critical current density, characterized in that an Ag powder sintered body layer is interposed between the Ag tube and the superconducting ceramic powder sintered body.
(2)上記Agチューブと上記超電導セラミックス粉末
焼結体の間にAg粉末と超電導セラミックス粉末の混合
粉末焼結体層を介在させたことを特徴とする請求項1記
載の高臨界電流密度を有する超電導線材。
(2) A high critical current density according to claim 1, characterized in that a mixed powder sintered body layer of Ag powder and superconducting ceramic powder is interposed between the Ag tube and the superconducting ceramic powder sintered body. Superconducting wire.
(3)上記超電導セラミックス焼結体の断面形状は、円
形または多角形であることを特徴とする請求項1または
2記載の高臨界電流密度を有する超電導線材。
(3) The superconducting wire having a high critical current density according to claim 1 or 2, wherein the cross-sectional shape of the superconducting ceramic sintered body is circular or polygonal.
JP63133690A 1988-05-31 1988-05-31 Superconductive wire rod with high critical current density Pending JPH01304609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133690A JPH01304609A (en) 1988-05-31 1988-05-31 Superconductive wire rod with high critical current density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133690A JPH01304609A (en) 1988-05-31 1988-05-31 Superconductive wire rod with high critical current density

Publications (1)

Publication Number Publication Date
JPH01304609A true JPH01304609A (en) 1989-12-08

Family

ID=15110600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133690A Pending JPH01304609A (en) 1988-05-31 1988-05-31 Superconductive wire rod with high critical current density

Country Status (1)

Country Link
JP (1) JPH01304609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2362268B (en) * 2000-05-12 2005-05-11 Notetry Ltd Electrical machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2362268B (en) * 2000-05-12 2005-05-11 Notetry Ltd Electrical machine

Similar Documents

Publication Publication Date Title
EP0504909B1 (en) Method of preparing oxide superconducting wire
JPH01304609A (en) Superconductive wire rod with high critical current density
EP0304956B1 (en) Superconductive ceramic wire and method for making same
JPH01276516A (en) Manufacture of superconductive wire rod having high critical current density
JP2564897B2 (en) Manufacturing method of superconducting wire and coil with high critical current density
JPS63285155A (en) Oxide type superconductive material and production thereof
JPH01138132A (en) Meltable superconductor and its production
JP2507937B2 (en) Manufacturing method of superconducting ceramic wire
JP2727565B2 (en) Superconductor manufacturing method
JPH01274317A (en) Manufacture of superconductive wire material with high critical current density and coil
JPS63279523A (en) Manufacture of compound superconductive wire
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JPH02183918A (en) Manufacture of oxide superconductor
JPH07232960A (en) Production of oxide superconductor
JPH01163914A (en) Manufacture of oxide superconductive wire
JP2574173B2 (en) Superconducting wire manufacturing method
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JP2699077B2 (en) Manufacturing method of ceramic superconductor coil
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPS63304528A (en) Manufacture of superconductive wire
JPH01320711A (en) Manufacture of superconductive compact in oxide line
JP3426610B2 (en) Superconductor article manufacturing method
JPH04138624A (en) Manufacture of oxide superconducting layer
JPH03105809A (en) Manufacture of oxide superconductive wire material
JPH01163908A (en) Ceramics superconductor