JPH0130297B2 - - Google Patents

Info

Publication number
JPH0130297B2
JPH0130297B2 JP56089503A JP8950381A JPH0130297B2 JP H0130297 B2 JPH0130297 B2 JP H0130297B2 JP 56089503 A JP56089503 A JP 56089503A JP 8950381 A JP8950381 A JP 8950381A JP H0130297 B2 JPH0130297 B2 JP H0130297B2
Authority
JP
Japan
Prior art keywords
adhesive
backing material
solar cell
transparent substrate
porous sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089503A
Other languages
Japanese (ja)
Other versions
JPS57206054A (en
Inventor
Akira Nishihara
Kunio Naganami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56089503A priority Critical patent/JPS57206054A/en
Publication of JPS57206054A publication Critical patent/JPS57206054A/en
Publication of JPH0130297B2 publication Critical patent/JPH0130297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は透明基板と裏打材との間に被封入物を
接着剤で封入する方法に関するものであり、特に
太陽電池素子を封入する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of encapsulating an object between a transparent substrate and a backing material using an adhesive, and particularly to a method of encapsulating a solar cell element.

太陽電池は通常ガラス板などの透明基板と裏打
材との間に太陽電池素子を封入したパネルで構成
されている。パネル内には1枚〜多数枚の素子が
封入され、それぞれの素子には素子間あるいはパ
ネル外部とを電気的に結合するリード線が取り付
けられることが通例である。素子は通常結晶シリ
コン、アモルフアスシリコン、その他の材料から
なる半導体であり、その厚さは0.1〜1.0mmの脆弱
なものであることが多い。従来、素子を封入する
方法としては圧着法と接着法の2つが主流であつ
た。前者は、ポリビニルブチラール膜を中間膜と
する合せガラスの製造方法と類似した方法であ
り、ポリビニルブチラール膜に素子を埋め込んで
おくかあるいはガラス板とポリビニルブチラール
膜との間に素子を存在させてポリビニルブチラー
ル膜とガラス板を圧着する方法である。この方法
は圧着に高い圧力を使用するため素子が破損し易
いという大きな問題がある。一方、接着法は透明
基板に液状接着剤を用いて素子を接着し、さらに
その背面に裏打材を接着する方法である。この方
法においても素子の接着時あるいは裏打材の接着
時に素子に高い圧力がかかると素子が破損し易
い。素子が破損し易い原因は、単に素子自体が脆
弱であるという理由ばかりでなく、それに加えて
素子にリード線やリード線と素子とのハンダ付部
分などの凹凸部が存在するためにこの素子の凹凸
部に応力が集中し易いという点にもある。従つ
て、封入の際には素子に大きな応力がかからない
ように加圧力を調節しなくてはならない。
A solar cell usually consists of a panel in which solar cell elements are enclosed between a transparent substrate such as a glass plate and a backing material. One to many elements are enclosed within a panel, and each element is usually attached to a lead wire that electrically connects the elements or the outside of the panel. The devices are typically semiconductors made of crystalline silicon, amorphous silicon, or other materials, and are often fragile, with a thickness of 0.1 to 1.0 mm. Conventionally, there have been two mainstream methods for encapsulating elements: a pressure bonding method and an adhesive method. The former method is similar to the method for manufacturing laminated glass using a polyvinyl butyral film as an interlayer film, and the element is embedded in the polyvinyl butyral film or the element is placed between the glass plate and the polyvinyl butyral film to form a polyvinyl butyral film. This is a method of pressure bonding a butyral film and a glass plate. This method has a major problem in that the element is easily damaged because high pressure is used for crimping. On the other hand, the adhesive method is a method in which an element is adhered to a transparent substrate using a liquid adhesive, and a backing material is further adhered to the back surface of the element. Even in this method, if high pressure is applied to the element when adhering the element or the backing material, the element is likely to be damaged. The reason why the device is easily damaged is not only because the device itself is fragile, but also because the device has uneven parts such as lead wires and soldered parts between the lead wires and the device. Another problem is that stress tends to concentrate on the uneven parts. Therefore, during encapsulation, the pressing force must be adjusted so as not to apply large stress to the element.

従来、裏打材は金属のフイルムやシートあるい
はガラス板などの硬質板体であつた。硬質板体か
らなる裏打材は加圧の際の圧力調節が困難である
のみならず、素子が裏打材が部分的に接触したり
近接するとその部分に応力が集中し易く素子の破
損の虞れが大きくなる。薄いフイルム状の裏打材
は均一に加圧することが困難である。またでき上
つたパネルでは裏打材面からかかる外部応力で内
部の素子が破損し易くなる。本発明者は裏打材に
ついて種々の研究検討を行つた結果、可撓性の多
孔質体が種々の理由で最も優れた裏打材となりう
ることを見い出した。本発明はこの太陽電池素子
を封入する方法に関するものであり、即ち、透明
基板と裏打材との間に太陽電池素子を接着剤で封
入する方法において、該裏打材は流動化しうる接
着剤が予め含浸され可撓性の多孔質シートからな
り、透明基板と該裏打材との間に太陽電池素子を
配置し、該裏打材を該太陽電池素子が破損しない
程度に印加しつつ該接着剤を固化することを特徴
とする封入方法である。
Conventionally, the backing material has been a hard plate such as a metal film or sheet or a glass plate. Not only is it difficult to adjust the pressure when pressurizing the backing material made of a hard plate, but if the backing material partially contacts or comes close to the element, stress tends to concentrate in that area, which may cause damage to the element. becomes larger. It is difficult to apply pressure uniformly to a thin film-like backing material. Furthermore, in the finished panel, internal elements are likely to be damaged by external stress applied from the backing material surface. As a result of various research studies regarding backing materials, the present inventor found that a flexible porous material can be the most excellent backing material for various reasons. The present invention relates to a method for encapsulating a solar cell element, that is, a method for encapsulating a solar cell element between a transparent substrate and a backing material using an adhesive, in which the backing material is preliminarily coated with a fluidizable adhesive. A solar cell element is arranged between a transparent substrate and the backing material, which is made of an impregnated flexible porous sheet, and the adhesive is solidified while applying the backing material to an extent that does not damage the solar cell element. This encapsulation method is characterized by:

まず、本発明の1例を図面を用いて説明する。
第1図〜第3図は本発明の方法の1例を用いた太
陽電池パネルの製造工程を示した断面図である。
第1図は第1の工程を示すものである。まず、ガ
ラス板などの透明基板1の表面端部にダム2を設
けた後透明基板1の表面に透明な液状接着剤を流
延して接着剤層3を形成する。この液状接着剤層
3上に素子4,5等を乗せる。素子4,5はリー
ド線6,7等で電気的に結合されている。接着剤
層3上に素子4,5等を乗せた後、素子4,5等
を軽く押圧して素子4,5等の表面を接着剤層3
と密着させ、その間に気泡を残留させないように
することが好ましい。接着剤層3の液状接着剤は
素子を密着させる前またはその後部分的に硬化さ
せることができる。特に、素子を密着させた後部
分的に硬化させて素子を固定することが好まし
い。素子を密着させた後液状接着剤を完全に硬化
させてもよいが、後述する第2の接着剤と強固に
かつ均一に一体化するためには部分的に硬化させ
る場合の方が好ましい。
First, one example of the present invention will be explained using the drawings.
1 to 3 are cross-sectional views showing the manufacturing process of a solar cell panel using one example of the method of the present invention.
FIG. 1 shows the first step. First, a dam 2 is provided at the end of the surface of a transparent substrate 1 such as a glass plate, and then a transparent liquid adhesive is cast on the surface of the transparent substrate 1 to form an adhesive layer 3. Elements 4, 5, etc. are placed on this liquid adhesive layer 3. The elements 4 and 5 are electrically coupled by lead wires 6 and 7, etc. After placing the elements 4, 5, etc. on the adhesive layer 3, lightly press the elements 4, 5, etc. to place the surfaces of the elements 4, 5, etc. on the adhesive layer 3.
It is preferable to bring the material into close contact with the material so that no air bubbles remain between them. The liquid adhesive of the adhesive layer 3 can be partially cured before or after bonding the elements. In particular, it is preferable to fix the element by partially curing the element after bringing the element into close contact with the adhesive. Although the liquid adhesive may be completely cured after the elements are brought into close contact with each other, it is preferable to partially cure the liquid adhesive in order to firmly and uniformly integrate it with the second adhesive described below.

第2図は第1図の工程に引き続いて、液状接着
剤を含浸した可撓性多孔質シート7を素子4,5
等の上に配置したものを示す図である。可撓性多
孔質シートに含浸した液状接着剤は第1図の工程
で使用した液状接着剤と同一のものでも異るもの
であつてもよい。この液状接着剤を上記接着剤層
3の液状接着剤と区別する場合は、第2の接着剤
と呼ぶ。可撓性多孔質シートに含浸された接着剤
は可撓性多孔質シートを加圧するとそこから浸出
する。従つて、第2図において接着剤含浸多孔質
シート7の上面を下方(透明基板1の方向)へ加
圧すれば、それに含浸されている接着剤が浸出
し、素子4,5等が配置されている空隙8に満た
される。第3図はこの接着剤含浸可撓性多孔質シ
ート7が加圧されている状態を示す図である。ガ
ラス板などの第2の裏打材9によつて加圧された
接着剤含浸可撓性シート7から浸出した接着剤は
第2図の空隙8を満たして素子4,5等が封入さ
れた封入層10を形成する。これの第3図の状態
で接着剤を固化させると同時に第2の裏打材9を
接着し、目的とする素子が封入されたパネルがで
き上る。
FIG. 2 shows that, following the process shown in FIG. 1, a flexible porous sheet 7 impregnated with a liquid adhesive is applied to the elements 4 and
It is a figure showing what is arranged on etc. The liquid adhesive with which the flexible porous sheet is impregnated may be the same as or different from the liquid adhesive used in the step of FIG. When this liquid adhesive is to be distinguished from the liquid adhesive of the adhesive layer 3, it is referred to as a second adhesive. The adhesive impregnated into the flexible porous sheet is leached therefrom when the flexible porous sheet is pressurized. Therefore, in FIG. 2, if the upper surface of the adhesive-impregnated porous sheet 7 is pressed downward (in the direction of the transparent substrate 1), the adhesive impregnated therein will ooze out, and the elements 4, 5, etc. The void 8 is filled. FIG. 3 shows a state in which the adhesive-impregnated flexible porous sheet 7 is pressurized. The adhesive exuded from the adhesive-impregnated flexible sheet 7 pressurized by a second backing material 9 such as a glass plate fills the void 8 in FIG. 2 and forms an enclosure in which the elements 4, 5, etc. are encapsulated. Form layer 10. In this state as shown in FIG. 3, the adhesive is solidified and the second backing material 9 is adhered at the same time, thereby completing a panel in which the desired element is encapsulated.

本発明の特徴は、可撓性多孔質シートを裏打材
として使用することにより素子の破損の問題が解
決されることにある。素子を封入する際、可撓性
多孔質シートと素子が接触することがあつても可
撓性多孔質シートが柔軟であるので、素子に部分
的に大きな応力がかかることがない。従つて、可
撓性多孔質シートと素子とを接触させた状態で接
着剤を固化することもできる。また裏打材の少く
とも一部には接着剤が侵入して固化しているので
封入層と裏打材が強固に接着し、剥離などの問題
を起す虞れが少い。
A feature of the present invention is that the problem of element breakage is solved by using a flexible porous sheet as a backing material. When the element is encapsulated, even if the flexible porous sheet and the element come into contact, since the flexible porous sheet is flexible, large stress will not be applied locally to the element. Therefore, the adhesive can also be solidified while the flexible porous sheet and the element are in contact with each other. Furthermore, since the adhesive has penetrated and solidified into at least a portion of the backing material, the encapsulating layer and the backing material are firmly adhered to each other, and there is little risk of problems such as peeling.

透明基板としては、ガラスあるいは合成樹脂な
どの透明材料よりなる。特に好ましい透明基板は
ガラス板かガラス板と合成樹脂のシートやフイル
ムとの積層体である。積層体を使用する場合は、
合成樹脂層は太陽電池素子に近い側に設けること
が好ましい。これにより太陽電池素子が接触する
ことがあつても合成樹脂が比較的軟質であれば破
損を防止できる。第4図は、ガラス板1と封入層
10の間に透明合成樹脂層11が存在する太陽電
池パネルの断面を示したものであり、このガラス
板1と透明合成樹脂層11の積層体が透明基板で
ある。この透明合成樹脂としては、たとえばポリ
ビニルブチラール、ポリカーボネート、ポリメチ
ルメタクリレート、ポリウレタンなどが使用でき
る。
The transparent substrate is made of a transparent material such as glass or synthetic resin. A particularly preferred transparent substrate is a glass plate or a laminate of a glass plate and a synthetic resin sheet or film. When using a laminate,
The synthetic resin layer is preferably provided on the side closer to the solar cell element. As a result, even if the solar cell elements come into contact with each other, damage can be prevented if the synthetic resin is relatively soft. FIG. 4 shows a cross section of a solar cell panel in which a transparent synthetic resin layer 11 exists between a glass plate 1 and an encapsulating layer 10, and the laminate of this glass plate 1 and transparent synthetic resin layer 11 is transparent. It is a board. As this transparent synthetic resin, for example, polyvinyl butyral, polycarbonate, polymethyl methacrylate, polyurethane, etc. can be used.

可撓性の多孔質シートとしては、軟質ポリウレ
タンフオームシート、ポリエチレンフオームシー
ト、その他の発泡合成樹脂シート、ガラス繊維マ
ツト、合成繊維マツト、その他の繊維マツトなど
の液状接着剤を吸収しうる可撓性のある多孔質の
シートを使用できる。これら多孔質シートは2以
上を複合して使用でき、その場合太陽電池素子に
近い側は発泡合成樹脂シートであることが好まし
い。また、この多孔質シートの背面にはさらに前
記のように補強のための第2の裏打材を設けるこ
とが好ましい。この裏打材としては、ガラス板、
金属のシートやフイルム、合成樹脂のシートやフ
イルムなどの硬質材料であることが好ましい。第
4図は、可撓性多孔質シート7の背面に第2の裏
打材12を接着したものである。可撓性多孔質シ
ート裏打材の背面まで接着剤が存在する場合は、
この補強裏打材の接着を可撓性多孔質シートを加
圧して接着剤を固化する様に同時に行うことがで
きる。
Flexible porous sheets include flexible polyurethane foam sheets, polyethylene foam sheets, other foamed synthetic resin sheets, glass fiber mats, synthetic fiber mats, and other fiber mats that can absorb liquid adhesives. Porous sheets can be used. Two or more of these porous sheets can be used in combination, and in that case, it is preferable that the side closer to the solar cell element is a foamed synthetic resin sheet. Further, it is preferable that a second backing material for reinforcement is further provided on the back surface of the porous sheet as described above. This backing material includes glass plate,
It is preferably a hard material such as a metal sheet or film, or a synthetic resin sheet or film. In FIG. 4, a second backing material 12 is bonded to the back surface of the flexible porous sheet 7. If the adhesive is present all the way to the back of the flexible porous sheet backing,
Adhesion of the reinforcing backing material can be done simultaneously by applying pressure to the flexible porous sheet to solidify the adhesive.

封入層を形成する接着剤は流動化しうる接着剤
が使用される。流動化しうる接着剤とは、液状接
着剤または加熱や加圧により流動化しうる状態と
なる接着剤である。たとえば、B−ステージ化さ
れた不飽和ポリエステル樹脂やエポキシ樹脂、チ
クソトロピー性を付与された不飽和ポリエステル
樹脂などが含まれる。透明基板にまず太陽電池素
子を接着させる接着剤としては脱泡の容易さ等の
面で液状接着剤が好ましいが、太陽電池素子を接
着した後は前記のようにB−ステージ化のような
部分的な硬化を行つてもよい。可撓性多孔質シー
トに第2の接着剤を含浸させる場合は液状の接着
剤であることが好ましいが、含浸後は液状でなく
てもよい。たとえば、増粘剤やチクソトロピー性
付与剤を含む液状接着剤はそれが末だ流動化し易
い液状状態で可撓性多孔質シートに含浸すること
が好ましい。
A fluidizable adhesive is used as the adhesive forming the encapsulation layer. The fluidizable adhesive is a liquid adhesive or an adhesive that becomes fluidized by heating or pressure. Examples include B-staged unsaturated polyester resins, epoxy resins, and unsaturated polyester resins imparted with thixotropy. As the adhesive for first bonding the solar cell element to the transparent substrate, a liquid adhesive is preferable in terms of ease of degassing. Curing may also be performed. When impregnating the flexible porous sheet with the second adhesive, it is preferable that the adhesive be liquid, but it does not need to be liquid after impregnation. For example, it is preferable that a liquid adhesive containing a thickener or a thixotropic agent is impregnated into a flexible porous sheet in a liquid state in which it is easily fluidized.

太陽電池素子を透明基板にまず接着する第1の
接着剤と第2の接着剤は種類や組成が異るもので
あつてもよい。しかし通常は同一種類のものであ
ることが好ましい。これら接着剤は、合成樹脂を
形成しうる液状モノマーやプレポリマーなどの重
合反応により硬化しうる接着剤が好ましいが、溶
剤等の除去や加熱冷却により固化して接着させる
接着剤であつてもよい。好ましい接着剤は、アク
リル系モノマーやプレポリマーからなるアクリル
系接着剤、不飽和ポリエステル樹脂系接着剤、エ
ポキシ樹脂系接着剤、ジアリルフタレート系接着
剤などがある。これら接着剤の硬化は熱により硬
化するものは勿論、光などの放射エネルギーによ
り硬化するものであつてもよい。特に第1の接着
剤としては、光硬化性接着剤、または光と熱によ
り硬化しうる接着剤が好ましい。また第2の接着
剤は熱により硬化するものが好ましい。従つて、
最も好ましくは第1の接着剤で太陽電池素子を透
明基板に接着し光を照射してこの第1の接着剤を
部分的に硬化させ、次いで第2の接着剤を適用
し、最後に第1の接着剤と第2の接着剤を熱によ
り完全に硬化させる方法が使用される。特に好ま
しい接着剤はメタクリル酸メチル、アクリル酸メ
チル、その他のメタクル酸あるいはアクリル酸の
エステルからなるモノマーやプレポリマーであ
り、これを主成分としてさらに過酸化物などのラ
ジカル発生触媒や光増感剤を加えて目的とする硬
化特性を付与した接着剤である。
The first adhesive and the second adhesive that first adhere the solar cell element to the transparent substrate may have different types and compositions. However, it is usually preferable that they be of the same type. These adhesives are preferably adhesives that can be cured by a polymerization reaction of liquid monomers or prepolymers that can form synthetic resins, but they may also be adhesives that solidify and adhere by removing the solvent or heating and cooling. . Preferred adhesives include acrylic adhesives made of acrylic monomers and prepolymers, unsaturated polyester resin adhesives, epoxy resin adhesives, and diallyl phthalate adhesives. These adhesives may be cured not only by heat but also by radiant energy such as light. In particular, as the first adhesive, a photocurable adhesive or an adhesive that can be cured by light and heat is preferable. Further, the second adhesive is preferably one that is cured by heat. Therefore,
Most preferably, a first adhesive is used to adhere the solar cell element to the transparent substrate, irradiation with light to partially cure the first adhesive, followed by application of the second adhesive, and finally application of the first adhesive. A method is used in which the first adhesive and the second adhesive are completely cured by heat. Particularly preferred adhesives are monomers or prepolymers made of methyl methacrylate, methyl acrylate, and other esters of methacrylic acid or acrylic acid, which are the main components, and further contain radical-generating catalysts such as peroxides and photosensitizers. This is an adhesive that has been added with the desired curing properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は本発明の方法を
適用した太陽電池パネルの製造工程を示す断面図
である。第4図は本発明の方法を適用して得られ
る太陽電池パネルの他の例を示す断面図である。 1:透明基板、2:太陽電池素子、7:裏打
材、10:封入層。
FIG. 1, FIG. 2, and FIG. 3 are cross-sectional views showing the manufacturing process of a solar cell panel to which the method of the present invention is applied. FIG. 4 is a sectional view showing another example of a solar cell panel obtained by applying the method of the present invention. 1: Transparent substrate, 2: Solar cell element, 7: Backing material, 10: Encapsulation layer.

Claims (1)

【特許請求の範囲】 1 透明基板と裏打材との間に太陽電池素子を接
着剤で封入する方法において、該裏打材は流動化
しうる接着剤があらかじめ含浸された可撓性の多
孔質シートからなり、透明基板と該裏打材との間
に太陽電池素子を配置し、該裏打材を該太陽電池
素子が破損しない程度に加圧しつつ該接着剤を固
化することを特徴とする封入方法。 2 透明基板に太陽電池素子を第1の接着剤で接
着し、次いで可撓性の多孔質シートに含浸された
第2の接着剤を適用する、特許請求の範囲第1項
の方法。 3 流動化しうる接着剤が重合硬化しうる接着剤
である、特許請求の範囲第1項の方法。
[Claims] 1. A method of encapsulating a solar cell element between a transparent substrate and a backing material using an adhesive, wherein the backing material is made of a flexible porous sheet pre-impregnated with a fluidizable adhesive. An encapsulation method comprising placing a solar cell element between a transparent substrate and the backing material, and solidifying the adhesive while applying pressure to the backing material to an extent that the solar cell element is not damaged. 2. The method of claim 1, wherein a solar cell element is adhered to a transparent substrate with a first adhesive, and then a second adhesive impregnated into a flexible porous sheet is applied. 3. The method of claim 1, wherein the fluidizable adhesive is a polymerizable adhesive.
JP56089503A 1981-06-12 1981-06-12 Method for sealing Granted JPS57206054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56089503A JPS57206054A (en) 1981-06-12 1981-06-12 Method for sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56089503A JPS57206054A (en) 1981-06-12 1981-06-12 Method for sealing

Publications (2)

Publication Number Publication Date
JPS57206054A JPS57206054A (en) 1982-12-17
JPH0130297B2 true JPH0130297B2 (en) 1989-06-19

Family

ID=13972570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56089503A Granted JPS57206054A (en) 1981-06-12 1981-06-12 Method for sealing

Country Status (1)

Country Link
JP (1) JPS57206054A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455481B2 (en) * 2009-07-16 2014-03-26 京セラ株式会社 Photoelectric conversion device
JPWO2011039860A1 (en) * 2009-09-30 2013-02-21 三菱重工業株式会社 Solar cell module, solar cell panel, method for manufacturing solar cell module, and method for manufacturing solar cell panel
KR101266103B1 (en) * 2010-09-29 2013-05-27 엘지전자 주식회사 Solar cell module and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122487A (en) * 1976-04-08 1977-10-14 Agency Of Ind Science & Technol Solar battery device
JPS5410692A (en) * 1977-06-24 1979-01-26 Philips Nv Photoelectric generator panel and method of producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181671U (en) * 1974-12-24 1976-06-30
JPS6112694Y2 (en) * 1980-05-23 1986-04-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122487A (en) * 1976-04-08 1977-10-14 Agency Of Ind Science & Technol Solar battery device
JPS5410692A (en) * 1977-06-24 1979-01-26 Philips Nv Photoelectric generator panel and method of producing same

Also Published As

Publication number Publication date
JPS57206054A (en) 1982-12-17

Similar Documents

Publication Publication Date Title
US5292390A (en) Optical fiber encapsulating techniques
CA2122278A1 (en) Adhesive sheet for wafer and process for preparing semiconductor apparatus using the same
EP0262848A3 (en) Method of fabricating multilayer structures with nonplanar surfaces
JPH0390340A (en) Sandwich structure and manufacture therefor
JPH0130297B2 (en)
US5933708A (en) Lead-on-chip semiconductor package and method for making the same
CN100409430C (en) Semiconductor device and method for assembling the same
JPH11224884A (en) Electric circuit sealing structure and its manufacture
JPH0669737B2 (en) Method for manufacturing lightweight blanket for solar cell panel
JPS61139491A (en) Joining of resinous printing plate
JP4252836B2 (en) Heat dissipation sheet, PDP, and method of manufacturing heat dissipation sheet
JPH0519306B2 (en)
JPH05191050A (en) Manufacture of rigid flex wiring board
JP3437609B2 (en) Warpage deformation holding device used for bonding two hard plates with different coefficients of thermal expansion
JP2982002B2 (en) Manufacturing method of honeycomb panel
JP3088194B2 (en) Forming method of decorative board
JP4040734B2 (en) Anisotropic conductive adhesive and electronic component mounting method using the same
JPH01272125A (en) Manufacture of semiconductor device
JP3517947B2 (en) Liquid crystal display device and method of manufacturing the same
JPS6135203A (en) Method of bonding board material
JPS6127182Y2 (en)
JP3247125B2 (en) Seat cover bonding method using hot melt adhesive
JP2001168505A (en) Method of mounting work provided with bump
JPH10256285A (en) Manufacture of substrate with sealing frame body for semiconductor package and device there
JPS6134377B2 (en)